Directional proximity switch assembly

Information

  • Patent Grant
  • 10038443
  • Patent Number
    10,038,443
  • Date Filed
    Monday, October 20, 2014
    10 years ago
  • Date Issued
    Tuesday, July 31, 2018
    6 years ago
Abstract
A proximity switch assembly is provided and includes a proximity sensor comprising a first electrode comprising first fingers and a second electrode comprising second fingers, wherein the first and second fingers are interdigitated with a varying density and a variable spacing therebetween along a first direction. The proximity switch assembly also includes control circuitry processing a signal in response to a user activation of the proximity sensor and determining sliding activation of the sensor in the first direction. The switch assembly may determine a tap, stable press and sliding activations.
Description
FIELD OF THE INVENTION

The present invention generally relates to switches, and more particularly relates to proximity switches having enhanced switch activation.


BACKGROUND OF THE INVENTION

Automotive vehicles are typically equipped with various user actuatable switches, such as switches for operating devices including powered windows, headlights, windshield wipers, moonroofs or sunroofs, interior lighting, radio and infotainment devices, and various other devices. Generally, these types of switches need to be actuated by a user in order to activate or deactivate a device or perform some type of control function. Proximity switches, such as capacitive switches, employ one or more proximity sensors to generate a sense activation field and sense changes to the activation field indicative of user actuation of the switch, typically caused by a user's finger in close proximity or contact with the sensor. Capacitive switches are typically configured to detect user actuation of the switch based on comparison of the sense activation field to a threshold.


Switch assemblies often employ a plurality of capacitive switches in close proximity to one another and generally require that a user select a single desired capacitive switch to perform an intended operation. Some switch assemblies employ an array of sensors to detect a sliding activation. In some applications, such as use in an automobile, it may be desirable to provide for a proximity switch arrangement which enhances the use of proximity switches by a person, such as a driver of a vehicle.


SUMMARY OF THE INVENTION

According to one aspect of the present invention, a proximity switch assembly is provided. The proximity switch assembly includes a proximity sensor comprising a first electrode comprising first fingers and a second electrode comprising second fingers, wherein the first and second fingers are interdigitated with variable spacing therebetween along a first direction. The proximity switch assembly also includes control circuitry processing a signal in response to a user activation of the proximity sensor and determining sliding activation of the sensor in the first direction.


According to another aspect of the present invention, a proximity switch assembly is provided. The proximity switch assembly includes a proximity sensor comprising a first electrode comprising first fingers and a second electrode comprising second fingers, wherein the first and second fingers are interdigitated with a variable density along a first direction. The proximity switch assembly also includes control circuitry processing a signal in response to a user activation of the proximity sensor and determining sliding activation of the sensor in the first direction.


According to a further aspect of the present invention, a method of activating a proximity switch assembly is provided. The method includes the step of providing a proximity sensor comprising a first electrode comprising first fingers and a second electrode comprising second fingers such that the first and second fingers are interdigitated with a varying density along a first direction. The method also includes the steps of processing a signal in response to a user activation of the proximity sensor, and determining sliding activation of the proximity sensor in the first direction based on the processed signal.


These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:



FIG. 1 is a perspective view of a passenger compartment of an automotive vehicle having an overhead console employing a proximity switch assembly, according to one embodiment;



FIG. 2 is an enlarged view of the overhead console and proximity switch assembly shown in FIG. 1;



FIG. 3 is an enlarged cross-sectional view taken through line III-III in FIG. 2 showing a proximity switch in relation to a user's finger;



FIG. 4 is a schematic diagram of a capacitive sensor employed in each of the capacitive switches shown in FIG. 3, according to one embodiment;



FIG. 5 is a block diagram illustrating the proximity switch assembly, according to one embodiment;



FIG. 6 is a schematic diagram of a capacitive sensor employed in the capacitive switch, according to a first embodiment;



FIG. 7 is a graph illustrating the Δ (delta) sensor count for a signal associated with the capacitive sensor of FIG. 6 during a horizontal left-to-right swipe;



FIG. 8 is a graph illustrating the Δ sensor count for the signal associated with the capacitive sensor shown in FIG. 6 for a horizontal right-to-left swipe;



FIG. 9 is a graph illustrating a Δ sensor count for a signal associated with the capacitive sensor shown in FIG. 6 for a vertical top-to-bottom swipe;



FIG. 10 is a graph illustrating the Δ sensor count for a signal associated with the capacitive sensor of FIG. 6 showing a diagonal top-left-to-bottom-right swipe;



FIG. 11 is a flow diagram illustrating a routine for processing and determining activation of the switch assembly employing the sensor shown in FIG. 6;



FIG. 12 is a flow diagram illustrating the subroutine of processing timing pad2 in the routine of FIG. 11;



FIG. 13 is a flow diagram illustrating the subroutine of processing the timing pad1 in the routine of FIG. 11;



FIG. 14 is a flow diagram illustrating the subroutine of processing pad1 to pad2 in the routine of FIG. 11;



FIG. 15 is a flow diagram illustrating the subroutine of processing pad1 in the routine of FIG. 11;



FIG. 16 is a flow diagram illustrating the subroutine of processing pad2 in the routine of FIG. 11;



FIG. 17 is a schematic diagram of a capacitive sensor employing a proximity switch, according to a second embodiment;



FIG. 18 is a graph illustrating the Δ sensor count for a signal associated with the capacitive sensor shown in FIG. 17 for a horizontal left-to-right swipe;



FIG. 19 is a graph illustrating the Δ sensor count for a signal associated with the capacitive sensor shown in FIG. 17 for a horizontal right-to-left swipe;



FIG. 20 is a graph illustrating the Δ sensor count for a signal associated with a capacitive sensor shown in FIG. 17 for a vertical top-to-bottom swipe;



FIG. 21 is a graph illustrating the Δ sensor count for a signal associated with the capacitive sensor shown in FIG. 17 for a vertical bottom-to-top swipe;



FIG. 22 is a flow diagram illustrating a routine for processing and activating the capacitive switch employing the sensor of FIG. 17; and



FIG. 23 is a flow diagram illustrating the subroutine of collect timing in the routine of FIG. 22.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to a detailed design; some schematics may be exaggerated or minimized to show function overview. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.


Referring to FIGS. 1 and 2, the interior of an automotive vehicle 10 is generally illustrated having a passenger compartment and a proximity switch assembly 20 employing a plurality of proximity switches 22 having switch activation monitoring and determination, according to one embodiment. The vehicle 10 generally includes an overhead console 12 assembled to the headliner on the underside of the roof or ceiling at the top of the vehicle passenger compartment, generally above the front passenger seating area. The switch assembly 20 has a plurality of proximity switches 22 arranged in the overhead console 12, according to the embodiment shown. However, it should be appreciated that one or more proximity switches 22 may be used in the switch assembly 20. The various proximity switches 22 may control any of a number of vehicle devices and functions, such as controlling movement of a sunroof or moonroof 16, controlling movement of a moonroof shade 18, controlling activation of one or more lighting devices such as interior map/reading and dome lights 30, and various other devices and functions located on or off a vehicle. However, it should be appreciated that the proximity switches 22 may be located elsewhere on the vehicle 10, such as in the dash panel, on other consoles such as a center console, integrated into a touch screen display 14 for a radio or infotainment system such as a navigation and/or audio display, or located elsewhere onboard the vehicle 10 according to various vehicle applications.


The proximity switches 22 are shown and described herein as capacitive switches, according to one embodiment. Each proximity switch 22 includes at least one proximity sensor that provides a sense activation field to sense contact or close proximity (e.g., within one millimeter) of a user in relation to the one or more proximity sensors, such as a tap, a stable press or a swiping motion by a user's finger. Thus, the sense activation field of each proximity switch 22 is a capacitive field in the exemplary embodiment and the user's finger has electrical conductivity and dielectric properties that cause a change or disturbance in the sense activation field as should be evident to those skilled in the art. However, it should also be appreciated by those skilled in the art that additional or alternative types of proximity sensors can be used, such as, but not limited to, inductive sensors, optical sensors, temperatures sensors, resistive sensors, the like, or a combination thereof. Exemplary proximity sensors are described in the Apr. 9, 2009, ATMEL® Touch Sensors Design Guide, 10620 D-AT42-04/09, the entire reference hereby being incorporated herein by reference.


The proximity switches 22 shown in FIGS. 1 and 2 each provide control of one or more vehicle components or devices or provide one or more designated control functions. One or more of the proximity switches 22 may be dedicated to controlling movement of a sunroof or moonroof 16 so as to cause the moonroof 16 to move in an open or closed direction, tilt the moonroof, or stop movement of the moonroof based upon a control algorithm. One or more other proximity switches 22 may be dedicated to controlling movement of a moonroof shade 18 between open and closed positions. Each of the moonroof 16 and shade 18 may be actuated by an electric motor in response to actuation of the corresponding proximity switch 22. Other proximity switches 22 may be dedicated to controlling other devices, such as turning an interior map/reading light 30 on, turning an interior map/reading light 30 off, turning a dome lamp on or off, unlocking a trunk, opening a rear hatch, or defeating a door light switch. Additional controls via the proximity switches 22 may include actuating door power windows up and down. Various other vehicle and non-vehicle controls may be controlled by use of the proximity switches 22 described herein.


