Directional microphone assembly

Information

  • Patent Grant
  • 6798890
  • Patent Number
    6,798,890
  • Date Filed
    Friday, October 5, 2001
    22 years ago
  • Date Issued
    Tuesday, September 28, 2004
    19 years ago
Abstract
A directional microphone assembly for a hearing aid is disclosed. The hearing aid has one or more microphone cartridge(s), and first and second sound passages. Inlets to the sound passages, or the sound passages themselves, are spaced apart such that the shortest distance between them is less than or approximately equal to the length of the microphone cartridge(s). A sound duct and at least one surface of a microphone cartridge may form each sound passage, where the sound duct is mounted with the microphone cartridge. Alternatively, each sound duct may be formed as an integral part of a microphone cartridge.
Description




INCORPORATION BY REFERENCE




U.S. provisional application, Serial No. 60/237,988, U.S. Pat. No. 5,878,147, and U.S. Pat. No. 5,524,056 are hereby incorporated herein by reference in their entirety.




STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT




N/A




BACKGROUND OF THE INVENTION




The application of directional microphones to hearing aids is well known in the patent literature (Wittkowski, U.S. Pat. No. 3,662,124 dated 1972; Knowles and Carlson, U.S. Pat. No. 3,770,911 dated 1973; Killion, U.S. Pat. No. 3,835,263 dated 1974; Ribic, U.S. Pat. No. 5,214,709, and Killion et al. U.S. Pat. No. 5,524,056, 1996) as well as commercial practice (Maico hearing aid model MC033, Qualitone hearing aid model TKSAD, Phonak “AudioZoom” hearing aid, and others).




Directional microphones are used in hearing aids to make it possible for those with impaired hearing to carry on a normal conversation at social gatherings and in other noisy environments. As hearing loss progresses, individuals require greater and greater signal-to-noise ratios in order to understand speech. Extensive digital signal processing research has resulted in the universal finding that nothing can be done with signal processing alone to improve the intelligibility of a signal in noise, certainly in the common case where the signal is one person talking and the noise is other people talking. There is at present no practical way to communicate to the digital processor that the listener now wishes to turn his attention from one talker to another, thereby reversing the roles of signal and noise sources.




It is important to recognize that substantial advances have been made in the last decade in the hearing aid art to help those with hearing loss hear better in noise. Available research indicates, however, that the advances amounted to eliminating defects in the hearing aid processing, defects such as distortion, limited bandwidth, peaks in the frequency response, and improper automatic gain control or AGC action. Research conducted in the 1970's, before these defects were corrected, indicated that the wearer of hearing aids typically experienced an additional deficit of 5 to 10 dB above the unaided condition in the signal-to-noise ratio (“S/N”) required to understand speech. Normal hearing individuals wearing those same hearing aids might also experience a 5 to 10 dB deficit in the S/N required to carry on a conversation, indicating that it was indeed the hearing aids that were at fault. These problems were discussed by Applicant Killion in a recent paper “Why some hearing aids don't work well!!!” (Hearing Review, Jan. 1994, pp. 40-42).




Recent data obtained by the Applicants confirm that hearing impaired individuals need an increased signal-to-noise ratio even when no defects in the hearing aid processing exist. As measured on one popular speech-in-noise test, the SIN test, those with mild loss typically need some 2 to 3 dB greater S/N than those with normal hearing; those with moderate loss typically need 5 to 7 dB greater S/N; those with severe loss typically need 9 to 12 dB greater S/N. These figures were obtained under conditions corresponding to defect free hearing aids.




As described below, a headworn first-order directional microphone can provide at least a 3 to 4 dB improvement in signal-to-noise ratio compared to the open ear, and substantially more in special cases. This degree of improvement will bring those with mild hearing loss back to normal hearing ability in noise, and substantially reduce the difficulty those with moderate loss experience in noise. In contrast, traditional omnidirectional head-worn microphones cause a signal-to-noise deficit of about 1 dB compared to the open ear, a deficit due to the effects of head diffraction and not any particular hearing aid defect.




A little noticed advantage of directional microphones is their ability to reduce whistling caused by feedback (Knowles and Carlson, 1973, U.S. Pat. No. 3,770,911). If the ear-mold itself is well fitted, so that the vent outlet is the principal source of feedback sound, then the relationship between the vent and the microphone may sometimes be adjusted to reduce the feedback pickup by 10 or 20 dB. Similarly, the higher-performance directional microphones have a relatively low pickup to the side at high frequencies, so the feedback sound caused by faceplate vibration will see a lower microphone sensitivity than sounds coming from the front.




Despite these many advantages, the application of directional microphones has been restricted to only a small fraction of Behind-The-Ear (BTE) hearing aids, and only rarely to the much more popular In-The-Ear (ITE) hearing aids which presently comprise some 80% of all hearing aid sales.




Part of the reason for this low usage was discovered by Madafarri, who measured the diffraction about the ear and head. He found that for the same spacing between the two inlet ports of a simple first-order directional microphone, the ITE location produced only half the microphone sensitivity. Madafarri found that the diffraction of sound around the head and ear caused the effective port spacing to be reduced to about 0.7 times the physical spacing in the ITE location, while it was increased to about 1.4 times the physical spacing in the BTE location. In addition to a 2:1 sensitivity penalty for the same port spacing, the constraints of ITE hearing aid construction typically require a much smaller port spacing, further reducing sensitivity.




Another part of the reason for the low usage of directional microphones in ITE applications is the difficulty of providing the front and rear sound inlets plus a microphone cartridge in the space available. As shown in FIG. 17 of the '056 patent mentioned above, the prior art uses at least one metal inlet tube (often referred to as a nipple) welded to the side of the microphone cartridge and a coupling tube between the microphone cartridge and the faceplate of the hearing aid. The arrangement of FIG. 17 of the '056 patent wherein the microphone cartridge is also parallel with the faceplate of the hearing aide forces a spacing D as shown in that figure which may not be suitable for all ears.




