Directional input system with automatic correction

Information

  • Patent Grant
  • 7778818
  • Patent Number
    7,778,818
  • Date Filed
    Friday, September 21, 2007
    17 years ago
  • Date Issued
    Tuesday, August 17, 2010
    14 years ago
Abstract
A system associated with a text entry application, such as email or instant messaging, comprises an optional onscreen representation of a circular keyboard, a list of potential linguistic object matches, and a message area where the selected words are entered. The circular keyboard is manipulated via a hardware joystick or game-pad with analog joystick or omni-directional rocker switch built therein. The user points the joystick in the general direction of the desired letter, and then continues pointing roughly to each letter in the desired word. Once all letters have been roughly selected, buttons are used to select a specific word from the list of potential matches and send the selected word to the message area.
Description
BACKGROUND OF THE INVENTION

1. Technical Field


This invention relates generally to input devices. More particularly, the invention relates to a directional input system with automatic correction.


2. Description of Related Arts


To operate a computing device, such as a computer, one or more input devices must be connected thereto. Since the early days of the computing age, the keyboard has been the primary input device for users to input textual messages into to computing devices. The textual messages may be commands for the computers to execute, or just plain data entry if he's using a keyboard as an input device. However, the user must memorize the correct spelling and syntax of computer commands. Even if the user has memorized the correct spelling, the input of data with keyboard itself can be error prone. Hence, a graphical user interface (GUI) has been developed for computing devices to reduce the use of keyboard. In a GUI, the user operates an alternative input device, such as a mouse, trackball, or joystick, to move around a cursor or pointer on the display. Once the cursor is moved to the desired position, a button is pressed and released, and a corresponding computer command is thus executed. Although a GUI provides an alternative way to invoke computer commands, the keyboard continues to serve as the primary text entry input device for computing devices.


Nevertheless, there are situations such as in console video-game machines or hand held devices with a joystick or joystub, where a traditional keyboard is neither available nor convenient. Currently, the text entry method for these systems usually consists of scrolling through an alphabet or on-screen QWERTY keyboard. Another commonly adopted navigation means in video-game machines provides users with a pie menu, which is a circular menu that allows users choose items by dragging the pointing device in the direction of the menu item. To input a word, the user must select each letter by scrolling through an alphabet list, navigating through the pie menu, or locating it on the on-screen keyboard and click a selection button after each letter is located.


The above text entry method has numerous disadvantages. For example: the method is inefficient because the user has to spend time in locating the letter and confirming the letter; the method is inconvenient because it breaks the normal typing flow when inserting clicks between letter selections; and the method is ineffective because the user could easily mistake an adjacent letter for the limited size of the on-screen keyboard.


What is desired is an effective text entry input system using a directional input means such as a joystick or trackball device. It is further desired that the text entry input system is intuitive and easy to operate. It is still further desired that the text entry input system can provide auto-correction of input mistakes.


SUMMARY OF THE INVENTION

The invention provides a directional input system associated with a text entry application, such as email or instant messaging. The system comprises an optional onscreen representation of a circular keyboard, a list of potential linguistic object matches, and a message area where the selected words are entered. The circular keyboard is manipulated via a hardware joystick or game-pad having an analog joystick or omni-directional rocker switch built therein. The user points the joystick in the general direction of the desired letter, and then continues pointing roughly to each letter in the desired word. Once all letters have been roughly selected, buttons or equivalent means are used to select a specific word from the list of potential matches and to send the selected word to the message area.


In one preferred embodiment, the invention provides a text entry input system which includes: (1) a directional selection means, plus one or more buttons or equivalent user input means; (2) a list of linguistic objects, organized by frequency of use; (3) an output device with a text display area; and (4) a processor which includes an object search engine, a distance or angular value calculation module, word module for evaluating and ordering words, and a selection component.


The directional selection means is used to point in the direction of each letter of a word. The processor calculates a distance or an angle to find letters and weight values for the letters in the pointing direction with the distance or the angle calculation module, retrieves a predicted list of words based on the letters and weight values with the object search engine, and evaluates and orders the predicted list of words with the word module. The selection component is used to select a desired word from the predicted list of words.


In another preferred embodiment, the invention provides a text entry input method using a directional selection means. The method includes the steps of:

    • The user moving a cursor on an on-screen keyboard in the direction of a desired letter using the directional input means;
    • Recording the X-Y coordinate position of the cursor;
    • Converting the recorded X-Y coordinate position into the corresponding set of polar coordinates;
    • Applying a selection weight value to each input based on the set of polar coordinates of the recorded cursor position; and
    • Retrieving a list of predicted words from a vocabulary database based on the weight value for each input and a plurality of pre-determined values.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram illustrating a directional input system according to the invention;



FIG. 2 is a schematic diagram depicting an exemplary screen of the display device corresponding to the directional input system of FIG. 1;



FIG. 3 is a schematic diagram depicting a preferred layout of an on-screen keyboard according to the invention;



FIG. 4A is a schematic view of a set of compass points according to one embodiment of the invention;



FIG. 4B is a schematic view of a set of compass points around the word selection list according to another embodiment of the invention;



FIG. 5 is a schematic view of an on-screen feedback of the directional input system according to the invention;



FIG. 6 is a flow diagram illustrating a process for precision input mode of the directional input system according to the invention; and



FIG. 7 is a flow diagram illustrating a process for operating the directional input system according to the invention.