Referring to FIG. 3, a portion of the proximity switch assembly 20 is illustrated having a proximity switch 22 in relation to a user's finger 34 during use of the switch assembly 20. The proximity switch 22 may include one or more proximity sensors 24 for generating a sense activation field. According to one embodiment, each of the proximity sensors 24 may be formed by printing conductive ink onto the top surface of the polymeric overhead console 12. One example of a proximity sensor 24 is shown in FIG. 4 generally having a drive electrode 26 and a receive electrode 28 each having interdigitated fingers for generating a capacitive field 32. It should be appreciated that each of the proximity sensors 24 may be otherwise formed such as by assembling a preformed conductive circuit trace onto a substrate according to other embodiments. The drive electrode 26 receives square wave drive pulses applied at voltage VI. The receive electrode 28 has an output for generating an output voltage VO. It should be appreciated that the drive and receive electrodes 26 and 28 may be arranged in various other configurations for generating the capacitive field as the activation field 32. The drive electrode 26 includes a plurality of electrode fingers 27A-27E each generally illustrated extending at a different angle relative to the horizontal axis. The receive electrode 28 includes a plurality of electrode fingers 29A-29C each likewise extending at different angles relative to the horizontal axis. The first and second plurality of fingers 27A-27E and 29A-29C are interdigitated with one another and have a variable or varying spacing therebetween at different locations along a first direction X parallel to the horizontal axis. It should be appreciated that the drive and receive electrode fingers 27A-27E and 29A-29C have a density that varies along the first direction, such as along the horizontal axis. The sensor arrangement advantageously allows for detection of an activation by a user's finger along a first direction, such as a horizontal axis, and a second direction Y orthogonal to the first direction, such as a vertical axis. This is because a user's finger interacts with a greater number of electrode fingers on one side of the sensor 24 as opposed to the opposite side, thereby enabling processing of the sensor signals to determine a sliding or swipe motion of the finger interfacing with the sensor 24. In addition, a diagonal sliding of the finger and a tap or stable press of the finger can also be detected as described herein.


In the embodiment shown and described herein, the drive electrode 26 of each proximity sensor 24 is applied with voltage input VI as square wave pulses having a charge pulse cycle sufficient to charge the receive electrode 28 to a desired voltage. The receive electrode 28 thereby serves as a measurement electrode. When a user or operator, such as the user's finger 34, enters an activation field 32, the proximity switch assembly 20 detects the disturbance caused by the finger 34 to the activation field 32 and determines whether the disturbance is sufficient to activate the corresponding proximity switch 22. The disturbance of the activation field 32 is detected by processing the charge pulse signal associated with the corresponding signal channel. Each proximity switch 22 has its own dedicated signal channel generating charge pulse counts which is processed as discussed herein.


Referring to FIG. 5, the proximity switch assembly 20 is illustrated according to one embodiment. A plurality of proximity sensors 24 are shown providing inputs to a controller 40, such as a microcontroller. The controller 40 may include control circuitry, such as a microprocessor 42 and memory 48. The control circuitry may include sense control circuitry processing the activation field of each sensor 22 to sense user activation of the corresponding switch by comparing the activation field signal to one or more thresholds pursuant to one or more control routines. It should be appreciated that other analog and/or digital control circuitry may be employed to process each activation field, determine user activation, and initiate an action. The controller 40 may employ a QMatrix acquisition method available by ATMEL®, according to one embodiment. The ATMEL acquisition method employs a WINDOWS® host C/C++ compiler and debugger WinAVR to simplify development and testing the utility Hawkeye that allows monitoring in real-time the internal state of critical variables in the software as well as collecting logs of data for post-processing.


The controller 40 provides an output signal to one or more devices that are configured to perform dedicated actions responsive to detected activation of a proximity switch. For example, the one or more devices may include a moonroof 16 having a motor to move the moonroof panel between open, closed and tilt positions, a moonroof shade 18 that moves between open and closed positions, and lighting devices 30 that may be turned on and off. Other devices may be controlled such as a radio for performing on and off functions, volume control, scanning, and other types of devices for performing other dedicated functions. One of the proximity switches 22 may be dedicated to actuating the moonroof closed in response to a swipe in a first direction, and actuating the moonroof open in response to a swipe in the opposite second direction, actuating the moonroof to a tilt position in response to a swipe in a third direction orthogonal to the first and second directions, and stopping movement of the moonroof in response to a tap or stable press. The moonroof shade 18 may be opened and closed in response to another proximity switch 22 responsive to swipes in opposite directions. A motor may actuate the moonroof or shade to a desired position in response to the type of activation.


The controller 40 is further shown having an analog to digital (A/D) comparator 44 coupled to the microprocessor 42. The A/D comparator 44 receives the voltage output VO from each of the proximity switches 22, converts the analog signal to a digital signal, and provides the digital signal to the microprocessor 42. Additionally, controller 40 includes a pulse counter 46 coupled to the microprocessor 42. The pulse counter 46 counts the charge signal pulses that are applied to each drive electrode of each proximity sensor, performs a count of the pulses needed to charge the capacitor until the voltage output VO reaches a predetermined voltage, and provides the count to the microprocessor 42. The pulse count is indicative of the change in capacitance of the corresponding capacitive sensor. The controller 40 is further shown communicating with a pulse width modulated drive buffer 15. The controller 40 provides a pulse width modulated signal to the pulse width modulated drive buffer 15 to generate a square wave pulse train VI which is applied to each drive electrode of each proximity sensor/switch 22. The controller 40 processes a control routine 100 stored in memory to monitor and make a determination as to activations of one of the proximity switches and supplies output control signals to various controlled devices.


The proximity sensor 24 is shown in FIG. 6 as a capacitive sensor, according to a first embodiment. In this embodiment, the proximity sensor 24 includes a first receive electrode 28 having a first plurality of capacitive fingers 29A-29D. The first fingers 29A-29D extend outward at different angles relative to the horizontal axis and are coupled to the signal output VO. The capacitive sensor 24 also includes second and third drive electrodes 26A and 26B. The second electrode 26A includes a plurality of second capacitive fingers 27A-27C, each of which extends outward at differing angles relative to the horizontal axis. The third electrode 26B includes a plurality of capacitive fingers 27D-27F, each of which extends outward at differing angles relative to the horizontal axis. The second and third electrodes 26A and 26B are generally aligned along the horizontal axis, while the first electrode 28 is likewise generally aligned along the horizontal axis so that the electrode fingers are interdigitated such that fingers on a drive electrode extend between and capacitively couple with opposing fingers on the receive electrode. The second electrode 26A further includes a vertically extending outer finger 31A extending generally perpendicular to the horizontal axis to partially surround a portion of the first electrode 28. The third electrode 26B similarly includes a vertically extending outer finger 26B extending perpendicular to the horizontal axis to partially surround a portion of the first electrode 28. As a result of this electrode configuration, the second and third fingers 27A-27F are interdigitated with the first fingers 29A-29D and have a variable density along the first direction which is parallel to the horizontal axis. As such, as a user's finger slides from the left side to the right side as seen in FIG. 6, the density of the electrode fingers interfacing with the finger goes from a higher density to a lower density which, with a given size finger interfacing therewith, corresponds to a higher signal dropping to a lower signal. Contrarily, a sliding of a user's finger from the right side to the left side causes the user's finger to interface with a low density of capacitive fingers increasing to a high density of capacitive fingers, corresponding to a signal that increases. As such, a sliding motion or swipe of the user's finger from the left to the right or the right to the left may be detected by processing the signals generated by the sensor and monitoring the rate of change of the signals relative to a threshold and/or peak value for a horizontal swipe, as described herein. The proximity sensor 24 may also detect a vertical swipe from top to bottom or bottom to top by processing the signals generated across each of the second and third electrodes 26A and 26B. By knowing that the user's finger is passing from the top second electrode 26A to the bottom third electrode 26B, the assembly can identify a top to bottom swipe. Contrarily, by identifying a signal on the bottom third electrode 26B prior to the top second electrode 26A, a bottom to top swipe may be identified. Further, a diagonal swipe between top left and bottom right and between bottom left and top right may also be detected.


In FIGS. 7-10, the change in sensor charge pulse counts shown as Δ Sensor Count for signal channels associated with proximity switch 22 employing the proximity sensor 24 shown in FIG. 6, is illustrated according to various examples. The change in sensor charge pulse count is the difference between an initialized referenced count value without any finger or other object present in the activation field and the corresponding sensor reading. In these examples, the user's finger enters and interacts with the activation field 32 associated with the proximity switch 22 as the user's finger moves across the sensor 24. The signal channel is the change (Δ) in sensor charge pulse count associated with the capacitive sensor 24. In the disclosed embodiment, the proximity sensors 24 are capacitive sensors. When a user's finger is in contact with or close proximity of a sensor 24, the finger alters the capacitance measured at the corresponding sensor 24. The capacitance is in parallel to the untouched sensor pad parasitic capacitance, and as such, measures as an offset. The user or operator induced capacitance is proportional to the user's finger or other body part dielectric constant, the surface exposed to the capacitive pad, and is inversely proportional to the distance of the user's limb to the switch button. According to one embodiment, each sensor is excited with a train of voltage pulses via pulse width modulation (PWM) electronics until the sensor is charged up to a set voltage potential. Such an acquisition method charges the receive electrode 28 to a known voltage potential. The cycle is repeated until the voltage across the measurement capacitor reaches a predetermined voltage. Placing a user's finger on the touch surface of the switch 24 introduces external capacitance that increases the amount of charge transferred each cycle, thereby reducing the total number of cycles required for the measurement capacitance to reach the predetermined voltage. The user's finger causes the change in sensor charge pulse count to increase since this value is based on the initialized reference count minus the sensor reading.