A further problem is that of obtaining good directivity across frequency. Extensive experiments conducted by Madafarri as well as by the Applicants over the last 25 years have shown that in order to obtain good directivity across the audio frequencies in a head-worn directional microphone it, requires great care and a good understanding of the operation of sound in tubes (as described, for example, by Zuercher, Carlson, and Killion in their paper “Small acoustic tubes,” J. Acoust. Soc. Am., V. 83, pp. 1653-1660, 1988).




A still further problem with the application of directional microphones to hearing aids is that of microphone noise. Under normal conditions, the noise of a typical non-directional hearing aid microphone cartridge is relatively unimportant to the overall performance of a hearing aid. Sound field tests show that hearing aid wearers can often detect tones within the range of 0 to 5 dB Hearing Level, i.e., within 5 dB of average young normal listeners and well within the accepted 0 to 20 dB limits of normal hearing. But when the same microphone cartridges are used to form directional microphones, a low frequency noise problem arises. The subtraction process required in first-order directional microphones results in a frequency response falling at 6 dB/octave toward low frequencies. As a result, at a frequency of 200 Hz, the sensitivity of a directional microphone may be 30 dB below the sensitivity of the same microphone cartridge operated in an omnidirectional mode.




When an equalization amplifier is used to correct the directional microphone frequency response for its low frequency drop in sensitivity, the amplifier also amplifies the low frequency noise of the microphone. In a reasonably quiet room, the amplified low frequency microphone noise may now become objectionable. Moreover, with or without equalization, the masking of the microphone noise will degrade the best aided sound field threshold at 200 Hz to approximately 35 dB HL, approaching the 40 dB HL lower limits for what is considered a moderate hearing impairment.




The equalization amplifier itself also adds to the complication of the hearing aid circuit. Thus, even in the few cases where ITE aids with directional microphones have been available, to applicant's knowledge, their frequency response has never been equalized. For this reason, Killion et al (U.S. Pat. No. 5,524,056) recommend a combination of a conventional omnidirectional microphone and a directional microphone so that the lower internal noise omnidirectional microphone may be chosen during quiet periods while the external noise rejecting directional microphone may be chosen during noisy periods.




Although directional microphones appear to be the only practical way to solve the problem of hearing in noise for the hearing-impaired individual, they have been seldom used even after nearly three decades of availability. It is the purpose of the present invention to provide an improved and fully practical directional microphone for ITE hearing aids.




Before summarizing the invention, a review of some further background information will be useful. Since the 1930s, the standard measure of performance in directional microphones has been the “directivity index” or DI, the ratio of the on-axis sensitivity of the directional microphone (sound directly in front) to that in a diffuse field (sound coming with equal probability from all directions, sometimes called random incidence sound). The majority of the sound energy at the listener's eardrum in a typical room is reflected, with the direct sound often less than 10% of the energy. In this situation, the direct path interference from a noise source located at the rear of a listener may be rejected by as much as 30 dB by a good directional microphone, but the sound reflected from the wall in front of the listener will obviously arrive from the front where the directional microphone has (intentionally) good sensitivity. If all of the reflected noise energy were to arrive from the front, the directional microphone could not help.




Fortunately, the reflections for both the desired and undesired sounds tend to be more or less random, so the energy is spread out over many arrival angles. The difference between the “random incidence” or “diffuse field” sensitivity of the microphone and its on-axis sensitivity gives a good estimate of how much help the directional microphone can give in difficult situations. An additional refinement can be made where speech intelligibility is concerned by weighing the directivity index at each frequency to the weighing function of the Articulation Index as described, for example, by Killion and Mueller on page 2 of The Hearing Journal, Vol. 43, Number 9, September 1990. Table 1 gives one set of weighing values suitable for estimating the equivalent overall improvement in signal-to-noise ratio as perceived by someone trying to understand speech in noise.




The directivity index (DI) of the two classic, first-order directional microphones, the “cosine” and “cardioid” microphones, is 4.8 dB. In the first case the microphone employs no internal acoustic time delay between the signals at the two inlets, providing a symmetrical

FIG. 8

pattern. The cardioid employs a time delay exactly equal to the time it takes on-axis sound to travel between the two inlets. Compared to the cosine microphone, the cardioid has twice the sensitivity for sound from the front and zero sensitivity for sound from the rear. A further increase in directivity performance can be obtained by reducing the internal time delay. The hypercardioid, with minimum sensitivity for sound at 110 degrees from the front, has a DI of 6 dB. The presence of head diffraction complicates the problem of directional microphone design. For example, the directivity index for an omni BTE or ITE microphone is −1.0 to −2.0 dB at 500 and 1000 Hz.




Recognizing the problem of providing good directional microphone performance in a headworn ITE hearing aid application, applicant's set about to discover improved means and methods of such application. It is readily understood that the same solutions which make an ITE application practical can be easily applied to BTE applications as well.




BRIEF SUMMARY OF THE INVENTION




Aspects of the present invention may be found in a hearing aid having one or more microphone cartridge(s). The hearing aid also has a first sound passage that couples sound energy to a first sound port of one of the microphone cartridge(s), and a second sound passage that couples sound energy to a second sound port of one of the microphone cartridge(s). The longest distance between first and second sound inlets of the first and second sound passages, respectively, is less than or approximately equal to the sum of the length of the microphone cartridge(s), the diameter of the first sound inlet and the diameter of the second sound inlet. The longest distance may be, for example, less than approximately 0.258 inches, such as 0.215 inches for example.