DETAILED DESCRIPTION OF THE INVENTION

The invention provides a directional input system associated with a text entry application, such as email or instant messaging. The system includes an optional onscreen representation of a circular keyboard, a list of potential linguistic object matches, and a message area where the selected words are entered. The circular keyboard is manipulated via a hardware joystick or game-pad having an analog joystick or omni-directional rocker switch built therein. The user points the joystick in the general direction of the desired letter, and then continues pointing roughly to each letter in the desired word. Once all letters have been roughly selected, buttons or equivalent means are used to select a specific word from the list of potential matches and send the selected word to the message area.


System Construction and Basic Operation



FIG. 1 is a block schematic diagram illustrating a directional input system 100 incorporated in a home video game console machine according to the preferred embodiment of this invention. The input system 100 includes an analog joystick 110 having one or more buttons, a vocabulary module 150 which stores a collection of linguistic objects, a display device 120 having a text display area, and a processor 140. The processor 140, which connects the other components together, further includes an object search engine 142, a distance calculation module 144 for calculating distance value, a word (linguistic object) module 146 for evaluating and ordering words, and a selection component 148. The system 100 may further include an optional on-screen representation of a keyboard 130 showing on the display device 120.


The joystick 110 serves as a directional selection input device, which provides a possibility of directional input with a sufficient precision, preferably 10° or more precise. It is preferable that the default position of the cursor, if it is shown, is at the center of the circle of letters. It is possible to use a joystick device to navigate in two dimensions an on-screen “QWERTY” or “ABC” keyboard, either in the standard rectangular form or in a circular layout. It is also possible to navigate through multiple concentric rings of characters. It is the goal of this invention, however, to depend only on the joystick in its center/resting position and its non-centered (or perimeter) positions, i.e. using the radial direction rather than the specific degree of tilt.


As soon as a direction has been established by some degree of tilt from the center, the input may be registered and recorded. It may still be beneficial to the user, however, to allow the direction to be altered slightly before recording it. Therefore, the last effective direction is only recorded after the joystick is returned to its resting position in the preferred embodiment of the invention.


Although analog joystick is described as the preferred directional selection device, any input device that provides the possibility of directional input with a sufficient precision can be used. For examples: omni-directional rocker switch, thumbstick, e.g. IBM TrackPoint™, touchpad, touchscreen, touchscreen and stylus combination, trackball, eye tracking device, trapped-disk sliding switch, steering wheel, Apple iPod™ Navigation Wheel, or Sony's Jog-dial and data glove, e.g. old Nintendo Game Glove, can be used as alternative.


The joystick input device preferably has eight buttons. However, it may only have one button, or any other number of buttons. Note that the stick itself does not usually have that many buttons despite the fact that the joystick base or enclosing game controller may have. A 4-way directional hat switch or jog-dial may be used to support multiple functions, both for character input and for secondary navigation. In addition, a joystick may be pressed straight down (z-axis) to provide an additional button.


These buttons provide a mechanism for explicit commands to the system. One of the buttons may invoke a menu which contains additional commands. Another button may change the set of characters which may be selected via the directional input.


In an alternate embodiment, a second joystick or omni directional rocker switch is used to invoke some of the explicit commands of the system. For example, tilting the joystick up and down scrolls through the word choices and tilting it to the right extends the current word with a choice of suffixes.


The linguistic objects that are stored in the vocabulary module 150 include but not limit to: words, phrases, abbreviations, chat slang, emoticons, user IDs, URLs, non-English (such as Chinese or Japanese) characters. Although words are used in the preferred embodiments, any other linguistic objects are equally applicable. Similarly, although the term “letter” or “character” is used in the preferred embodiment, other sub-word components from Non-English languages, e.g. strokes, radicals/components, jamos, kana, plus punctuation symbols and digits, are equally applicable.


The list of predicted words is ordered in accordance with a linguistic model, which may include one or more of: frequency of occurrence of a word in formal or conversational written text; frequency of occurrence of a word when following a preceding word or words; proper or common grammar of the surrounding sentence; application context of current word entry; and recency of use or repeated use of the word by the user or within an application program.



FIG. 2 is a schematic diagram depicting an exemplary screen of the display device 120 corresponding to the directional input system 100 of FIG. 1. The screen includes an on-screen keyboard 130 and a text display area 210. As mentioned above, the on-screen keyboard 130 is optional because if the alphabets are printed around the joystick device, the on-screen keyboard component would be unnecessary.


The on-screen keyboard area can take a variety of shapes, including but not limited to circle, square, oval and polygon with any number of sides. The visual representation is typically, but not limited to, a two-dimensional plane figure.


The on-screen keyboard 130 may be enhanced by, or even replaced with, a set of compass point letters, which are ‘A’, ‘H’, ‘N’ and ‘U’. Compass point letters can be placed in a separate compass area on screen as shown in FIG. 4A. They can also be placed around the word selection list as shown in FIG. 4B. These compass pointer letters can also be placed in an interactive pointer/cursor on screen or even around the joystick device 110.


The letters in the on-screen keyboard 130 can be arranged in any order or orientation. In the preferred layout as shown in FIG. 2, all letters have their bottoms towards the center of the ring. In an alternative layout, all letters may be upright. In the preferred layout as shown in FIG. 2, the letters are ordered alphabetically. In an alternative layout, the letters may follow the Dvorak order. In the preferred layout as shown in FIG. 2, the letters start at the 12 o'clock position. In an alternative layout, the letters may start at the 9 o'clock location. Alternatively, the letters may have a moving starting position in a rotating keyboard in an embodiment, for example, where the input device is a type of wheel. In the preferred layout as shown in FIG. 2, the letters are placed clockwise in the character ring. In an alternate layout, the letters may be placed counterclockwise. In the preferred embodiment as shown in FIG. 2, letters occupy different amount of radians depending upon their frequency of use in the language, giving more frequent letters a larger target area.