The proximity switch assembly 20 is able to recognize the user's hand motion when the hand, particularly a finger, is in close proximity to the proximity switch 22, to discriminate whether the intent of the user is to activate a switch 22 with a tap or stable press activation or perform a sliding activation also referred to as a swipe. The proximity sensor 24 shown in FIG. 6 allows the proximity switch assembly 20 to differentiate between and determine a stable press, a fast tap, and a swipe across the sensor. The sensor geometry and control circuitry also enables the proximity switch assembly 10 to detect the direction of the swipe, whether the swipe is a left-to-right swipe, a right-to-left swipe, a top-to-bottom swipe, a bottom-to-top swipe, or a diagonal swipe extending in a direction between the horizontal and vertical axes. A stable press generally requires the signal generated across both the second and third electrodes 26A and 26B to be stable for a predetermined time range. A fast tap generally requires a symmetrical rise and fall of the signal across the peak value to happen in a short time range. A slide across the sensor or pad can be recognized by analyzing the slope of the rise and fall of the electrode signals and their relative timing.


If a sliding activation is detected, the following steps generally occur. The rise and fall timing of both signals associated with the second and third electrodes 26A and 26B also referred to as pad1 and pad2 is determined. The offset timing of the second and third electrode signals is also determined. A motion of left-to-right, right-to-left or neither across both pad1 and pad2 is determined. Motion from the top second electrode 26A to the bottom third electrode 26B or from the bottom third electrode 26B to the top second electrode 26A is determined. The data is combined and processed to determine the overall swipe direction.


In FIG. 7, signals 50A and 50B generated across the second and third electrodes 26A and 26B, respectively, are generally illustrated during a left-to-right swipe activation. Pad1 is referred to as the signal generated by the second electrode 26A in relation to the first electrode 28. Pad2 is referred to as the signal generated by the third electrode 26B in relation to the first electrode 28. Both signals across pad1 and pad2 are shown rising up and crossing a threshold Th at times T1a and T2a, and further rising up at a first rate to peak values P1 and P2 at times T1b and T2b, respectively. The signals 50A and 50B on each of pad1 and pad2 then decrease at a lower second rate generally along a ramp to the threshold value Th at times T1c and T2c, respectfully. Time values T1a, T1b and T1c are the time periods at which the signal on pad1 crosses the threshold Th while rising, reaches the peak value and crosses the threshold Th while decreasing towards zero. Time values T2a, T2b and T2c are the time values for pad2 at which the signal crosses the threshold Th while rising, reaches the peak value, and thereafter crosses the threshold Th while decreasing towards zero. When the user's finger interfaces with the electrodes on the left side of the switch, the signal rises up more quickly due to the higher density and closer spacing of the interdigitated electrode capacitive fingers. As the finger moves from the left to the right and approaches the right side of the sensor, the signal decreases due to the lower density and greater spacing between the capacitive electrode fingers while the user's finger travels in a first direction along the horizontal axis.


A swipe activation from the right side to the left side is illustrated in FIG. 8 in which the signals associated with the second and third electrodes 26A and 26B relative to the first electrode rise up, cross the threshold Th, rise at a first rate to peak values P1 and P2 at times T1b and T2b and then drop at a greater second rate back to the threshold Th at times T1c and T2c, respectively. In this example, the signal rise at the first rate is slower than the decreasing second rate on the right side of the sensor due to the lower density of interdigitated electrode capacitive fingers and greater spacing of the capacitive fingers along the horizontal axis. The lower density and greater spacing between capacitively coupled fingers results in fewer capacitive fingers interfacing with the user's finger which results in a weaker signal.


The electrode signals for a top-to-bottom sliding activation are illustrated in FIG. 9, according to one example. In this example, the signal 50A associated with the top second electrode 26A is shown rising up and crossing the threshold Th, reaching a peak value P1 at time T1b and dropping back to the threshold Th at time T1c, prior to any significant activation of the lower third electrode 26B. The lower third electrode 26B generates a time-delayed signal 50B that rises up, crosses the threshold Th, reaches a peak value P2 at time T2b, and then drops back down to the threshold value Th at time T2c. The signal 50A associated with the second electrode 26A thus rises up, reaches a peak value and drops before the signal 50B associated with the third electrode 26B rises up and drops. As a result, the proximity switch assembly 20 detects activation of the top second electrode 28A prior to detecting activation of the bottom third electrode 28B in a time sequence such that a top-to-bottom sliding activation is detected. It should be appreciated that a bottom-to-top sliding activation may be detected by reversing the signals 50A and 50B such that signal 50B is likewise generated first in time prior to signal 50A.


The proximity switch assembly 20 is further configured to detect a diagonal swipe activation such as a top left to bottom right activation as shown in FIG. 10. In this example, the signal 50A associated with the second electrode 26A (pad1) rises up to threshold Th, further rises up at a steep higher first rate to a maximum value P1 at time T1b, and more slowly drops back down at a lower second rate to the threshold value Th at time T1c. Prior to signal 50A dropping below threshold Th, the signal 50B associated with the third electrode 26B rises up and crosses threshold Th. The signal 50B further rises up to a peak value P2 at time T1b and slowly drops at a slower rate back down to threshold value Th at time T2c. The proximity switch assembly 20 determines a top left to bottom right sliding activation of the switch 22 based on the timing of the signal 50B being delayed by T12a compared to signal 50A, and rise time T1ab and T2ab being significantly shorter than fall time T1bc and T2bc. It should further be appreciated that a bottom left to top right sliding activation may be detected by reversing the signals 50A and 50B in time sequence such that signal 50B likewise occurs before signal 50A. It should further be appreciated that a top right to bottom left diagonal sliding activation may be detected and that a bottom right to top left sliding activation may be detected by processing the signals rates, peak values, and timing relative to each other.


Referring to FIG. 11, a routine 100 for processing the electrode signals and determining activation of the proximity sensor shown in FIG. 6 is illustrated, according to one embodiment. Routine 100 may be executed by control circuitry such as controller 40. Routine 100 begins at step 102 and proceeds to execute subroutines 104 and 106 to determine the signals associated with each of the second and third electrodes which are also referred to herein as pad1 and pad2, respectively. Subroutines 104 and 106 may be executed at the same time and may be repeatedly executed.


The subroutine 104 is illustrated in FIG. 12 beginning at step 162 and proceeding to step 164 to identify the timing of pad1 signal crossing threshold Th on a rising slope at time T1a. Next, at step 166, subroutine 104 identifies the timing at time T1b and the intensity P1 of pad1 signal peak value. Next, at step 168, subroutine 104 identifies the timing of the pad1 signal crossing threshold Th on a falling slope at time T1c, before ending at step 170.


The subroutine 106 is shown in FIG. 13 beginning at step 172 and proceeding to step 174 to identify the timing of the pad2 signal crossing threshold Th on a rising slope at time T2a. Next, subroutine 106 identifies the timing at time T2b and intensity P2 of the pad2 signal peak value. Finally, subroutine 106 identifies the timing of pad2 signal crossing threshold Th on a falling slope at time T2c, before ending at step 180.


Following subroutines 104 and 106, routine 100 proceeds to decision step 108 to determine if each of the signals on both pad1 and pad 2 is stable and, if so, determines that a stable press activation, and then ends at step 110. A stable press activation may be used to output a designated control function. If the signals associated with pad1 and pad2 are not stable, routine 100 proceeds to decision step 112 to determine if the signals experience a fast rise at a first high rate (delta counts/time) followed quickly by a fast fall at a second high rate and, if so, determines a fast tapping activation. The fast tapping activation may result in an output signal to perform a designated control function. If the signals do not rise fast and then fall fast, routine 100 proceeds to subroutines 116 and 118 to process the signals associated with each of pad1 and pad2.


The process pad1 subroutine 116 is illustrated in FIG. 15 beginning at step 194 and proceeding to decision step 196 to determine if time T1bc is greater than the quantity (1+K)×T2ab, wherein K is a constant greater than zero. If yes, subroutine 116 proceeds to step 198 to determine that time T2bc is much greater than time T2ab which occurs when the signal rise is faster than the signal fall as seen in FIG. 7, indicative of motion from left-to-right on pad1, before ending at step 204. If the output of decision step 196 is negative, subroutine 116 proceeds to decision step 200 to determine if time T2ab is greater than the sum (1+K)×T2bc and, if yes, proceeds to step 202 to determine that time T2ab is much greater than time T2bc which occurs when the signal rise is slower than the signal fall as seen in FIG. 8, indicative of motion from right-to-left on pad1, before ending at step 204.


The process pad2 subroutine 118 is illustrated in FIG. 16 beginning at step 206 and proceeding to decision step 208 to determine if time T1bc is greater than the quantity (1+K)×T2ab, wherein K is a constant. If yes, subroutine 208 proceeds to step 210 to determine that time T2bc is much greater than time T2ab which occurs when the signal rise is faster than the signal fall as seen in FIG. 7, indicative of motion from left-to-right on pad2, before ending at step 216. If the output of decision step 208 is negative, subroutine 116 proceeds to decision step 212 to determine if time T2ab is greater than the sum (1+K)×T2bc and, if yes, proceeds to step 214 to determine that time T2ab is much greater than time T2bc which occurs when the signal rise is slower than the signal fall as seen in FIG. 8, indicative of motion from right-to-left on pad2, before ending at step 216. Following execution of the subroutines 116 and 118, routine 100 proceeds to step 120 to process a pad1-to-pad2 subroutine shown in FIG. 14 which determines whether the pad are swept together, as in a horizontal swipe, or one after the other, as in a vertical swipe. Subroutine 120 begins at step 182 and proceeds to determine if pad1 is engaged before checking whether T1a<T2a, with pad 2 engaged after the peak on pad1 is reached, which is determined when T12a≥T1ab and, if so, determines that there is top to bottom motion from pad1 to pad2 at step 186, prior to ending at step 192. If decision step 184 is negative, subroutine 120 proceeds to decision step 188 to determine if pad2 is engaged before pad1 by checking whether T2a<T1a, with pad1 engaged after the peak on pad2 is reached, which is determined when T21a>T2ab, and, if so, determines there is bottom to top motion from pad2 to pad1 at step 190, before ending at step 192.