The diameters of the first and second sound inlets may be approximately equal, for example. The first and second sound inlets may have, for example, a center to center spacing of less than approximately 0.2 inches, such as approximately 0.157 inches, for example.




In another embodiment, the hearing aid has one or more microphone cartridge(s), and first and second sound ducts. The microphone cartridge(s) have first and second ports located, respectively, on first and second outer surfaces of the microphone cartridge(s). The first and second sound ducts likewise have, respectively, first and second inner surfaces. The first sound duct is operatively coupled to at least the first outer surface of a microphone cartridge, and the second sound duct is operatively coupled to at least the second outer surface of, for example, the same microphone cartridge (or a different microphone cartridge in the case of two or more microphone cartridges). The inner surface of the first sound duct and at least the first outer surface of the microphone cartridge create a volume representative of a first sound passage to the first port, and the inner surface of the second sound duct and at least the second outer surface of the microphone cartridge create a volume representative of a second sound passage to the second port.




In a further embodiment the hearing aid has one or more microphone cartridges, a first sound passage communicating with a microphone cartridge, and a second sound passage communicating with, for example, the same microphone cartridge (or a different microphone cartridge in the case of a two or more microphone cartridges). The shortest distance between the first and second sound passages is less than or approximately equal to the length of the one or more microphone cartridges. Such distance may be, for example, less than approximately 0.142 inches, such as 0.092 inches, for example.




In still a further embodiment, the hearing aid has a housing with an outer surface, such as formed by a faceplate for example, which in turn has first and second sound inlets. First and second sound passages couple sound energy from, respectively, the first and second sound inlets to, respectively, a microphone cartridge (or to separate microphone cartridges in the case of two or more microphone cartridges). The shortest distance between the first and second sound inlets may be, for example, less than or approximately equal to the length of the one or more microphone cartridges. Again, such distance may be, for example, less than approximately 0.142 inches, such as 0.092 inches, for example.




In the above embodiments, the first and second sound passages may be formed by, respectively, first and second sound ducts, where the first and second sound ducts are mounted with the microphone cartridge(s). Alternatively, the sound ducts may be formed as integral portions of the microphone cartridge(s). In addition, the sound passages may be formed in whole or in part in a housing portion, such as a faceplate for example, of the hearing aid.




The hearing aid may be, for example, an in-the-ear hearing aid or a behind-the-ear hearing aid, and the microphone cartridge(s) may be, for example, a directional cartridge in the case of a single cartridge design, or more than one omnidirectional cartridge (or some combination of directional and omnidirectional cartridges, in the case of a multiple cartridge design).











BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS





FIG. 1

illustrates a side view of one embodiment of a directional microphone assembly in accordance with the present invention.





FIG. 2

is a top view of the directional microphone assembly of FIG.


1


.





FIG. 3

is a top view of the directional microphone assembly of

FIG. 1

showing a restrictor placed in a top portion of a (front) sound duct.





FIG. 4

is a top view of the directional microphone assembly of

FIG. 1

showing acoustic dampers placed in top portions of sound ducts.





FIG. 5

is a side view of the directional microphone assembly of

FIG. 1

showing both the restrictor and the acoustic dampers and in an assembled relationship.





FIG. 6

illustrates one embodiment of directional microphone cartridge of the directional microphone assembly of the present invention.





FIG. 7

illustrates one embodiment of a sound duct in accordance with the present invention.





FIG. 8

illustrates additional detail regarding the mounting of the sound duct of

FIG. 7

on a directional microphone cartridge.





FIG. 9

illustrates another embodiment of a sound duct in accordance with the present invention.





FIG. 10

illustrates additional detail regarding the mounting of the sound duct of

FIG. 9

on a directional microphone cartridge.





FIG. 11

illustrates a directional microphone cartridge housing portion having sound duct portions formed as an integral part of the housing portion.





FIG. 12

illustrates another directional microphone cartridge housing portion having sound duct portions formed as an integral part of the housing portion.





FIG. 13

illustrates an assembly technique for the housing portions of

FIGS. 11 and 12

.





FIG. 14

illustrates a completed assembly, in which the housing portions if

FIGS. 11 and 12

are engaged to form a complete directional microphone cartridge having integrated sound ducts.





FIG. 15

illustrates an alternate embodiment of a directional microphone assembly of the present invention.





FIG. 16

is another view of the directional microphone assembly of FIG.


15


.





FIG. 17

illustrates a directional microphone assembly of the present invention having an equalization hybrid.





FIGS. 18A and 18B

show exemplary details of the equalization hybrid of FIG.


17


.





FIG. 19

is a diagram illustrating an exemplary interconnection between the directional microphone cartridge and the equalization hybrid of FIG.


17


.





FIG. 20

is a circuit diagram illustrating exemplary circuitry for implementing equalization.





FIG. 21

illustrates a directional microphone cartridge having a larger housing volume to accommodate internal equalization circuitry.





FIGS. 22 and 23

are side and perspective views, respectively, of a directional microphone assembly having internal equalization circuitry.





FIG. 24

illustrates an in-the-ear hearing aid having a directional microphone assembly mounted therein.





FIG. 25

is an exploded view of the directional microphone assembly of

FIGS. 11-14

, illustrating the internal components as well as the cartridge portions.





FIGS. 26A-G

collectively illustrate a component by component assembly technique for the directional microphone assembly of

FIGS. 11-14

, using the components set forth in FIG.


25


.





FIGS. 27A-G

respectively illustrate the individual components set forth in FIG.


25


.





FIG. 28

is a top view of an alternate embodiment of the directional microphone assembly of the present invention, in which the sound ducts are offset from each other and relative to the center of the case housing.