Likewise, the digits can be arranged in any order or orientation. In the preferred embodiment as shown in FIG. 3, the digits would be located adjacent to the series of letters assigned to the corresponding digit keys on a telephone keypad.


The on-screen keyboard 130 may include letters of a primary input language, letters of alternate input languages (and/or accented letters), digits, and punctuation symbols. The keyboard may also include character components for pictographic languages, diacritics and other “zero-width” characters that attach to preceding characters. The keyboard may further include tone marks, bi-directional characters, functions indicated by a word or symbol, and symbolic representation of a set of characters such as “Smart Punctuation” as described below.


The preferred primary text input keyboard as shown in FIG. 3 includes unaccented letters which form an outer ring, digits which form an inner ring, and a symbol or an indicator between the letters “z” and “a”, called “Smart Punctuation”, which intuitively determines which punctuation is most appropriate based on the word context.


There may be auditory and/or visual feedback on each joystick movement or button press. For example, as soon as the joystick direction is registered, a solid or gradient-fill pie wedge shape could appear on the keyboard, centered on the current direction of tilt. Further, the width of that pie wedge could narrow in proportion to the tilt of the joystick towards the perimeter. The pie wedge could remain momentarily after the joystick is returned to its center/resting position. The pie wedge provides a visual cue that the tilt of the joystick was registered and reinforces the notion that each action represents a range of possible letters. FIG. 5 depicts a visual feedback for a joystick movement. The solid pie wedge 502 on the keyboard 302 shows the current direction of the joystick and the range of letters in that direction.


Referring back to FIG. 2, the text display area 210 includes a word choice list region 224 and a message area 220. The word choice list is a list of words that the system predicts as likely candidates based on the characters entered by ambiguous directional input.


The most likely word is a default word. The user can either accept the default word with one action, or select an alternate word with a combination of actions.


The exact spelling sequence of exact characters coincidentally selected by the user is also displayed. Preferably, the spelling sequence is displayed in a separate area above or below the word choice list. Alternatively, it may be displayed as an entry in the word choice list, typically the first line or the last line. In FIG. 2, the exact spelling sequence 222 is displayed above the word choice list 224.


The last letter entered is also indicated both on the on-screen keyboard and in the exact spell sequence, by some method including but not limited to font change, color change, reverse video or alternate background color, underline, bold face or italics, and outline. Example of outline can be a box or a circle.


All the words on the word choice list, other than the exact spelling sequence at the time when the exact spelling sequence is displayed as the first or last entry, are ordered by a combination of the shortest calculated distances between the joystick entry sequence and each letter in each word and the recency of use and/or the frequency of use within the given language.


The directional input system 100 implements a method whereby the user can select a specific word from the word choice list. Preferably, the method is consistent with other applications use of scrolling methods and selection button. The system also includes a means of selecting the exact spelling sequence as well as any predicted words. In one preferred embodiment, the system may include a next button and a previous button, with which the user can navigate forward and backward through the word choice list.


Alternatively, the directional input system 100 may include a selection mode switch button. When the selection mode switch button is pressed, the system enters a selection mode and the directional input means can be used to scroll forward and backward through the word choice list.


In addition, selecting a predicted word using a particular means may replace the exact spelling sequence as if the letters of the selected word had been entered directly by the user, and a new list of predicted words is generated.


The most likely word is the word added if the user does not try to select a different word. The default word may be a copy of the exact spelling sequence if the user was accurate. Alternatively, it may be the selected word as described above. In addition, the exact spelling sequence may become the default word if a precision method or mode (described below) is used to explicitly choose at least one letter in the sequence.


Words that are longer than the number of joystick actions registered in the current entry sequence may be included in the prediction list. Alternately, a further means can be provided to extend a selected word with completions. For example, longer words that begin with a selected word may appear on a pop-up list after a button press or directional input, similar to the cascading menus on PC windowing systems.


Once a word is entered, the word is typically displayed in the message area 220.


Alternatively, the directional input system 100 can be implemented as an input method editor (IME). In this case, the text entered by the system goes into whatever program is actively accepting input from the system. Other applications may be linked to the system, or the system may be incorporated as part of another application. These applications include but are not limited to: instant messaging, electronic mail, chat programs, web browsing, communication within a video game, supplying text to a video game, as well as word processing.


To enter a text message using the directional input system 100, the user first points the joystick in the general direction of the desired letter, and then continues pointing roughly to each letter in the desired word. Once all letters have been roughly selected, buttons are used to select a specific word from the list of potential matches. The selected word goes into the message area 220, which may be an appropriate text application such as email or instant message.


The invention also provides a method for precisely choosing the letters of a word. The method is useful for entering uncommon names and any word that is not part of the standard language currently active. The method can also be used to change the last character entered by stepping between characters adjacent to the last character entered. To step between characters adjacent to the last character entered, a forward button and a backward button may be used. Once the character entered has been changed, the word choice list refreshes to reflect the changes in the predicted words. Alternatively, the system may be switched to a precision mode and the directional input means may be used to cycle through letters. To switch to the precision mode, the system may choose to use the degree of joystick tilt from the center. Once the tilt exceeds a preconfigured limit, the system switches to the precision mode. Alternatively, the system may use the time interval that the joystick dwells at the perimeter. Once the time interval reaches a preconfigured limit, the system switches to the precision mode and notifies the user through a visual cue or a tone. The system may also include a button for switching to precision mode.