Following execution of subroutine 120, routine 100 proceeds to decision step 122 to determine if a right-to-left swipe on pad1 is detected and, if so, proceeds to decision step 124 to determine if a right-to-left swipe is detected on pad2. If a right-to-left swipe is detected on both pad1 and pad2, routine 100 proceeds to decision step 126 to determine if a top to bottom vertical swipe component from pad1 to pad2 is detected and, if so, determines that the swipe activation is a diagonal top right to bottom left activation at step 120 before ending at step 160. If decision step 126 determines that the activation is not a top to bottom pad1-to-pad2 motion, routine 100 proceeds to decision step 130 to determine if the motion is a bottom to top pad2-to-pad1 motion and, if so, determines the swipe activation is a diagonal bottom right to top left activation at step 132 before ending at step 160. If decision step 130 determines that the activation is not a bottom to top pad2-to-pad1 motion, routine 100 proceeds to step 134 to determine that the swipe activation is a right-to-left swipe activation, before ending at step 160.


Returning to decision step 122, if a pad1 right-to-left motion is not detected, routine 100 proceeds to decision step 136 to determine if the pad1 motion is a left-to-right motion and, if so proceeds to decision step 146 to determine if the pad2 motion is a left-to-right motion and if not, ends at step 160. If the pad2 swipe is a left-to-right motion, routine 100 proceeds to decision step 148 to determine if there is a top to bottom component of motion from pad1 to pad 2 and, if so, determines a swipe activation from the top left to the bottom right at step 150 before ending at step 160. If there is no pad1-to-pad2 motion in step 148, routine 100 proceeds to decision step 152 to determine if there is a bottom to top component of motion from pad2 to pad1 and, if so, determines a swipe activation as a bottom left to top right swipe at step 154 before ending at step 160. If there is neither a motion from pad1 to pad2 or pad2 to pad1 as determined by decision steps 148 and 152, routine 100 proceeds to determine that there is a swipe activation of a left-to-right motion at step 156, before ending at step 160.


If decision step 136 determines that pad1 does not experience a left-to-right motion, routine 100 proceeds to decision 138 to determine if there is a top to bottom motion from pad1 to pad2 and, if so, determines a swipe activation from top-to-bottom at step 140, before ending at step 160. If decision step 138 determines that there is no top to bottom pad1-to-pad2 motion, routine 100 proceeds to decision step 142 to determine if there is a bottom to top motion from pad2 to pad1 and, if so, determines a swipe activation from bottom-to-top at step 144 before ending at step 160.


Accordingly, control routine 100 advantageously determines a tap or stable press activation of the switch 22 as one or two control outputs. Additionally, control routine 100 may determine a left or a right directional swipe and provide control outputs therefore. Further, control 100 may determine upward or downward swipes from top-to-bottom or bottom-to-top for further control outputs. Finally, control routine 100 may determine diagonal swipes, such as from the top right to the bottom left or from the bottom right to the top left and other diagonal movements in a direction along an axis between the horizontal and vertical axes as further control outputs.


Referring to FIG. 17, a proximity sensor 24 for use in the proximity switch assembly 20 is illustrated, according to a second embodiment. In this embodiment, a first receive electrode 28 is employed with a second drive electrode 26 whereby the drive electrode 28 generates voltage signal VI and the receive electrode 28 generates voltage output VO. The first electrode 28 includes a plurality of first capacitive fingers 29A-29C. The second electrode 26 includes a plurality of second capacitive fingers 27A-27E. The first and second capacitive fingers generally oppose each other and many of the first and second capacitive fingers are interdigitated to create a capacitive field relative to one another. The second electrode 26 further includes a first vertical extension 31A that partially surrounds the first electrode and a second vertical extension 31B that likewise partially surrounds the first electrode 28. Each of the capacitive fingers of the first and second electrodes extend outward at an angle relative to the horizontal axis and are interdigitated such as to provide a varying density along the horizontal axis and provide a variable spacing between capacitively coupled fingers along the horizontal axis. In this embodiment, only a single drive electrode 26 is employed as opposed to two drive electrodes as shown and described in connection with the first embodiment. In addition, the first electrode 28 omits a capacitive finger so as to create a different spacing and density amongst the capacitively coupled fingers. The proximity sensor 24 advantageously allows for a fast tap or stable press activation be detected in addition to a horizontal left-to-right or right-to-left motion activation and a vertical top-to-bottom or bottom-to-top activation as described herein.


In FIGS. 18-21, the change in sensor charge pulse counts shown as Δ sensor count for the signal channel associated with the proximity switch 22 employing the proximity sensor 24 shown in FIG. 17 is illustrated, according to various examples. In FIG. 18, signal 50 generated by the second electrode 26 relative to first electrode 28 is generally illustrated during a left-to-right swipe activation. The signal 50 is shown rising up and crossing a threshold Th at time Ta and further rising up at a first rate to a peak value Pb at time Tb before more gradually dropping back down at a slower second rate to the threshold value Th at time Td. Time value Tab represents the time for signal 50 to rise from time Ta to Tb, whereas time Tbd represents a time for signal 50 to fall from time Tb to time Td. When the user's finger interacts with the left side of the sensor 24, a higher density of capacitive fingers and closer spacing between capacitively coupled electrode fingers is present which results in a higher signal, whereas as the user's finger moves from left-to-right, the right side has a lower density of capacitive fingers and greater spacing between capacitively coupled fingers, thereby resulting in a lower signal. As such, control circuitry may determine that a left-to-right swipe motion was activated.


A swipe activation from the right side to the left side of the sensor 24 is illustrated in FIG. 19 in which the signal associated with the second electrode 26 relative to the first electrode 28 rises up and reaches the threshold Th at time Ta and then further rises up at a first slower rate to a peak value Pb at time Tb before sharply dropping at a higher second rate back down to threshold Th at time Td. In this example, the signal rise is slower on the left side of the sensor as compared to the right side due to the lower density of interdigitated electrode fingers and the greater spacing of the capacitively coupled fingers on the right side along the horizontal axis.


A top to bottom activation of the sensor 24 is illustrated in FIG. 20 according to one example. The signal 50 rises up to cross threshold Th at time Ta and then continues to rise to a first peak value Pb at time Tb and then drops to a lower value before rising back up to a second peak value Pc at time Tc. The second peak value Pc is less than the first peak value Pb. The signal 50 thereafter drops to zero. The control circuitry determines that signal 50 is indicative of a top to bottom swipe because the first peak value Pb is higher than the second peak value Pc, and the higher value results because of a higher density of capacitive fingers and closer spacing between capacitively coupled fingers associated with the top portion of the capacitive sensor 24 as compared to the bottom portion of the sensor 24.


A bottom to top activation of the sensor 24 is illustrated in FIG. 21 according to one example. The signal 50 rises up to cross threshold Th at time Ta and then continues to rise to a first peak value Pb at time Tb and then drops to a lower value before rising back up to a second peak value Pc at time Tc. The second peak value Pc is greater than the first peak value Pb. The signal 50 thereafter drops to zero. The control circuitry determines that signal 50 is indicative of a bottom to top swipe because the first peak value Pb is less than the second peak value Pc, and the lower value results because of a lesser density of capacitive fingers and closer spacing between capacitively coupled fingers associated with the bottom portion of the capacitive sensor 24 as compared to the top portion of the sensor 24.


A routine 300 for determining activation of the proximity switch 22 employing the capacitive sensor 24 of FIG. 17 is illustrated in FIG. 22, according to one embodiment. Routine 300 begins at step 302 and proceeds to step 304 to execute a collect timing subroutine 304. The collect timing subroutine 304 is shown in FIG. 23. Subroutine 304 begins at step 350 and proceeds to step 352 to identify timing of the signal crossing the threshold Th on the rising slope which is based on time Ta. Next, subroutine 304 identifies the timing Tb and intensity Pb of the first signal peak value in step 354. At step 356, subroutine 304 identifies the timing Tc and intensity Pc of the second signal peak value, if present. Finally, subroutine 304 identifies the timing of the Pad1 signal crossing the Threshold Th on the falling slope which is based on time Td, before ending at step 360.


Following execution of subroutine 304, routine 300 determines if the signal is stable at decision step 306 and, if so, ends with a stable press decision at step 308. Is the signal is not stable, routine 300 proceeds to decision step 310 to determine if there is a fast rise and fall and, if so, ends with a fast tapping decision at step 312. If there is no fast rise and fall, routine 300 determines in decision step 314 whether there is only one peak value. If there is only one peak value, routine 300 proceeds to decision step 324 to determine if time Tbd is greater than (1+K)×Tab and, if so, determines that there is a left to right swipe at step 326 before ending at step 332. If decision step 324 has a negative output, routine 300 proceeds to decision step 328 to determine whether time Tbd is greater than (1+K)×Tab and, if so, determines that time Tab is much greater than time Tbd which indicates motion from right to left on the Pad, and then ends at step 332.


If decision step 314 determines that there is more than one peak, routine 300 proceeds to decision step 316 to determine if first peak signal value Pb is greater than (1+K)×Pc and, if so, determines at step 318 that the first peak Pb is greater than the second peak Pc which is indicative of a top to bottom swipe, and then ends at step 332. Otherwise, decision step 320 determines whether the second peak Pc is greater than (1+K)×Pb and, if so, determines at step 322 that the second peak Pc is greater than the first peak Pb which indicates a bottom to top swipe, and then ends at step 332.