DETAILED DESCRIPTION OF THE INVENTION





FIG. 1

illustrates a side view of one embodiment of a directional microphone assembly in accordance with the present invention. Directional microphone assembly


101


comprises a directional microphone cartridge


103


and sound ducts or tubes


105


and


107


. Directional microphone cartridge


103


may have a height dimension of only approximately 0.142 inches (3.60 mm) and a length dimension of only approximately 0.142 inches (3.60 mm), for example, a shown in FIG.


1


. Directional microphone cartridge


103


may be made from a Knowles TM 4568 cartridge or a Microtronics 6368, for example. Of course, directional microphone cartridge


103


may have other dimensions, and may be made from other types of cartridges, than those specifically listed.




Sound ducts


105


and


107


form front and rear sound inlet passages, respectively, for coupling of sound energy from the sound field to the directional microphone cartridge


103


. Sound duct


105


has a port or inlet


109


that may have an inner diameter of 0.050 inches (1.27 mm) and an outer diameter of 0.058 inches (1.47 mm), for example. Sound duct


107


has a similar port or inlet


111


, which may have the same dimensions as port


109


. The center of inlet


109


may be spaced apart a distance of 0.157 inches (4.00 mm), for example, from the center of inlet


111


, as shown in FIG.


1


.




Also, as can be seen from

FIG. 1

, sound ducts


105


and


107


may be mounted with directional microphone cartridge


103


such that portions


113


and


115


of the directional microphone cartridge


103


extend partially into sound ducts


105


and


107


, respectively (as explained more completely below). In addition, each of sound ducts


105


and


107


may extend only 0.040 inches (1.02 mm), for example, above a top surface


117


of the directional microphone cartridge


103


. Given the configuration shown in

FIG. 1

, therefore, the overall longest (i.e., length) dimension of the total directional microphone assembly


103


may be approximately 0.215 inches (5.47 mm) or less. This length is shorter than the total length obtained by combining the length of the directional microphone cartridge


103


with the diameter dimensions of both the inlet ports


109


and


111


. The directional microphone assembly


103


may also have a height dimension of approximately 0.182 inches (4.62 mm) or less.





FIG. 2

is a top view of the directional microphone assembly


101


of FIG.


1


. As can be seen from

FIG. 2

by looking into inlets


109


and


111


, portions


113


and


115


of directional microphone cartridge


103


extend partially into ducts


105


and


107


, respectively, as mentioned above. In other words, the inside volume of the sound passages created by ducts


105


and


107


is formed in part by surfaces of the directional microphone cartridge


103


. More specifically, the sound passage created by duct


105


has an inside volume formed in part by a portion of top surface


117


and a portion of side surface


119


of directional microphone cartridge


103


. Similarly, the sound passage created by duct


107


has an inside volume formed in part by a portion of top surface


117


and a portion of side surface


121


of directional microphone cartridge


103


.




Thus, in the configuration of

FIGS. 1 and 2

, the sound passages created by the ducts have an inner volume formed by inside surfaces of the ducts and by surfaces of the directional microphone cartridge. Such a configuration enables the directional microphone assembly


101


to have a smaller overall length dimension than if the sound passages had inside volumes formed only by inside surfaces of the sound ducts themselves.





FIG. 3

is a top view of the directional microphone assembly


101


of

FIG. 1

showing a restrictor


123


placed in a top portion of (front) sound duct


105


. The restrictor


123


maybe inserted into inlet


109


of sound duct


105


in a friction fit manner so that the restrictor


123


is flush with the top surface


117


of the directional microphone cartridge


103


. Of course, other placements of the restrictor


123


are also possible. The restrictor


123


may be made of PVC tubing, for example, and may be used when it is desired to increase the acoustical inertance of the sound passage formed by (front) sound duct


105


.





FIG. 4

is a top view of the directional microphone assembly


101


showing acoustic dampers


125


and


127


placed in top portions of sound ducts


105


and


107


, respectively. The dampers


125


and


127


may also be inserted into inlets


109


and


111


, respectively, of sound ducts


105


and


107


in a friction fit manner.





FIG. 5

is a side view of the directional microphone assembly


101


of

FIG. 1

showing both the restrictor


123


and the acoustic dampers


125


and


127


in an assembled relationship. As can be seen, restrictor


123


is located within an upper portion


129


of sound duct


105


so that it is flush with the top surface


117


of directional microphone cartridge


103


. Damper


125


is also located within the upper portion


129


of sound duct


105


so that it is flush with a top surface of restrictor


123


. Damper


127


is similarly located within an upper portion


131


of sound duct


107


. Dampers


125


and


127


may be cup-shaped, as shown, may be made of a woven mesh-type material, such as metal, for example, and may have values of 680 ohms and 680 ohms, for example. Of course, the dampers


125


and


127


may be shaped differently, may be made of other types of material (e.g., cloth or polyester), and may have different values and still fall within the scope of the present invention. In addition, the dampers


125


and


127


maybe placed in other locations, such as, for example, at the front and rear sound inlet ports or openings of directional microphone cartridge


103


, respectively.





FIG. 6

illustrates one embodiment of the directional microphone cartridge


103


of the directional microphone assembly of the present invention. A front sound inlet port or opening


129


is located at least partially on the side surface


119


of directional microphone cartridge


103


, and a rear inlet port or opening


131


is located at least partially on the side surface


121


of directional microphone cartridge


123


. The front sound inlet port


129


may have a length dimension of approximately 0.040 inches (1.02 mm) and a width dimension of approximately 0.010 inches (0.25 mm), for example, and the rear sound inlet port


131


may have a length dimension of approximately 0.080 inches (2.03 mm) and a width dimension of approximately 0.020 inches (0.51 mm), for example. Of course, the front and rear sound inlet ports


129


and


131


may have other dimensions and take on different shapes and still fall within the scope of the present invention.