FIG. 6 is a flow diagram illustrating a process for operating the directional input system in the precision mode to select an exact letter. The process includes the following steps:

    • Step 600: The user switches to precision mode. This is typically a clicking on a predefined button. However, any of the above mentioned method can be used.
    • Step 602: The system can optionally zoom in on the area of the last character entered.
    • Step 604: The user uses directional input to drive an indicator to the desired character. If the joystick is used for directional input and if the zoom-in has been employed, then the system processes joystick movement at a finer resolution. For example, a radial move of 90° is treated as if it were only 30°.
    • Step 606: The user uses a button to accept the character.
    • Step 608: The system optionally returns to normal directional text entry mode.


In addition to the preceding methods, the system may determine the precise letters by detecting the difference in speed of selection or change in acceleration, especially when the system embodiment is based on a directional selection means employing a wheel.


In the preferred embodiment above, the directional input system 100 is deployed to a home video game console machine. However, this technology can also be deployed to many other products such as portable video game devices, phones with the appropriate input methods, wheelchairs, and TV related electronic devices, etc. In TV related electronic devices, for example, the invention may be deployed as set-top boxes and the joystick/rocker may be incorporated in the remote controls.



FIG. 7 is a flow diagram illustrating a direction input method according to another preferred embodiment of the invention. The method includes the following steps:

    • Step 700: The user moves an on-screen cursor in the direction of the desired letter using a joystick, or any other directional input means.
    • Step 702: The system records the X-Y coordinate position of the cursor.
    • Step 704: The system converts recorded X-Y coordinate position into corresponding set of polar coordinates.
    • Step 706: The system applies a selection weight value to each input based on the set of polar coordinates of the recorded cursor position.
    • Step 708: The system retrieves a list of predicted words based on the weight values for each of input and a set of pre-determined values.


For internal calculations, the on-screen keyboard 130 may be represented internally in the same way as the screen using direct mapping. Alternatively, it can be represented in a very different format using virtual mapping. The internal representation of keyboards may use any coordinate system, including but not limited to Polar and Cartesian coordinate systems.


When the on-screen keyboard 130 is represented internally using a Polar system, key positions are set by bounding angles and radial distance from the center. In the preferred embodiment, multiple concentric circles are permitted. The system can accept direct Polar inputs. Alternatively, it can map Cartesian inputs into Polar coordinates before performing calculations.


When the on-screen keyboard 130 is represented internally using a Cartesian system, key positions are set by left, right, top, and bottom of a bounding box. The horizontal and vertical positions are relative to one corner, usually top left but can vary by platform and operating system (OS). In the preferred embodiment, multiple rows of keys are permitted.


The directional input system 100 may also alternate between several keyboards for a variety of reasons. Such reasons may include the following: uppercase vs. lowercase letters, alphabets for other supported languages, extended alphabets for languages with large numbers of letters, diacritics, numbers vs. letters, symbols and punctuation, strokes vs. character components, different alphabets for the same language, function keys, and precision mode for selecting specific exact spell characters.


In another preferred embodiment of the invention, the directional input system 100 also provides a mechanism for changing the keyboard face and the input directions. The system includes an input means to switch among a set of system modes. A mode is a combination of keyboard, key-map, and sometimes dictionary. Modes can be used for many things, including but not limited to entering characters, executing functions, and changing system parameters.


In the preferred embodiment, the system may also contain the following buttons: Space or Select word, Backspace, Next & Previous word, Next & Previous character, Shift/Caps Lock, and Menu/Mode switch. Each of these buttons is mapped to a system function. The functions that can be performed by buttons include, but are not limited to the following:

    • Select: Adding a specified word to the message area and at the same time clearing out the current word;
    • Next/Previous word: Altering which word is highlighted for selection;
    • Next/Previous character: Altering the last character entered;
    • Backspace/Delete word: Deleting a character or word;
    • Shift, Caps lock: Altering the case of letters being entered;
    • Undo: Undoing last function or entry;
    • Cut/Copy/Paste: Standard clipboard commands;
    • Escape: Activate/deactivate the directional text input;
    • Toggling Next Lock/Hold;
    • Extend or Add Suffix: Selecting a word and displaying its possible suffixes or using any additional characters entered to extend the selected root word;
    • Change to a new Language;
    • Change to a new Keyboard layout;
    • Download/install new language/keyboard layout/program version; and
    • Toggle Precision mode for Exact Spell.


Some characters that can optionally be entered by buttons include, but are not limited to:

    • “Smart Punctuation”, which intuitively determines which punctuation is most appropriate based on the word context;
    • “Smart Diacritics”, which intuitively determines which diacritic to be added; and
    • “Smart Tones”, which intuitively determines which tone to be added to a word for tonal languages, such as Vietnamese. Alternately, a tone key could display a selection of tones to add to the current word or last character entered.


The directional input system 100 supports multiple languages. Each language supported is stored in a separate language database (LDB). The language database stores words organized by word length and frequency of use within the given language. When the system uses case sensitive letters, the database storage is also case sensitive and thus words are stored in a mixed case format.


The directional input system 100 can optionally support user added words. These words are either stored in a separate user database (UDB) or appended to the primary language database (LDB). When a UDB is used, it organizes words by word length and recency of use.


The directional input system 100 can optionally support dynamic word prediction, where likelihood changes are made either by re-ordering sections of the LDB, or via a recency database (RDB) which is organized by word length and recency of use.


The final word choice list is retrieved and ordered using the following types of data: word length, ordinal ranking, letter weight, and recently used words. Only words that have at least as many letters as the letters entered are presented. When “Word Completion” is used, longer words may be presented if they are determined to be likely. Words in the LDB may be ordered by frequency, most common first, and least common last.