It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.

Claims
  • 1. A proximity switch assembly comprising: a proximity sensor comprising a first electrode comprising first fingers extending outward at differing acute angles relative to each other and a second electrode comprising second fingers interdigitated with the first fingers with variable spacing therebetween along a first direction; andcontrol circuitry processing a signal in response to a user activation of the proximity sensor and determining sliding activation of the sensor in the first direction and a second direction.
  • 2. The proximity switch assembly of claim 1, wherein the first and second plurality of fingers are interdigitated with variable density along the first direction.
  • 3. The proximity switch assembly of claim 1, wherein the second direction is perpendicular to the first direction.
  • 4. The proximity switch assembly of claim 3 further comprising a third electrode comprising a third plurality of fingers interdigitated with some of the first plurality of fingers of the first electrode, wherein the second electrode and third electrode are processed to determine sliding in the second direction.
  • 5. The proximity switch assembly of claim 4, wherein the control circuitry further determines sliding activation along a third direction between the first and second directions.
  • 6. The proximity switch assembly of claim 1, wherein the control circuitry further determines a tap activation based on the processed signal.
  • 7. The proximity switch assembly of claim 1 further comprising control circuitry monitoring an activation field associated with the proximity sensor and determining an activation of the proximity switch based on rise and fall of the signal relative to a peak value.
  • 8. The proximity switch assembly of claim 1, wherein the proximity switch assembly comprises a capacitive switch comprising one or more capacitive sensors.
  • 9. The proximity switch assembly of claim 1, wherein the assembly is installed on a vehicle.
  • 10. A proximity switch assembly comprising: a proximity sensor comprising a first electrode comprising first fingers extending outward at differing acute angles relative to each other and a second electrode comprising second fingers interdigitated with the first fingers with variable density along a first direction; andcontrol circuitry processing a signal in response to a user activation of the proximity sensor and determining sliding activation of the sensor in the first direction and a second direction.
  • 11. The proximity switch assembly of claim 10, wherein the first and second fingers are interdigitated with variable spacing therebetween along a first direction.
  • 12. The proximity switch assembly of claim 10, wherein the second direction is perpendicular to the first direction.
  • 13. The proximity switch assembly of claim 12 further comprising a third electrode comprising a third plurality of fingers interdigitated with some of the first plurality of fingers of the first electrode, wherein the second electrode and third electrode are processed to determine sliding in the second direction.
  • 14. The proximity switch assembly of claim 13, wherein the control circuitry further determines sliding activation along a third direction between the first and second directions.
  • 15. The proximity switch assembly of claim 10 further comprising control circuitry monitoring an activation field associated with the proximity sensor and determining an activation of the proximity switch based on rise and fall of the signal relative to a peak value.
  • 16. A method of activating a proximity switch assembly comprising: providing a proximity sensor comprising a first electrode comprising first fingers extending outward at differing acute angles relative to each other and a second electrode comprising second fingers such that the first and second fingers are interdigitated with a varying density along a first direction;processing a signal in response to a user activation of the proximity sensor; anddetermining sliding activation of the proximity sensor in the first direction and a second direction based on the processed signal.
US Referenced Citations (609)
Number Name Date Kind
3382588 Serrell et al. May 1968 A
3544804 Gaumer et al. Dec 1970 A
3671750 Heitmann et al. Jun 1971 A
3691396 Hinrichs Sep 1972 A
3707671 Morrow et al. Dec 1972 A
3725589 Golden Apr 1973 A
3826979 Steinmann Jul 1974 A
3950748 Busy Apr 1976 A
4204204 Pitstick May 1980 A
4205325 Haygood et al. May 1980 A
4232289 Daniel Nov 1980 A
4257117 Besson Mar 1981 A
4290052 Eichelberger et al. Sep 1981 A
4340813 Sauer Jul 1982 A
4370646 Mahony Jan 1983 A
4374381 Ng et al. Feb 1983 A
4377049 Simon et al. Mar 1983 A
4380040 Posset Apr 1983 A
4413252 Tyler et al. Nov 1983 A
4431882 Frame Feb 1984 A
4446380 Moriya et al. May 1984 A
4453112 Sauer et al. Jun 1984 A
4492958 Minami Jan 1985 A
4494105 House Jan 1985 A
4502726 Adams Mar 1985 A
4514817 Pepper et al. Apr 1985 A
4613802 Kraus et al. Sep 1986 A
4680429 Murdock et al. Jul 1987 A
4743895 Alexander May 1988 A
4748390 Okushima et al. May 1988 A
4758735 Ingraham Jul 1988 A
4821029 Logan et al. Apr 1989 A
4855550 Schultz, Jr. Aug 1989 A
4872485 Laverty, Jr. Oct 1989 A
4899138 Araki et al. Feb 1990 A
4901074 Sinn et al. Feb 1990 A
4905001 Penner Feb 1990 A
4924222 Antikidis et al. May 1990 A
4954823 Binstead Sep 1990 A
4972070 Laverty, Jr. Nov 1990 A
5025516 Wilson Jun 1991 A
5033508 Laverty, Jr. Jul 1991 A
5036321 Leach et al. Jul 1991 A
5050634 Fiechtner Sep 1991 A
5063306 Edwards Nov 1991 A
5108530 Niebling, Jr. et al. Apr 1992 A
5153590 Charlier Oct 1992 A
5159159 Asher Oct 1992 A
5159276 Reddy, III Oct 1992 A
5177341 Balderson Jan 1993 A
5212621 Panter May 1993 A
5215811 Reafler et al. Jun 1993 A
5225959 Stearns Jul 1993 A
5239152 Caldwell et al. Aug 1993 A
5270710 Gaultier et al. Dec 1993 A
5294889 Heep et al. Mar 1994 A
5329239 Kindermann et al. Jul 1994 A
5341231 Yamamoto et al. Aug 1994 A
5367199 Lefkowitz et al. Nov 1994 A
5403980 Eckrich Apr 1995 A
5451724 Nakazawa et al. Sep 1995 A
5467080 Stoll et al. Nov 1995 A
5477422 Hooker et al. Dec 1995 A
5494180 Callahan Feb 1996 A
5512836 Chen et al. Apr 1996 A
5526294 Ono et al. Jun 1996 A
5548268 Collins Aug 1996 A
5566702 Philipp Oct 1996 A
5572205 Caldwell et al. Nov 1996 A
5586042 Pisau et al. Dec 1996 A
5594222 Caldwell Jan 1997 A
5598527 Debrus et al. Jan 1997 A
5670886 Wolff et al. Sep 1997 A
5681515 Pratt et al. Oct 1997 A
5730165 Philipp Mar 1998 A
5747756 Boedecker May 1998 A
5760554 Bustamante Jun 1998 A
5790015 Iitsuka Aug 1998 A
5790107 Kasser et al. Aug 1998 A
5796183 Hourmand Aug 1998 A
5801340 Peter Sep 1998 A
5825352 Bisset et al. Oct 1998 A
5827980 Doemens et al. Oct 1998 A
5844287 Hassan et al. Dec 1998 A
5864105 Andrews Jan 1999 A
5867111 Caldwell et al. Feb 1999 A
5874672 Gerardi et al. Feb 1999 A
5880538 Schulz Mar 1999 A
5917165 Platt et al. Jun 1999 A
5920309 Bisset et al. Jul 1999 A
5942733 Allen et al. Aug 1999 A
5963000 Tsutsumi et al. Oct 1999 A
5973417 Goetz et al. Oct 1999 A