In any case, the front sound inlet port


129


enables the acoustical coupling of sound to a front side of a diaphragm (not shown) located in the directional microphone cartridge


103


, and the rear sound inlet port


131


likewise enables the acoustical coupling of sound to a rear side of that diaphragm. Upon assembly of a system such as directional microphone assembly


101


described above, sound ducts


105


and


107


cover sound inlet ports


129


and


131


, respectively, as explained more completely below.




Also as explained more completely below, directional microphone cartridge


103


includes three contacts


133


,


135


and


137


for electrically connecting to an equalization circuit or other hearing aid circuitry, such as, for example, a hearing aid amplifier.





FIG. 7

illustrates one embodiment of a sound duct in accordance with the present invention. Sound duct


139


as shown in

FIG. 7

is the same as the sound ducts


105


and


107


illustrated above with respect to directional microphone assembly


101


. As can be seen from the figures, sound duct


139


has a top portion


141


having a generally circular cylindrical shape. Sound duct


139


also has a middle portion


143


having a cut-away area


145


, such that middle portion


143


has only a semi-circular cylindrical shape. Finally, sound duct


139


further has a bottom portion


147


having a partial, noncircular sphere-like shape.




Sound duct


139


is mounted on a directional microphone cartridge, such as, for example, directional microphone cartridge


103


discussed above, by fitting the cut-away portion


145


against the directional microphone cartridge. In other words, sound duct


139


has a mating surface


149


that rests at least partially against the directional microphone cartridge. More specifically, a portion


151


of mating surface


149


rests on a top surface of the directional microphone cartridge, a curved portion


153


of mating surface


149


rests on a curved portion of the directional microphone cartridge, and a further portion


155


of mating surface


149


rests on a side surface of the directional microphone cartridge. Thus, the junction between the mating surface


149


of sound duct


139


and the outer surfaces of the directional microphone cartridge generally forms a shape on the outer surfaces of the directional microphone cartridge that completely surrounds the sound port or opening located on the side surface of the directional microphone cartridge (see FIG.


8


). Thus, only sound entering inlet


157


is acoustically coupled to the diaphragm of the directional microphone cartridge.




Sound duct


139


may be attached to the directional microphone cartridge by use of epoxy or other adhesive at the junction between the surface


149


of the sound duct


139


and the relevant outer surfaces of the directional microphone cartridge. Once it is attached to the directional microphone cartridge, the sound duct


139


creates a sound passage to the port in the cartridge having a volume formed by an inner surface of the sound duct


139


and outer surfaces of the directional microphone cartridge, as discussed above.





FIG. 8

illustrates additional detail regarding the mounting of sound duct


139


on a directional microphone cartridge.




While sound duct


139


is shown as having the shape generally described above with respect to

FIG. 7

, duct


139


may of course have other shapes and still fall within the scope of the present invention. For example, the sound duct of the present invention may generally have a non-circular cylindrical shape, such as rectangular. It also may have a generally uniform radial dimension along its length, so that it has only two portions defining its overall shape rather than the three portions (


141


,


143


and


147


) discussed above with respect to sound duct


139


of FIG.


7


.





FIG. 9

illustrates another embodiment of a sound duct in accordance with the present invention, having such a generally uniform radial dimension along its length. More specifically, sound duct


159


has a generally circular cylindrical shape along its length, but for cut-away area


161


. As can be seen, sound duct


159


has a top portion


163


having a generally circular cylindrical shape, and a bottom portion


165


having only a semi-circular cylindrical shape. Thus, sound duct


159


has only two portions


163


and


165


defining its overall shape, rather than the three portions (


141


,


143


and


147


) discussed above with respect to the shape of sound duct


139


of FIG.


7


.




Sound duct


159


, like sound duct


139


of

FIG. 7

, is mounted on a directional microphone cartridge, such as, for example, directional microphone cartridge


103


discussed above, by fitting the cut-away portion


161


against the directional microphone cartridge. Sound duct


159


similarly has a mating surface


169


that rests at least partially against the directional microphone cartridge. A portion


171


of mating surface


169


rests on a top surface of the directional microphone cartridge, a curved portion


173


of mating surface


169


rests on a curved portion of the directional microphone cartridge, and a further portion


175


of mating surface


169


rests on a side surface of the directional microphone cartridge. Again, the junction between the mating surface


169


of sound duct


159


and the surfaces of the directional microphone cartridge generally forms a shape on the outer surfaces of the directional microphone cartridge that completely surrounds the sound port or opening located on the side surface of the directional microphone cartridge. Only sound entering inlet


177


is acoustically coupled to the diaphragm of the directional microphone cartridge.




Similar to sound duct


139


of

FIG. 7

, sound duct


159


may be attached to the directional microphone cartridge by use of epoxy or other adhesive at the junction between the surface


169


of the sound duct


159


and the relevant outer surfaces of the directional microphone cartridge. When attached, the sound duct


159


likewise creates a sound passage to the port in the cartridge having a volume formed by an inner surface of sound duct


159


and outer surfaces of the directional microphone cartridge, as discussed above. Sound duct


159


may be simply machined from a circular, cylindrical tube, and may have dimensions similar to those of sound duct


139


.





FIG. 10

illustrates additional detail regarding the mounting of sound duct


159


on a directional microphone cartridge. If, for example, sound duct


159


is machined from a circular cylindrical tube as suggested above, plugs


179


may be used to close open bottom ends of the sound duct


159


. Plugs


179


may, for example, be press fit within the open bottom ends of sound ducts


159


, or may be attached to the open bottom ends of sound ducts


159


using epoxy or other adhesive material.