The invention adopts an algorithm which matches the entry sequence to letters of words in the LDB based on their nearness to the point/angle of each entry. For example, the weighting may approximate an inverse square of the distance from the center of the corresponding letter. Grouping letters for efficiency is an optional, yet preferred feature; it excludes letter matching when the letter is far outside of the smaller area of adjacent letters surrounding the point/angle of entry. A detailed description of the algorithm is set further in the copending application, U.S. Ser. No. 09/580,319, filed on May 26, 2000, entitled “KEYBOARD SYSTEM WITH AUTOMATIC CORRECTION”. This detailed description is hereby incorporated by reference.


Each letter in a keyboard group has a relative weight to nearby letters. When one letter is entered, nearby letters are taken into account, and all of these letters are assigned a likelihood weight. The actual letter entered has the highest weight, and the weight decreases with distance from the exact letter. These letter weights combine to alter the order of likely words presented in the word choice list.


Recently used words may be weighted as more frequent, so their likelihood is increased and they are shown higher in the word choice list. Recency information is also used for determining the placement of user-defined words in the word choice list.


The directional input system 100 also supports word completion. If the system suspects that the letters entered are the beginning part of a longer word, longer words that roughly match are presented in the word choice list. Alternatively, the system can present the user a list of suffixes for a stem word. If a root word is selected with a “suffix button”, a list of suffixes is then displayed at the end of the root, allowing the user to select the suffix of choice.


The directional input system 100 also allows the user to select a partial word while still building a word. The list is then filtered to only include words that begin with the chosen word stem. If a user scrolls down to an alternate word, and then adds more letters, this alternate word continues to be the selection, highlighted by the method discussed above, until it becomes invalid by further addition of characters.


Although the invention is described herein with reference to the preferred embodiment, one skilled in the art will readily appreciate that other applications may be substituted for those set forth herein without departing from the spirit and scope of the present invention.


Accordingly, the invention should only be limited by the Claims included below.