5973623 Gupta et al. Oct 1999 A
5982608 Kalnitsky et al. Nov 1999 A
6010742 Tanabe et al. Jan 2000 A
6011602 Miyashita et al. Jan 2000 A
6031465 Burgess Feb 2000 A
6035180 Kubes et al. Mar 2000 A
6037930 Wolfe et al. Mar 2000 A
6040534 Beukema Mar 2000 A
6047964 Lawandy et al. Apr 2000 A
6075460 Minissale et al. Jun 2000 A
6140914 Mueller et al. Oct 2000 A
6157372 Blackburn et al. Dec 2000 A
6172666 Okura Jan 2001 B1
6189381 Huang Feb 2001 B1
6215476 Depew et al. Apr 2001 B1
6219253 Green Apr 2001 B1
6231111 Carter et al. May 2001 B1
6259045 Imai Jul 2001 B1
6275644 Domas et al. Aug 2001 B1
6288707 Philipp Sep 2001 B1
6292100 Dowling Sep 2001 B1
6297811 Kent et al. Oct 2001 B1
6310611 Caldwell Oct 2001 B1
6320282 Caldwell Nov 2001 B1
6323919 Yang et al. Nov 2001 B1
6369369 Kochman et al. Apr 2002 B2
6377009 Philipp Apr 2002 B1
6379017 Nakabayashi et al. Apr 2002 B2
6380931 Gillespie et al. Apr 2002 B1
6404158 Boisvert et al. Jun 2002 B1
6415138 Sirola et al. Jul 2002 B2
6427540 Monroe et al. Aug 2002 B1
6438257 Morimura et al. Aug 2002 B1
6445192 Lovegren et al. Sep 2002 B1
6452138 Kochman et al. Sep 2002 B1
6452514 Philipp Sep 2002 B1
6456027 Pruessel Sep 2002 B1
6457355 Philipp Oct 2002 B1
6464381 Anderson, Jr. et al. Oct 2002 B2
6466036 Philipp Oct 2002 B1
6485595 Yenni, Jr. et al. Nov 2002 B1
6529125 Butler et al. Mar 2003 B1
6535200 Philipp Mar 2003 B2
6535694 Engle et al. Mar 2003 B2
6537359 Spa Mar 2003 B1
6538579 Yoshikawa et al. Mar 2003 B1
6559902 Kusuda et al. May 2003 B1
6587097 Aufderheide et al. Jul 2003 B1
6603306 Olsson et al. Aug 2003 B1
6607413 Stevenson et al. Aug 2003 B2
6614579 Roberts et al. Sep 2003 B2
6617975 Burgess Sep 2003 B1
6639159 Anzai Oct 2003 B2
6646398 Fukazawa et al. Nov 2003 B1
6652777 Rapp et al. Nov 2003 B2
6654006 Kawashima et al. Nov 2003 B2
6661239 Ozick Dec 2003 B1
6661410 Casebolt et al. Dec 2003 B2
6664489 Kleinhans et al. Dec 2003 B2
6713897 Caldwell Mar 2004 B2
6734377 Gremm et al. May 2004 B2
6738051 Boyd et al. May 2004 B2
6740416 Yokogawa et al. May 2004 B1
6756970 Keely, Jr. et al. Jun 2004 B2
6773129 Anderson, Jr. et al. Aug 2004 B2
6774505 Wnuk Aug 2004 B1
6794728 Kithil Sep 2004 B1
6795226 Agrawal et al. Sep 2004 B2
6809280 Divigalpitiya et al. Oct 2004 B2
6812424 Miyako Nov 2004 B2
6819316 Schulz et al. Nov 2004 B2
6819990 Ichinose Nov 2004 B2
6825752 Nahata et al. Nov 2004 B2
6834373 Dieberger Dec 2004 B2
6841748 Serizawa et al. Jan 2005 B2
6847018 Wong Jan 2005 B2
6847289 Pang et al. Jan 2005 B2
6854870 Huizenga Feb 2005 B2
6879250 Fayt et al. Apr 2005 B2
6884936 Takahashi et al. Apr 2005 B2
6891114 Peterson May 2005 B2
6891530 Umemoto et al. May 2005 B2
6897390 Caldwell et al. May 2005 B2
6929900 Farquhar et al. Aug 2005 B2
6930672 Kuribayashi Aug 2005 B1
6940291 Ozick Sep 2005 B1
6943705 Bolender et al. Sep 2005 B1
6960735 Hein et al. Nov 2005 B2
6962436 Holloway et al. Nov 2005 B1
6964023 Maes et al. Nov 2005 B2
6966225 Mallary Nov 2005 B1
6967587 Snell et al. Nov 2005 B2
6977615 Brandwein, Jr. Dec 2005 B2
6987605 Liang et al. Jan 2006 B2
6993607 Philipp Jan 2006 B2
6999066 Litwiller Feb 2006 B2
7030513 Caldwell Apr 2006 B2
7046129 Regnet et al. May 2006 B2
7053360 Balp et al. May 2006 B2
7063379 Steuer et al. Jun 2006 B2
7091836 Kachouh et al. Aug 2006 B2
7091886 DePue et al. Aug 2006 B2
7098414 Caldwell Aug 2006 B2
7105752 Tsai et al. Sep 2006 B2
7106171 Burgess Sep 2006 B1
7135995 Engelmann et al. Nov 2006 B2
7146024 Benkley, III Dec 2006 B2
7151450 Beggs et al. Dec 2006 B2
7151532 Schulz Dec 2006 B2
7154481 Cross et al. Dec 2006 B2
7178405 Sato Feb 2007 B2
7180017 Hein Feb 2007 B2
7186936 Marcus et al. Mar 2007 B2
7205777 Schulz et al. Apr 2007 B2
7215529 Rosenau May 2007 B2
7218498 Caldwell May 2007 B2
7232973 Kaps et al. Jun 2007 B2
7242393 Caldwell Jul 2007 B2
7245131 Kurachi et al. Jul 2007 B2
7248151 Mc Call Jul 2007 B2
7248955 Hein et al. Jul 2007 B2
7254775 Geaghan et al. Aug 2007 B2
7255466 Schmidt et al. Aug 2007 B2
7255622 Stevenson et al. Aug 2007 B2
7269484 Hein Sep 2007 B2
7279647 Philipp Oct 2007 B2
7295168 Saegusa et al. Nov 2007 B2
7295904 Kanevsky et al. Nov 2007 B2
7339579 Richter et al. Mar 2008 B2
7342485 Joehl et al. Mar 2008 B2
7347297 Ide et al. Mar 2008 B2
7355593 Hill et al. Apr 2008 B2
7355595 Bathiche et al. Apr 2008 B2
7358963 Low et al. Apr 2008 B2
7361860 Caldwell Apr 2008 B2
7385308 Yerdon et al. Jun 2008 B2
7445350 Konet et al. Nov 2008 B2
7447575 Goldbeck et al. Nov 2008 B2
7479788 Bolender et al. Jan 2009 B2
7489053 Gentile et al. Feb 2009 B2
7518381 Lamborghini Apr 2009 B2
7521941 Ely et al. Apr 2009 B2
7521942 Reynolds Apr 2009 B2
7531921 Cencur May 2009 B2
7532202 Roberts May 2009 B2
7535131 Safieh, Jr. May 2009 B1
7535459 You et al. May 2009 B2
7567240 Peterson, Jr. et al. Jul 2009 B2
7576611 Glaser Aug 2009 B2
7583092 Reynolds et al. Sep 2009 B2
7643010 Westerman et al. Jan 2010 B2
7653883 Hotelling et al. Jan 2010 B2
7654147 Witte et al. Feb 2010 B2
7688080 Golovchenko et al. Mar 2010 B2
7701440 Harley Apr 2010 B2
7705257 Arione et al. Apr 2010 B2
7708120 Einbinder May 2010 B2
7710245 Pickering May 2010 B2
7714846 Gray May 2010 B1
7719142 Hein et al. May 2010 B2
7720611 Lerner May 2010 B2
7728819 Inokawa Jun 2010 B2
7737953 Mackey Jun 2010 B2
7737956 Hsieh et al. Jun 2010 B2
7777732 Herz et al. Aug 2010 B2
7782307 Westerman et al. Aug 2010 B2
7791594 Dunko Sep 2010 B2
7795882 Kirchner et al. Sep 2010 B2
7800590 Satoh et al. Sep 2010 B2
7812825 Sinclair Oct 2010 B2
7821425 Philipp Oct 2010 B2
7834853 Finney et al. Nov 2010 B2
7839392 Pak et al. Nov 2010 B2
7876310 Westerman et al. Jan 2011 B2
7881940 Dusterhoff Feb 2011 B2
RE42199 Caldwell Mar 2011 E
7898531 Bowden et al. Mar 2011 B2
7920131 Westerman Apr 2011 B2
7924143 Griffin et al. Apr 2011 B2
7957864 Lenneman et al. Jun 2011 B2
7977596 Born et al. Jul 2011 B2
7978181 Westerman Jul 2011 B2
7989752 Yokozawa Aug 2011 B2
8026904 Westerman Sep 2011 B2
8050876 Feen et al. Nov 2011 B2
8054296 Land et al. Nov 2011 B2
8054300 Bernstein Nov 2011 B2
8076949 Best et al. Dec 2011 B1
8077154 Emig et al. Dec 2011 B2
8090497 Ando Jan 2012 B2
8253425 Reynolds et al. Aug 2012 B2
8269724 Sakurai Sep 2012 B2
8279092 Vanhelle et al. Oct 2012 B2
8283800 Salter et al. Oct 2012 B2
8330385 Salter et al. Dec 2012 B2
8339286 Cordeiro Dec 2012 B2
8386027 Chuang et al. Feb 2013 B2
8400423 Chang et al. Mar 2013 B2
8415959 Badaye Apr 2013 B2
8454181 Salter et al. Jun 2013 B2
8456180 Sitarski Jun 2013 B2
8508487 Schwesig et al. Aug 2013 B2
8514185 Hotelling Aug 2013 B2
8517383 Wallace et al. Aug 2013 B2
8537107 Li Sep 2013 B1
8558346 Cheng Oct 2013 B1
8570053 Ryshtun et al. Oct 2013 B1
8575949 Salter et al. Nov 2013 B2
8599144 Peng et al. Dec 2013 B2
8619054 Philipp et al. Dec 2013 B2
8619058 Ito et al. Dec 2013 B2
8624609 Philipp et al. Jan 2014 B2
8659414 Schuk Feb 2014 B1
8688330 Werner et al. Apr 2014 B2
8724038 Ganapathi et al. May 2014 B2
8736577 Land et al. May 2014 B2
8796575 Salter et al. Aug 2014 B2
8816967 Lyon et al. Aug 2014 B2
8908034 Bordonaro Dec 2014 B2
8933708 Buttolo et al. Jan 2015 B2
8981265 Jiao et al. Mar 2015 B2
9088282 Holenarsipur et al. Jul 2015 B2