While the sound ducts discussed above are shown to be components that are separate and distinct from the directional microphone cartridge, they may also be formed as an integral part of the directional microphone cartridge housing. For example,

FIG. 11

illustrates a directional microphone cartridge housing portion or half


181


having sound duct portions


183


and


185


formed as an integral part of housing portion


181


.

FIG. 12

similarly illustrates another directional microphone cartridge housing portion or half


191


housing sound duct portions


193


and


195


formed as an integral part of housing portion


191


.




The housing portions


181


and


191


may be assembled by bringing them together until corresponding mating surfaces on housing portions


181


and


191


engage to form a complete directional microphone cartridge housing having integrated sound ducts.

FIG. 13

illustrates such an assembly technique. As can be seen, sound duct portion


183


of housing portion


181


engages sound duct portion


193


of housing portion


191


to form one complete sound duct. Similarly, sound duct portion


185


of housing portion


181


engages sound duct portion


195


of housing portion


191


to form another complete sound duct.





FIG. 14

illustrates a completed assembly, in which housing portions


181


and


191


are engaged to form a complete directional microphone cartridge


197


having integrated sound ducts. Housing portions


181


and


191


may be snap-fit together or may be held together using epoxy or other adhesive material, for example. Of course, the housing portions and sound duct portions may take different shapes than as shown in

FIGS. 11-14

, so that different sound duct, cartridge housing, cartridge port, etc., configurations may be implemented if desired.





FIG. 15

illustrates an alternate embodiment of a directional microphone assembly of the present invention. Directional microphone assembly


201


comprises a directional microphone cartridge


203


and a sound duct assembly


204


. Sound duct assembly


204


may be formed from a single sheet of material, such as metal, for example. More specifically, a sheet of material is cut and shaped to create sound ducts


205


and


207


, as well as mounting members


209


,


211


,


213


and


215


. Another mounting member (not shown), corresponding to mounting member


215


adjacent sound duct


205


, is likewise located adjacent sound duct


207


.




During assembly, the directional microphone cartridge


203


is positioned between the sound ducts


205


and


207


of sound duct assembly


204


, and the mounting members (including mounting members


209


,


211


,


213


and


215


) of sound duct assembly


204


are wrapped around the directional microphone cartridge


203


to hold the sound ducts


205


and


207


in place. In other words, the sound duct assembly


204


“hugs” the directional microphone cartridge


203


. Epoxy or other adhesive material, for example, may also be used to secure the sound duct assembly


204


with the directional microphone cartridge.





FIG. 16

is another view of the directional microphone assembly of FIG.


15


. Similarly as discussed above with respect to

FIG. 10

, plugs


217


may be used to close open bottom ends of the sound ducts


205


and


207


as shown. Again, plugs


217


may, for example, be press fit within the open bottom ends of sound ducts


205


and


207


, or be attached to the open bottom ends of sound ducts


205


and


207


using epoxy or other adhesive material.





FIG. 17

illustrates a directional microphone assembly of the present invention having an equalization hybrid. Equalization may be used, if desired, to compensate for low frequency roll-off and to provide a flat response similar to that of an omnidirectional hearing aid microphone. Directional microphone assembly


221


may be generally the same as directional microphone assembly


101


discussed above, for example, with the addition of an equalization hybrid


223


mounted on a side surface


225


of directional microphone cartridge


227


. Equalization hybrid


223


includes three contacts


229


,


231


and


233


for electrical connection with contacts


235


,


237


and


239


, respectively, of the directional microphone cartridge


227


, as shown. Equalization hybrid


223


also includes contacts


241


,


243


and


245


for electrical connection to hearing aid circuitry.





FIGS. 18A and 18B

show exemplary details of the equalization hybrid


223


. Hybrid


223


may have the dimensions and contact configurations as shown in

FIGS. 18A and 18B

.





FIG. 19

is a diagram illustrating an exemplary interconnection between the directional microphone cartridge


227


and the equalization hybrid


223


. Equalization hybrid


223


includes, in addition to the contacts mentioned above with respect to

FIGS. 17-18

, an equalization die circuit


247


. The equalization hybrid


223


may be an ER-82 EQ Hybrid, and the equalization die circuit


247


may be an ER-81 Die, both from Etymotic Research Inc.





FIG. 20

is a circuit diagram illustrating exemplary circuitry for implementing equalization.




While

FIG. 17

shows the equalization circuitry mounted on the outside of the directional microphone cartridge, equalization circuitry may instead be located within the directional microphone cartridge.

FIG. 21

illustrates a directional microphone cartridge having a larger housing volume to accommodate internal equalization circuitry. Specifically, directional microphone cartridge


251


has a thickness dimension of 0.090 inches (2.29 mm), for example, as shown in FIG.


21


. Directional microphone cartridge


103


of directional microphone assembly


101


, by comparison, has a thickness dimension of 0.069 inches (1.75 mm) (see FIG.


2


). The additional space in directional microphone cartridge


251


is used to carry equalization circuitry.





FIGS. 22 and 23

are side and perspective views, respectively, of a directional microphone assembly having internal equalization circuitry. Directional microphone assembly


253


is generally thicker than directional microphone assembly


101


discussed above. The thickness differential between directional microphone assembly


253


and directional microphone assembly


101


may be seen by comparison of

FIGS. 22 and 23

to

FIGS. 2 and 8

, for example.





FIG. 24

illustrates an in-the-ear hearing aid having a directional microphone assembly mounted therein. The directional microphone assembly may, for example, be that shown in FIG.


17


. Hearing aid


261


comprises a shell


263


and a faceplate


265


mounted to the shell


263


. Faceplate


265


includes a battery door


267


as well as acoustic openings


269


and


271


. Acoustic openings


269


and


271


, which are shown as rectangular, may also be oval, circular, or any other shape. Acoustic openings,


269


and


271


acoustically couple sound from the sound field through the faceplate


265


to respective sound ducts of the directional microphone assembly.