Claims
  • 1. A text entry input system, comprising: a direction selector to individually point in a direction of letters to collectively form an intended linguistic object, where each letter comprises a linguistic object subcomponent;a collection of linguistic objects;an output device with a text display area;a processor, comprising: a difference calculation module configured to output, for each act of pointing, various letters based upon factors including at least a vector difference between an actual direction indicated by the directional selector and pre-assigned directions of said letters;an object search engine configured to construct at least one predicted linguistic object based on the output letters; anda selection component to facilitate user selection of a desired linguistic object.
  • 2. The system of claim 1, further comprising an on-screen keyboard representation of an array of letters in each writing system.
  • 3. The system of claim 2, wherein said on-screen keyboard is of any shape selected from a group comprising circle, square, oval, and polygon.
  • 4. The system of claim 1, further comprising a set of compass point letters, said compass point letters being placed in an on-screen compass area.
  • 5. The system of claim 1, wherein each letter comprises any subcomponent or combination of one or more of the following forming an incomplete part of one of the linguistic objects: an alphabetic letter, numeric digit, symbol, character;a sub-word component from a non-English language including one or more strokes, radicals, jamos, kana, punctuation symbols, digits.
  • 6. The system of claim 1, wherein said linguistic objects are ordered according to a linguistic model.
  • 7. The system of claim 6, where said linguistic model includes one or more of: frequency of occurrence of a linguistic object in formal or conversational written text;frequency of occurrence of a linguistic object when following a preceding linguistic object or linguistic objects;proper or common grammar of the surrounding sentence;application context of current linguistic object entry; andrecency of use or repeated use of the linguistic object by the user or within an application program.
  • 8. The system of claim 1, wherein said list of predicted linguistic objects are ordered by a combination value of a calculated weighted difference value and a linguistic model.
  • 9. The system of claim 8, wherein said linguistic model comprises one or more of: frequency of occurrence of a linguistic object in formal or conversational written text;frequency of occurrence of a linguistic object when following a preceding linguistic object or linguistic objects;proper or common grammar of the surrounding sentence;application context of current linguistic object entry; andrecency of use or repeated use of the linguistic object by the user or within an application program.
  • 10. The system of claim 1, further comprising a means for extending a selected linguistic object with completions.
  • 11. The system of claim 1, further comprising a means for precisely selecting said letters of said linguistic object.
  • 12. The system of claim 1, wherein an exact spelling sequence is displayed in said text display area.
  • 13. The system of claim 1, wherein the last entered letter is indicated in said exact spelling sequence.
  • 14. The system of claim 1, wherein the last entered letter is indicated in said on-screen keyboard.
  • 15. The system of claim 1, further comprises a smart punctuation symbol, said smart punctuation symbol when selected is automatically interpreted as a punctuation symbol, diacritic mark or tonal indication at the place in the input sequence where a matching punctuation symbol, diacritic mark or tonal indication occurs in predicted linguistic objects.
  • 16. A text input method using a directional input device, wherein each direction entered corresponds, directly or indirectly, to one or more linguistic object subcomponents according to a predetermined mapping, said method comprising the steps of: for each user act of pointing the directional input device, preparing an output of candidate linguistic object subcomponents based upon factors including at least a vector difference between directions indicated by the directional input device and pre-assigned directions of said linguistic object subcomponents according to the predetermined mapping;using the output to predict at least one linguistic object;facilitating user selection of a desired linguistic object.
  • 17. The method of claim 16, wherein the candidate linguistic object subcomponents can be one of any number of letters or symbols near the direction entered.
  • 18. The method of claim 16, further comprising utilizing a linguistic model to order said list of predicted linguistic objects according to likelihood of intended selection by the user.
  • 19. The method of claim 18, wherein the order of said list of predicted linguistic objects is based on a combination of weightings and the linguistic model.
  • 20. The method of claim 18, wherein the linguistic model comprises one or more of: frequency of occurrence of a linguistic object in formal or conversational written text;frequency of occurrence of a linguistic object when following a preceding linguistic object or linguistic objects;proper or common grammar of the surrounding sentence;application context of current linguistic object entry; andrecency of use or repeated use of the linguistic object by the user or within an application program.
  • 21. The method of claim 16, wherein said directional input device is associated with an on-screen keyboard.
  • 22. The method of claim 16, wherein the user selects a partial linguistic object and continues with more directional inputs.
  • 23. The method of claim 22, wherein said list of predicted linguistic objects is filtered to include only linguistic objects that begin with said selected partial linguistic object.
  • 24. The method of claim 16, wherein a set of buttons or a second directional input device can be used alone or with said directional input device, separately or simultaneously, to switch or choose input modes, to change from input to word selection, or to invoke other functions.
  • 25. The method of claim 16, further comprising the steps of: invoking an undo means after selecting a linguistic object from a list of predicted linguistic objects; andre-displaying said list.
  • 26. The method of claim 16, further comprising the steps of: selecting a linguistic object from a text message; anddisplaying subcomponents of said linguistic object as if said subcomponents had been entered exactly and constructing a predicted list of linguistic objects based on the displayed subcomponents.
  • 27. A text entry input module for use with user interface components including a direction indicator and a output device with a text display area, the text entry input module comprising: a database of linguistic objects;a predetermined set of linguistic object subcomponents;where a predetermined relationship exists between said linguistic object subcomponents and different assigned vector values of the direction indicator;a calculation module to apply the predetermined relationship to each user-submitted direction entered via the direction indicator to provide an output, said output including multiple predicted linguistic object subcomponents including a group of linguistic object subcomponents whose assigned vector values are nearest the user-submitted directions; an object search engine configured to use the output to retrieve from the database at least one predicted linguistic object potentially representative of the user-submitted directions; anda selection component to facilitate user selection of a desired linguistic object.
  • 28. A text entry input module for use with user interface components including a direction indicator and an output device with a display, the text entry input module comprising: a vocabulary database of linguistic objects;a mapping between vector values of the direction indicator and linguistic object subcomponents;a calculation module to apply the mapping to each user-submitted direction entered via the direction indicator to provide an output including multiple potentially user-intended linguistic object subcomponents; an object search engine configured to retrieve at least one predicted linguistic object from the vocabulary database based upon said calculation module output; and a selection component to facilitate user selection of a desired linguistic object.
  • 29. A computer readable storage medium tangibly embodying a program of instructions executable by a digital data processing machine to perform text input operations comprising the steps of: receiving machine-readable signals representing a series of user-submitted directional inputs entered via a directional input tool, the series having an order;where directional inputs of the directional input tool correspond to different linguistic object subcomponents according to a predetermined mapping;for each user-submitted directional input, based upon that directional input alone, estimating multiple corresponding subcomponents that the user might have intended by such directional input;assembling the different ones of the estimated subcomponents to construct multiple different proposed linguistic objects that the user might have intended by the series of directional inputs, where each proposed object includes one estimated subcomponent for each user-submitted directional input, the subcomponents occurring in the proposed object in the same order as the series of user-submitted directional inputs;facilitating selection of a desired one of the proposed objects.
  • 30. The medium of claim 29, where each linguistic object subcomponent comprises at least one of the following: an alphabetic letter, numeric digit, symbol, character;a sub-word component from a non-English language including one or more strokes, radicals; jamos, kana, punctuation symbols, digits;a subcomponent or combination of one or more of the foregoing.
  • 31. The medium of claim 29, the assembling operation further comprising: ordering proposed linguistic objects according to considerations including one or more of the following: presence in a predetermined vocabulary, presence in a user-defined list, frequency of general usage.
  • 32. The medium of claim 29, the estimating operation further comprising: for each user-submitted directional input, identifying linguistic object subcomponents within a predetermined angular range thereof according to the predetermined mapping;limiting the estimated subcomponents to those identified.
  • 33. The medium of claim 29, further comprising the step of providing a weighting value comprising at least one of the following: providing a weighting value for each linguistic object subcomponent according to angular proximity between the subcomponent's corresponding actual user-submitted directional input and the directional input exactly mapped to the subcomponent;providing a weighting value depending at least in part on frequency of general usage of the subcomponent.
  • 34. The medium of claim 29, where the assembling operation further comprises ordering the proposed linguistic objects according to one or more of the following: word length, ordinal ranking, weighting value of proposed linguistic object subcomponents, frequency of general usage, recency of use, appearance in a user-defined list.
  • 35. A computer programmed to facilitate operations for text entry, the operations comprising the steps of: by using a joystick having predefined mapping between different actual radial directions and different text characters, a user sequentially pointing in an intended radial direction toward intended characters of at least part of an intended word;the computer determining angular similarity between each actual pointing direction and radial directions of different characters in the mapping, and using the determined angular similarity to compute different possible combinations of intended characters that could form the intended word, and presenting a list of potential matching words to the user, where the presentation favors potential matching words according to factors including an aggregate angular similarity of constituent characters of a potential matching word to the actual pointing directions;the user selecting the intended word from the list;the computer displaying the selected word in a human-readable message composition display area.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a Continuation of U.S. Ser. No. 10/677,890 filed Oct. 1, 2003 now U.S. Pat. No. 7,286,115, which is a continuation-in-part application to the application, U.S. Ser. No. 10/205,950 filed Jul. 25, 2002 now U.S. Pat. No. 6,970,599, which is a Continuation of U.S. Ser. No. 09/580,319, filed on May 26, 2000 now U.S. Pat. No. 6,801,190, and claims priority to U.S. Ser. No. 60/461,735 filed Apr. 9, 2003.