9110111 Kapila et al. Aug 2015 B1
9143127 Tamura et al. Sep 2015 B2
9152278 Kent Oct 2015 B2
9182837 Day Nov 2015 B2
9274652 Chang et al. Mar 2016 B2
9372538 Pala et al. Jun 2016 B2
20010019228 Gremm Sep 2001 A1
20010028558 Rapp et al. Oct 2001 A1
20020040266 Edgar et al. Apr 2002 A1
20020084721 Walczak Jul 2002 A1
20020093786 Maser Jul 2002 A1
20020149376 Haffner et al. Oct 2002 A1
20020167439 Bloch et al. Nov 2002 A1
20020167704 Kleinhans et al. Nov 2002 A1
20030002273 Anderson, Jr. et al. Jan 2003 A1
20030101781 Budzynski et al. Jun 2003 A1
20030122554 Karray et al. Jul 2003 A1
20030128116 Ieda et al. Jul 2003 A1
20030168271 Massen Sep 2003 A1
20030189211 Dietz Oct 2003 A1
20040056753 Chiang et al. Mar 2004 A1
20040090195 Motsenbocker May 2004 A1
20040145613 Stavely et al. Jul 2004 A1
20040160072 Carter et al. Aug 2004 A1
20040160234 Denen et al. Aug 2004 A1
20040160713 Wei Aug 2004 A1
20040197547 Bristow et al. Oct 2004 A1
20040246239 Knowles et al. Dec 2004 A1
20050012484 Gifford et al. Jan 2005 A1
20050052429 Philipp Mar 2005 A1
20050068045 Inaba et al. Mar 2005 A1
20050068712 Schulz et al. Mar 2005 A1
20050073317 Yamamoto et al. Apr 2005 A1
20050073425 Snell et al. Apr 2005 A1
20050088417 Mulligan Apr 2005 A1
20050092097 Shank et al. May 2005 A1
20050110769 DaCosta et al. May 2005 A1
20050137765 Hein et al. Jun 2005 A1
20050183508 Sato Aug 2005 A1
20050218913 Inaba et al. Oct 2005 A1
20050229703 Geen Oct 2005 A1
20050242923 Pearson et al. Nov 2005 A1
20050275567 DePue et al. Dec 2005 A1
20050283280 Evans, Jr. Dec 2005 A1
20060022682 Nakamura et al. Feb 2006 A1
20060038793 Philipp Feb 2006 A1
20060044800 Reime Mar 2006 A1
20060052907 Hein Mar 2006 A1
20060055553 Fergusson Mar 2006 A1
20060082545 Choquet et al. Apr 2006 A1
20060170241 Yamashita Aug 2006 A1
20060238518 Westerman et al. Oct 2006 A1
20060238521 Westerman et al. Oct 2006 A1
20060244733 Geaghan Nov 2006 A1
20060250142 Abe Nov 2006 A1
20060262549 Schmidt et al. Nov 2006 A1
20060267953 Peterson, Jr. et al. Nov 2006 A1
20060279015 Wang Dec 2006 A1
20060287474 Crawford et al. Dec 2006 A1
20070008726 Brown Jan 2007 A1
20070023265 Ishikawa et al. Feb 2007 A1
20070024596 Takahashi Feb 2007 A1
20070051609 Parkinson Mar 2007 A1
20070068790 Yerdon et al. Mar 2007 A1
20070096565 Breed et al. May 2007 A1
20070103431 Tabatowski-Bush May 2007 A1
20070115759 Sane May 2007 A1
20070165005 Lii et al. Jul 2007 A1
20070206668 Jin Sep 2007 A1
20070226994 Wollach et al. Oct 2007 A1
20070232779 Moody et al. Oct 2007 A1
20070247429 Westerman Oct 2007 A1
20070255468 Strebel et al. Nov 2007 A1
20070257891 Esenther et al. Nov 2007 A1
20070271072 Kovacevich Nov 2007 A1
20070291016 Philipp Dec 2007 A1
20070296709 GuangHai Dec 2007 A1
20080012835 Rimon et al. Jan 2008 A1
20080018604 Paun et al. Jan 2008 A1
20080023715 Choi Jan 2008 A1
20080030465 Konet et al. Feb 2008 A1
20080074398 Wright Mar 2008 A1
20080084398 Ito et al. Apr 2008 A1
20080111714 Kremin May 2008 A1
20080136792 Peng et al. Jun 2008 A1
20080142352 Wright Jun 2008 A1
20080143681 XiaoPing Jun 2008 A1
20080150625 Sundstrom Jun 2008 A1
20080150905 Grivna et al. Jun 2008 A1
20080158146 Westerman Jul 2008 A1
20080196945 Konstas Aug 2008 A1
20080202912 Boddie et al. Aug 2008 A1
20080205714 Benkley Aug 2008 A1
20080211519 Kurumado et al. Sep 2008 A1
20080231290 Zhitomirsky Sep 2008 A1
20080238650 Riihimaki et al. Oct 2008 A1
20080246723 Baumbach Oct 2008 A1
20080257706 Haag Oct 2008 A1
20080272623 Kadzban et al. Nov 2008 A1
20090009482 McDermid Jan 2009 A1
20090046110 Sadler et al. Feb 2009 A1
20090066659 He et al. Mar 2009 A1
20090079699 Sun Mar 2009 A1
20090100930 Coronato Apr 2009 A1
20090108985 Haag et al. Apr 2009 A1
20090115731 Rak May 2009 A1
20090120697 Wilner et al. May 2009 A1
20090135157 Harley May 2009 A1
20090212849 Reime Aug 2009 A1
20090225043 Rosener Sep 2009 A1
20090235588 Patterson et al. Sep 2009 A1
20090236210 Clark et al. Sep 2009 A1
20090251435 Westerman et al. Oct 2009 A1
20090256578 Wuerstlein et al. Oct 2009 A1
20090256677 Hein et al. Oct 2009 A1
20090273563 Pryor Nov 2009 A1
20090273573 Hotelling Nov 2009 A1
20090295409 Irkliy Dec 2009 A1
20090295556 Inoue et al. Dec 2009 A1
20090309616 Klinghult et al. Dec 2009 A1
20100001746 Duchene et al. Jan 2010 A1
20100001974 Su et al. Jan 2010 A1
20100007613 Costa Jan 2010 A1
20100007620 Hsieh et al. Jan 2010 A1
20100013777 Baudisch et al. Jan 2010 A1
20100026654 Suddreth Feb 2010 A1
20100039392 Pratt et al. Feb 2010 A1
20100053087 Dai et al. Mar 2010 A1
20100066391 Hirasaka et al. Mar 2010 A1
20100090712 Vandermeijden Apr 2010 A1
20100090966 Gregorio Apr 2010 A1
20100102830 Curtis et al. Apr 2010 A1
20100103139 Soo et al. Apr 2010 A1
20100110037 Huang et al. May 2010 A1
20100117970 Burstrom et al. May 2010 A1
20100125393 Jarvinen et al. May 2010 A1
20100156814 Weber et al. Jun 2010 A1
20100177057 Flint et al. Jul 2010 A1
20100188356 Vu et al. Jul 2010 A1
20100188364 Lin et al. Jul 2010 A1
20100194692 Orr et al. Aug 2010 A1
20100207907 Tanabe et al. Aug 2010 A1
20100212819 Salter et al. Aug 2010 A1
20100214253 Wu et al. Aug 2010 A1
20100219935 Bingle et al. Sep 2010 A1
20100241431 Weng et al. Sep 2010 A1
20100241983 Walline et al. Sep 2010 A1
20100245286 Parker Sep 2010 A1
20100250071 Pala et al. Sep 2010 A1
20100252048 Young et al. Oct 2010 A1
20100252408 Yamauchi et al. Oct 2010 A1
20100257933 Verjus Oct 2010 A1
20100277431 Klinghult Nov 2010 A1
20100280983 Cho et al. Nov 2010 A1
20100286867 Bergholz et al. Nov 2010 A1
20100289754 Sleeman et al. Nov 2010 A1
20100289759 Fisher et al. Nov 2010 A1
20100296303 Sarioglu et al. Nov 2010 A1
20100302200 Netherton et al. Dec 2010 A1
20100309160 Lin Dec 2010 A1
20100315267 Chung et al. Dec 2010 A1
20100321214 Wang et al. Dec 2010 A1
20100321321 Shenfield et al. Dec 2010 A1
20100321335 Lim et al. Dec 2010 A1
20100328261 Woolley et al. Dec 2010 A1
20100328262 Huang et al. Dec 2010 A1
20110001707 Faubert et al. Jan 2011 A1
20110001722 Newman et al. Jan 2011 A1
20110007021 Bernstein et al. Jan 2011 A1
20110007023 Abrahamsson et al. Jan 2011 A1
20110012378 Ueno et al. Jan 2011 A1
20110012623 Gastel et al. Jan 2011 A1
20110018744 Philipp Jan 2011 A1
20110018817 Kryze et al. Jan 2011 A1
20110022393 Waller et al. Jan 2011 A1
20110031983 David et al. Feb 2011 A1
20110034219 Filson et al. Feb 2011 A1
20110037725 Pryor Feb 2011 A1
20110037735 Land et al. Feb 2011 A1
20110039602 McNamara et al. Feb 2011 A1
20110041409 Newman et al. Feb 2011 A1
20110043481 Bruwer Feb 2011 A1
20110050251 Franke et al. Mar 2011 A1
20110050587 Natanzon et al. Mar 2011 A1
20110050618 Murphy et al. Mar 2011 A1
20110050620 Hristov Mar 2011 A1
20110055753 Horodezky et al. Mar 2011 A1
20110057899 Sleeman et al. Mar 2011 A1
20110062969 Hargreaves et al. Mar 2011 A1
20110063425 Tieman Mar 2011 A1
20110074573 Seshadri Mar 2011 A1
20110074684 Abraham et al. Mar 2011 A1
20110080365 Westerman Apr 2011 A1
20110080366 Bolender Apr 2011 A1
20110080376 Kuo et al. Apr 2011 A1
20110082616 Small et al. Apr 2011 A1
20110083110 Griffin et al. Apr 2011 A1
20110084707 Nakayama et al. Apr 2011 A1
20110095997 Philipp Apr 2011 A1