Faceplate


265


also includes on its inner surface a pair of locating wells


273


and


275


for receiving respective sound ducts of the directional microphone assembly. Upon assembly of the hearing aid, the sound ducts of the directional microphone assembly are respectively inserted into the locating wells


273


and


275


. The sound ducts may be press-fit into the wells, for example. Epoxy or other adhesive material may also be used to secure the directional microphone assembly to the faceplate. Once the directional microphone assembly is secured and electrically connected to hearing aid circuitry (not shown), the faceplate


265


is then mounted to the shell


263


to form the complete hearing aid


261


.





FIG. 25

is an exploded view of the directional microphone assembly of

FIGS. 11-14

, illustrating the internal components as well as the cartridge portions.





FIGS. 26A-G

collectively illustrate a component by component assembly technique for the directional microphone assembly of

FIGS. 11-14

, using the components set forth in FIG.


25


.





FIGS. 27A-G

respectively illustrate the individual components set forth in FIG.


25


.





FIG. 28

is a top view of an alternate embodiment of the directional microphone assembly of the present invention, in which the sound ducts are offset from each other and relative to the center of the case housing.




Many modifications and variations of the present invention are possible in light of the above teachings. Thus, it is to be understood that, within the scope of the appended claims, the invention may be practiced otherwise than as described hereinabove.



Claims
  • 1. A hearing aid comprising:at least one microphone cartridge having a length; a first sound passage having a first sound inlet, the first sound inlet having a first diameter dimension, the first sound passage coupling sound energy to a first sound port of the at least one microphone cartridge; and a second sound passage having a second sound inlet, the second sound inlet having a second diameter dimension, the second sound passage coupling sound energy to a second sound port of the at least one microphone cartridge, wherein a sum of a center to center spacing of the first and second sound inlets, the radius of the first sound inlet, and the radius of the second sound inlet, being less than or approximately equal to another sum of the length, the first diameter dimension, and the second diameter dimension.
  • 2. The hearing aid of claim 1 wherein the first and second diameter dimensions are approximately equal.
  • 3. The hearing aid of claim 1 wherein the first and second sound passages are created by first and second sound ducts, and wherein the first and second sound ducts are mounted with the at least one microphone cartridge.
  • 4. The hearing aid of claim 1 wherein the first and second sound passages are created by first and second sound ducts, and wherein the first and second sound ducts are formed as integral portions of the at least one microphone cartridge.
  • 5. The hearing aid of claim 1 wherein the first and second sound inlets have a center to center spacing of less than approximately 0.2 inches.
  • 6. The hearing aid of claim 5 wherein the center to center spacing is approximately 0.157 inches.
  • 7. The hearing aid of claim 1 wherein the sum of the center to center spacing of the first and second sound inlets, the radius of the first sound inlet and the radius of the second sound inlet is less than approximately 0.258 inches.
  • 8. The hearing aid of claim 7 wherein the sum of the center to center spacing of the first and second sound inlets, the radius of the first sound inlet and the radius of the second sound inlet is approximately 0.215 inches.
  • 9. The hearing aid of claim 1 wherein the hearing aid comprises an in-the-ear hearing aid.
  • 10. A hearing aid comprising:at least one microphone cartridge having a first outer surface, a first port located in the first outer surface, a second outer surface, and a second port located in the second outer surface; a first sound duct having a first inner surface, the first sound duct operatively coupled to at least the first outer surface of the at least one microphone cartridge, the first inner surface of the first sound duct and at least the first outer surface of the at least one microphone cartridge creating a volume representative of a first sound passage to the first port; and a second sound duct having a second inner surface, the second sound duct operatively coupled to at least the second outer surface of the at least one microphone cartridge, the second inner surface of the second sound duct and at least the second outer surface of the at least one microphone cartridge creating a volume representative of a second sound passage to the second port, wherein at least a portion of at least one of the first and second sound ducts mates a third outer surface of the at least one microphone cartridge.
  • 11. The hearing aid of claim 10 wherein the first and second sound ducts are mounted with the at least one microphone cartridge.
  • 12. The hearing aid of claim 10 wherein the first and second sound ducts are formed as integral portions of the at least one microphone cartridge.
  • 13. The hearing aid of claim 10 wherein the first and second sound ducts have a center to center spacing of less than approximately 0.2 inches.
  • 14. The hearing aid of claim 13 wherein the center to center spacing is approximately 0.157 inches.
  • 15. The hearing aid of claim 10 wherein the sum of the center to center spacing of the first and second sound ducts, the radius of the first sound duct and the radius of the second sound duct is less than approximately 0.258 inches.
  • 16. The hearing aid of claim 15 wherein the sum of the center to center spacing of the first and second sound ducts, the radius of the first sound duct and the radius of the second sound duct is approximately 0.215 inches.
  • 17. The hearing aid of claim 10 wherein the hearing aid comprises an in-the-ear hearing aid.
  • 18. A hearing aid comprising:at least one microphone cartridge having a length; a first sound passage communicating with the at least one microphone cartridge; and a second sound passage communicating with the at least one microphone cartridge, the first and second sound passages having a shortest separation distance therebetween that is less than or approximately equal to the length of the at least one microphone cartridge.
  • 19. The hearing aid of claim 18 wherein the first and second sound passages are created by first and second sound ducts, and wherein the first and second sound ducts are mounted with the at least one microphone cartridge.
  • 20. The directional microphone of claim 18 wherein the first and second sound passages are created by first and second sound ducts, and wherein the first and second sound ducts are formed as integral portions of the at least one microphone cartridge.
  • 21. The hearing aid of claim 18 wherein the first and second sound passages have a center to center spacing of less than approximately 0.2 inches.
  • 22. The hearing aid of claim 21 wherein the center to center spacing is approximately 0.157 inches.
  • 23. The hearing aid of claim 18 wherein the first and second sound passages have a shortest separation distance therebetween of less than approximately 0.142 inches.
  • 24. The hearing aid of claim 23 wherein the shortest separation distance therebetween is approximately 0.099 inches.
  • 25. The hearing aid of claim 18 wherein the hearing aid comprises an in-the-ear hearing aid.
  • 26. A hearing aid comprising:a housing having an outer surface, the outer surface having a first sound inlet and a second sound inlet; at least one microphone cartridge having a length; a first sound passage coupling sound energy from said first sound inlet to said at least one microphone cartridge; a second sound passage coupling sound energy from said second sound inlet to said at least one microphone cartridge; and the first and second sound inlets having a shortest separation distance therebetween that is less than or approximately equal to the length of the at least one microphone cartridge.
  • 27. The hearing aid of claim 26 wherein the first and second sound passages are created by first and second sound ducts, and wherein the first and second sound ducts are mounted with the at least one microphone cartridge.
  • 28. The hearing aid of claim 26 wherein the first and second sound passages are created by first and second sound ducts, and wherein the first and second sound ducts are formed as integral portions of the at least one microphone cartridge.
  • 29. The hearing aid of claim 26 wherein the first and second sound inlets have a center to center spacing of less than approximately 0.2 inches.
  • 30. The hearing aid of claim 29 wherein the center to center spacing is approximately 0.157 inches.
  • 31. The hearing aid of claim 26 wherein the first and second sound inlets have a shortest separation distance therebetween of less than approximately 0.142 inches.
  • 32. The hearing aid of claim 31 wherein the shortest separation distance therebetween is approximately 0.099 inches.
  • 33. The hearing aid of claim 26 wherein the hearing aid comprises an in-the-ear hearing aid.
  • 34. The hearing aid of claim 33 further comprising a faceplate, and wherein the faceplate comprises the outer surface.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application makes reference to, and claims priority to and the benefit of, U.S. provisional application Ser. No. 60/237,988 filed Oct. 5, 2000.