US Referenced Citations (185)
Number Name Date Kind
3980869 Lombardino et al. Sep 1976 A
4286329 Goertzel et al. Aug 1981 A
4365235 Greanias et al. Dec 1982 A
4439649 Cecchi Mar 1984 A
4454592 Cason et al. Jun 1984 A
4559598 Goldwasser et al. Dec 1985 A
4561105 Crane et al. Dec 1985 A
4573196 Crane et al. Feb 1986 A
4689768 Heard et al. Aug 1987 A
4725694 Auer et al. Feb 1988 A
4782464 Gray et al. Nov 1988 A
4783758 Kucera Nov 1988 A
4783761 Gray et al. Nov 1988 A
4891777 Lapeyre Jan 1990 A
4891786 Goldwasser Jan 1990 A
5109352 O'Dell Apr 1992 A
5127055 Larkey Jun 1992 A
5187480 Thomas et al. Feb 1993 A
5224179 Denker et al. Jun 1993 A
5305205 Weber et al. Apr 1994 A
5317507 Gallant May 1994 A
5457454 Sugano Oct 1995 A
5462711 Ricottone Oct 1995 A
5533147 Arai et al. Jul 1996 A
5561446 Montlick Oct 1996 A
5574482 Niemeier Nov 1996 A
5583946 Gourdol Dec 1996 A
5586198 Lakritz Dec 1996 A
5612690 Levy Mar 1997 A
5649223 Freeman Jul 1997 A
5664896 Blumberg Sep 1997 A
5734750 Arai et al. Mar 1998 A
5745719 Falcon Apr 1998 A
5748512 Vargas May 1998 A
5754686 Harada et al. May 1998 A
5784008 Raguseo Jul 1998 A
5796867 Chen et al. Aug 1998 A
5798760 Vayda et al. Aug 1998 A
5805911 Miller Sep 1998 A
5812696 Arai et al. Sep 1998 A
5812697 Sakai et al. Sep 1998 A
5818437 Grover et al. Oct 1998 A
5870492 Shimizu et al. Feb 1999 A
5896321 Miller et al. Apr 1999 A
5917476 Czerniecki Jun 1999 A
5923793 Ikebata Jul 1999 A
5926566 Wang et al. Jul 1999 A
5928588 Nada et al. Jul 1999 A
5933526 Sklarew Aug 1999 A
5952942 Balakrishnan et al. Sep 1999 A
5953541 King et al. Sep 1999 A
5956021 Kubota et al. Sep 1999 A
5963671 Comerford et al. Oct 1999 A
5973676 Kawakura Oct 1999 A
6002390 Masui Dec 1999 A
6002799 Sklarew Dec 1999 A
6005495 Connolly et al. Dec 1999 A
6008799 Van Kleeck Dec 1999 A
6009444 Chen Dec 1999 A
6011554 King et al. Jan 2000 A
6028959 Wang et al. Feb 2000 A
6041137 Van Kleeck Mar 2000 A
6044165 Perona et al. Mar 2000 A
6054941 Chen Apr 2000 A
6075469 Pong Jun 2000 A
6094197 Buxton et al. Jul 2000 A
6104317 Panagrossi Aug 2000 A
6104384 Moon et al. Aug 2000 A
6111573 McComb et al. Aug 2000 A
6130962 Sakurai Oct 2000 A
6144764 Yamakawa et al. Nov 2000 A
6148104 Wang et al. Nov 2000 A
6157379 Singh Dec 2000 A
6169538 Nowlan et al. Jan 2001 B1
6172625 Jin et al. Jan 2001 B1
6204848 Nowlan et al. Mar 2001 B1
6212297 Sklarew Apr 2001 B1
6223059 Haestrup Apr 2001 B1
6275611 Parthasarathy Aug 2001 B1
6278445 Tanaka et al. Aug 2001 B1
6286064 King et al. Sep 2001 B1
6307549 King et al. Oct 2001 B1
6711290 Sparr et al. Oct 2001 B2
6314418 Namba Nov 2001 B1
6320943 Borland Nov 2001 B1
6346894 Connolly et al. Feb 2002 B1
6362752 Guo et al. Mar 2002 B1
6392640 Will May 2002 B1
6424743 Ebrahimi Jul 2002 B1
6437709 Hao Aug 2002 B1
6448987 Easty et al. Sep 2002 B1
6453079 McInerny Sep 2002 B1
6489951 Wong et al. Dec 2002 B1
6493464 Hawkins et al. Dec 2002 B1
6502118 Chatterjee Dec 2002 B1
6542170 Williams et al. Apr 2003 B1
6549219 Selker Apr 2003 B2
6567072 Watanabe May 2003 B2
6585162 Sandbach et al. Jul 2003 B2
6616703 Nakagawa Sep 2003 B1
6654733 Goodman et al. Nov 2003 B1
6686852 Guo Feb 2004 B1
6686907 Su et al. Feb 2004 B2
6757544 Rangarjan et al. Jun 2004 B2
6765554 Millington Jul 2004 B2
6765567 Roberson et al. Jul 2004 B1
6801190 Robinson et al. Oct 2004 B1
6801659 O'Dell Oct 2004 B1
6807529 Johnson et al. Oct 2004 B2
6819315 Toepke et al. Nov 2004 B2
6820075 Shanahan et al. Nov 2004 B2
6829607 Tafoya et al. Dec 2004 B1
6864809 O'Dell et al. Mar 2005 B2
6904402 Wang et al. Jun 2005 B1
6912581 Johnson et al. Jun 2005 B2
6947771 Guo et al. Sep 2005 B2
6955602 Williams Oct 2005 B2
6956968 O'Dell et al. Oct 2005 B1