20110096025 Slobodin et al. Apr 2011 A1
20110115732 Coni et al. May 2011 A1
20110115742 Sobel et al. May 2011 A1
20110134047 Wigdor et al. Jun 2011 A1
20110134054 Woo et al. Jun 2011 A1
20110139934 Giesa et al. Jun 2011 A1
20110141006 Rabu Jun 2011 A1
20110141041 Parkinson et al. Jun 2011 A1
20110141052 Bernstein Jun 2011 A1
20110148803 Xu Jun 2011 A1
20110157037 Shamir et al. Jun 2011 A1
20110157079 Wu et al. Jun 2011 A1
20110157080 Ciesla et al. Jun 2011 A1
20110157089 Rainisto Jun 2011 A1
20110161001 Fink Jun 2011 A1
20110163764 Shank et al. Jul 2011 A1
20110169758 Aono Jul 2011 A1
20110181387 Popelard Jul 2011 A1
20110187492 Newman et al. Aug 2011 A1
20110210755 Ogawa Sep 2011 A1
20110227872 Huska et al. Sep 2011 A1
20110248941 Abdo Oct 2011 A1
20110279276 Newham Nov 2011 A1
20110279409 Salaverry et al. Nov 2011 A1
20110309912 Muller Dec 2011 A1
20120007821 Zaliva Jan 2012 A1
20120037485 Sitarski Feb 2012 A1
20120043973 Kremin Feb 2012 A1
20120043976 Bokma et al. Feb 2012 A1
20120055557 Belz et al. Mar 2012 A1
20120062247 Chang Mar 2012 A1
20120062498 Weaver et al. Mar 2012 A1
20120068956 Jira et al. Mar 2012 A1
20120075246 Chang et al. Mar 2012 A1
20120104790 Plavetich et al. May 2012 A1
20120126941 Coggill May 2012 A1
20120154324 Wright et al. Jun 2012 A1
20120160657 Mizushima Jun 2012 A1
20120161795 Pfau et al. Jun 2012 A1
20120194460 Kuwabara et al. Aug 2012 A1
20120217147 Porter et al. Aug 2012 A1
20120293447 Heng et al. Nov 2012 A1
20120312676 Salter et al. Dec 2012 A1
20120313648 Salter et al. Dec 2012 A1
20120313767 Sitarski Dec 2012 A1
20120319992 Lee Dec 2012 A1
20130002419 Lee Jan 2013 A1
20130024169 Veerasamy Jan 2013 A1
20130033356 Sitarski et al. Feb 2013 A1
20130036529 Salter et al. Feb 2013 A1
20130076121 Salter et al. Mar 2013 A1
20130076375 Hanumanthaiah et al. Mar 2013 A1
20130093500 Bruwer Apr 2013 A1
20130106436 Brunet et al. May 2013 A1
20130113397 Salter et al. May 2013 A1
20130113544 Salter et al. May 2013 A1
20130126325 Curtis et al. May 2013 A1
20130147709 Kim et al. Jun 2013 A1
20130162596 Kono et al. Jun 2013 A1
20130170013 Tonar et al. Jul 2013 A1
20130241578 Satake et al. Sep 2013 A1
20130244731 Oishi Sep 2013 A1
20130270896 Buttolo et al. Oct 2013 A1
20130270899 Buttolo et al. Oct 2013 A1
20130271157 Buttolo et al. Oct 2013 A1
20130271159 Santos et al. Oct 2013 A1
20130271182 Buttolo et al. Oct 2013 A1
20130271202 Buttolo et al. Oct 2013 A1
20130271203 Salter et al. Oct 2013 A1
20130271204 Salter et al. Oct 2013 A1
20130291439 Wuerstlein et al. Nov 2013 A1
20130307610 Salter et al. Nov 2013 A1
20130321065 Salter et al. Dec 2013 A1
20130328616 Buttolo Dec 2013 A1
20140002405 Salter Jan 2014 A1
20140047918 Swanson Feb 2014 A1
20140069015 Salter et al. Mar 2014 A1
20140076063 Lisseman Mar 2014 A1
20140116869 Salter et al. May 2014 A1
20140145733 Buttolo et al. May 2014 A1
20140210257 Buttolo et al. Jul 2014 A1
20140252879 Dassanayake et al. Sep 2014 A1
20140278194 Buttolo et al. Sep 2014 A1
20140278240 Buttolo et al. Sep 2014 A1
20140292396 Bruwer Oct 2014 A1
20140293158 Kurasawa et al. Oct 2014 A1
20140300403 Okamoto et al. Oct 2014 A1
20140306723 Salter et al. Oct 2014 A1
20140306724 Dassanayake et al. Oct 2014 A1
20150042603 Takano et al. Feb 2015 A1
20150077227 Salter et al. Mar 2015 A1
20150177876 Ishii et al. Jun 2015 A1
20150180471 Buttolo et al. Jun 2015 A1
20150229305 Buttolo et al. Aug 2015 A1
20150234493 Parivar et al. Aug 2015 A1
Foreign Referenced Citations (46)
Number Date Country
101853099 Oct 2010 CN
4024052 Jan 1992 DE
1152443 Nov 2001 EP
1327860 Jul 2003 EP
1562293 Aug 2005 EP
2133777 Oct 2011 EP
2071338 Sep 1981 GB
2158737 Nov 1985 GB
2279750 Jan 1995 GB
2409578 Jun 2005 GB
2418741 Apr 2006 GB
61188515 Aug 1986 JP
4065038 Mar 1992 JP
04082416 Mar 1992 JP
07315880 Dec 1995 JP
08138446 May 1996 JP
11065764 Mar 1999 JP
11110131 Apr 1999 JP
11260133 Sep 1999 JP
11316553 Nov 1999 JP
2000047178 Feb 2000 JP
2000075293 Mar 2000 JP
2001013868 Jan 2001 JP
2006007764 Jan 2006 JP
2007027034 Feb 2007 JP
2008033701 Feb 2008 JP
2010139362 Jun 2010 JP
2010165618 Jul 2010 JP
2010218422 Sep 2010 JP
2010239587 Oct 2010 JP
2010287148 Dec 2010 JP
2011014280 Jan 2011 JP
20040110463 Dec 2004 KR
20090127544 Dec 2009 KR
20100114768 Oct 2010 KR
101258376 Apr 2013 KR
201032114 Sep 2010 TW
9636960 Nov 1996 WO
9963394 Dec 1999 WO
2006093398 Sep 2006 WO
2007022027 Feb 2007 WO
2008121760 Oct 2008 WO
2009054592 Apr 2009 WO
2010111362 Sep 2010 WO
2012032318 Mar 2012 WO
2012169106 Dec 2012 WO
Non-Patent Literature Citations (17)
Entry
“Clevios P Formulation Guide,” 12 pages, www.clevios.com, Heraeus Clevios GmbH, no date provided.
“Introduction to Touch Solutions, White Paper, Revision 1.0 A,” Densitron Corporation, 14 pages, Aug. 21, 2007.
Kliffken, Marksu G. et al., “Obstacle Detection for Power Operated Window-Lift and Sunroof Actuation Systems,” Paper No. 2001-01 0466, 1 page, © 2011 SAE International, Published Mar. 5, 2001.
NXP Capacitive Sensors, 1 page, www.nxp.com, copyrighted 2006-2010, NXP Semiconductors.
“Moisture Immunity in QuickSense Studio,” AN552, Rev. 0.1 10/10, 8 pages, Silicon Laboratories, Inc., © 2010.
“Orgacon EL-P3000, Screen printing Ink Series 3000,” 2 pages, AGFA, last updated in Feb. 2006.
“Charge-Transfer Sensing-Based Touch Controls Facilitate Creative Interfaces,” www.ferret.com.au, 2 pages, Jan. 18, 2006.
Kiosk Peripherals, “Touch Screen,” www.bitsbytesintegrators.com/kiosk-peripherals.html, 10 pages, no date provided.
JVC KD-AVX777 Detachable Front-Panel with Integrated 5.4″ Touch-Screen Monitor, 6 pages, www.crutchfield.com, no date provided.
Ergonomic Palm Buttons, Pepperl+Fuchs, www.wolfautomation.com, 6 pages, no date provided.
“Touch Sensors Design Guide” by ATMEL, 10620 D-AT42-04/09, Revised Apr. 2009, 72 pages, Copyrighted 2008-2009 Atmel Corporation.
“Capacitive Touch Switches for Automotive Applications,” by Dave Van Ess of Cypress Semiconductor Corp., published in Automotive DesignLine (http://www.automotivedesignline.com), Feb. 2006, 7 pages.
U.S. Appl. No. 14/717,031, filed May 20, 2015, entitled “Proximity Sensor Assembly Having Interleaved Electrode Configuration,” (38 pages of specification and 21 pages of drawings) and Official Filing Receipt (3 pages).
U.S. Appl. No. 14/689,324, filed Apr. 17, 2015, entitled “Proximity Switch Assembly With Signal Drift Rejection and Method,” (35 pages of specification and 17 pages of drawings) and Official Filing Receipt (3 pages).
U.S. Appl. No. 14/552,809, filed Nov. 25, 2014, entitled “Proximity Switch Based Door Latch Release,” (14 pages of specification and 4 pages of drawings) and Official Filing Receipt (3 pages).
U.S. Appl. No. 14/635,140, filed Mar. 2, 2015, entitled “Proximity Switch Having Wrong Touch Adaptive Learning and Method,” (20 pages of specification and 7 pages of drawings) and Official Filing Receipt (3 pages).
U.S. Appl. No. 14/661,325, filed Mar. 18, 2015, entitled “Proximity Switch Assembly Having Haptic Feedback and Method,” (31 pages of specification and 15 pages of drawings) and Official Filing Receipt (3 pages).
Related Publications (1)
Number Date Country
20160112044 A1 Apr 2016 US