US Referenced Citations (42)
Number Name Date Kind
2950357 Mitchell et al. Aug 1960 A
3662124 Hassler et al. May 1972 A
3770911 Knowles et al. Nov 1973 A
3798390 Gage Mar 1974 A
3835263 Killion Sep 1974 A
3836732 Johanson et al. Sep 1974 A
3875349 Ruegg Apr 1975 A
3930560 Carlson et al. Jan 1976 A
3935398 Carlson et al. Jan 1976 A
3947646 Saito Mar 1976 A
3975599 Johanson Aug 1976 A
3983336 Malek et al. Sep 1976 A
4073366 Estes Feb 1978 A
4142072 Berland Feb 1979 A
4281222 Nakagawa et al. Jul 1981 A
4393270 van den Berg Jul 1983 A
4399327 Yamamoto et al. Aug 1983 A
4434329 Nasu Feb 1984 A
4456795 Saito Jun 1984 A
4456796 Nakagawa et al. Jun 1984 A
4629833 Kern et al. Dec 1986 A
4703506 Sakamoto et al. Oct 1987 A
5058171 Wurzer et al. Oct 1991 A
5121426 Baumhauer et al. Jun 1992 A
5131046 Killion et al. Jul 1992 A
5204907 Staple et al. Apr 1993 A
5214709 Ribic May 1993 A
5226076 Baumhauer, Jr. et al. Jul 1993 A
5268965 Badie et al. Dec 1993 A
5524056 Killion et al. Jun 1996 A
5613011 Chase et al. Mar 1997 A
5757933 Preves et al. May 1998 A
5790679 Hawker et al. Aug 1998 A
5848172 Allen Dec 1998 A
5878147 Killion et al. Mar 1999 A
6031922 Tibbetts Feb 2000 A
6075869 Killion et al. Jun 2000 A
6134334 Killion et al. Oct 2000 A
6151399 Killion et al. Nov 2000 A
6285771 Killion et al. Sep 2001 B1
6567526 Killion et al. May 2003 B1
6597793 Darbut et al. Jul 2003 B1
Non-Patent Literature Citations (8)
Entry
“Etymotic Research—D-MIC 2nd Order Directional Progress: As of Apr. 27, 1994.”.
Suggestion for Utilization of the Knowles Electronics EL-1687, BT-1784 and BT-1788 Directional Microphones.
Mead Killion, “The Noise Problem: There's Hope,” Hearing Instruments, vol. 36, No. 11, 26-32 (1985).
Carhart and Tilman, “Interaction of Competing Speech Signals with Hearing Losses,” Archives of Otolaryngology, vol. 91, 273-9 (1970).
Hawkins and Yacullo, “Signal-to-Noise Ratio Advantage of Binaural Hearing Aids and Directional Microphones Under Different Levels of Reverberation.” J. Speech and Hearing Disorders, vol. 49, 278-86 (1984).
Zuercher et al., Small Acoustic tubes: New approximations including isothermal and viscous effects, J. Acoust. Soc. Am., V. 83, pp. 1653-1660, 4/88.
Mueller et al., An Easy Method for Calculating the Articulation Index, The Hearing Journal, vol. 43, No. 9, 9/90, pp. 1-4.
Burnett et al., Nist Hearing Aid Test Procedures and Test Date, VA Hearing Aid Handbook, 1989, pp. 9, 23.
Provisional Applications (1)
Number Date Country
60/237988 Oct 2000 US