6970599 Longe et al. Nov 2005 B2
6973332 Mirkin et al. Dec 2005 B2
6982658 Guo Jan 2006 B2
6990534 Mikhailov et al. Jan 2006 B2
7020270 Ghassabian Mar 2006 B1
7057607 Mayoraz et al. Jun 2006 B2
7075520 Williams Jul 2006 B2
7020849 Chen Aug 2006 B1
7088861 Van Meurs Aug 2006 B2
7095403 Lyustin et al. Aug 2006 B2
7107204 Liu et al. Sep 2006 B1
7139430 Sparr et al. Nov 2006 B2
7149550 Kraft et al. Dec 2006 B2
7151533 Van Ieperen Dec 2006 B2
7155683 Williams Dec 2006 B1
7162305 Tong et al. Jan 2007 B2
7177797 Micher et al. Feb 2007 B1
7224989 Kraft May 2007 B2
7256769 Pun et al. Aug 2007 B2
7257528 Ritchie et al. Aug 2007 B1
7272564 Phillips et al. Sep 2007 B2
7275029 Gao et al. Sep 2007 B1
7293231 Gunn et al. Nov 2007 B1
7313277 Morwing et al. Dec 2007 B2
7349576 Hotsberg Mar 2008 B2
7385531 Zhang Jun 2008 B2
7389235 Dvorak Jun 2008 B2
7437001 Morwing et al. Oct 2008 B2
7466859 Chang et al. Dec 2008 B2
20010048425 Partridge Dec 2001 A1
20020093491 Allen et al. Jul 2002 A1
20020122072 Selker Sep 2002 A1
20020135499 Guo Sep 2002 A1
20020135561 Rojewski Sep 2002 A1
20020145587 Watanabe Oct 2002 A1
20020163544 Baker et al. Nov 2002 A1
20020168107 Tang et al. Nov 2002 A1
20030006956 Wu et al. Jan 2003 A1
20030023426 Pun et al. Jan 2003 A1
20030048257 Mattila Mar 2003 A1
20030054830 Williams et al. Mar 2003 A1
20030144830 Williams Jul 2003 A1
20030179930 O'Dell et al. Sep 2003 A1
20030184451 Li Oct 2003 A1
20040153963 Simpson et al. Aug 2004 A1
20040153975 Williams et al. Aug 2004 A1
20040163032 Guo et al. Aug 2004 A1
20040243389 Thomas et al. Dec 2004 A1
20050060138 Wang et al. Mar 2005 A1
20050114770 Sacher et al. May 2005 A1
20050223308 Gunn et al. Oct 2005 A1
20060062461 Longe et al. Mar 2006 A1
20060129928 Qiu Jun 2006 A1
20060136408 Weir et al. Jun 2006 A1
20060155536 Williams et al. Jul 2006 A1
20060158436 LaPointe et al. Jul 2006 A1
20060173807 Weir et al. Aug 2006 A1
20060190819 Ostergaard et al. Aug 2006 A1
20060193519 Sternby Aug 2006 A1
20060236239 Simpson et al. Oct 2006 A1
20060239560 Sternby Oct 2006 A1
20060247915 Bradford et al. Nov 2006 A1
20070094718 Simpson Apr 2007 A1
20070203879 Templeton-Steadman et al. Aug 2007 A1
20070276814 Williams Nov 2007 A1
20070285397 LaPointe et al. Dec 2007 A1
20080130996 Sternby Jun 2008 A1
Foreign Referenced Citations (45)
Number Date Country
1116335 Feb 1996 CN
1190205 Aug 1998 CN
1232204 Oct 1999 CN
1358299 Jul 2002 CN
1606753 Apr 2005 CN
3401942 Nov 1984 DE
0114250 Nov 1983 EP
0739521 May 1996 EP
0762265 Mar 1997 EP
0858023 Aug 1998 EP
0961208 Dec 1999 EP
1018679 Dec 1999 EP
1085401 Mar 2001 EP
1168780 Jan 2002 EP
1355225 Oct 2003 EP
2824979 Nov 2002 FR
57010832 Jan 1982 JP
62065136 Mar 1987 JP
1023021 Jan 1989 JP
1047565 Feb 1989 JP
1993-081482 Apr 1993 JP
1994-083816 Mar 1994 JP
7094376 Apr 1995 JP
1995-146918 Jun 1995 JP
1996-305701 Nov 1996 JP
8319721 Dec 1996 JP
10135399 May 1998 JP
10-275046 Oct 1998 JP
11021274 Jan 1999 JP
11028406 Feb 1999 JP
1999-338858 Dec 1999 JP
2001-043205 Feb 2001 JP
2001-282778 Oct 2001 JP
2003-500771 Jan 2003 JP
2001-0107388 Dec 2001 KR
20020004419 Jan 2002 KR
498264 Aug 2002 TW
WO 9816889 Apr 1998 WO
WO 9915952 Apr 1999 WO
WO 0072300 Nov 2000 WO
WO 0074240 Dec 2000 WO
WO 03021788 Mar 2003 WO
WO 2004111812 Dec 2004 WO
WO 2004111871 Dec 2004 WO
WO 2006026908 Feb 2006 WO
Related Publications (1)
Number Date Country
20080015841 A1 Jan 2008 US
Provisional Applications (1)
Number Date Country
60461735 Apr 2003 US
Continuations (2)
Number Date Country
Parent 10677890 Oct 2003 US
Child 11859505 US
Parent 09580319 May 2000 US
Child 10205950 US
Continuation in Parts (1)
Number Date Country
Parent 10205950 Jul 2002 US
Child 10677890 US