This disclosure relates to a sound-producing device.
Reproduction of object-based audio requires height components in order to accomplish three-dimensional placement of sound objects. Audio devices and systems without overhead speakers are not natively configured to reproduce height components of object-based audio.
Aspects and examples are directed to sound-producing devices that include loudspeakers that are generally co-planar and so are natively configured to provide a surround-sound output with a number (typically 5 or 7) of horizontal output channels. In the present disclosure the loudspeakers are used to generate left and right loudspeaker arrays that provide left and right height components of the audio playback without any speakers located above the listening position.
All examples and features mentioned below can be combined in any technically possible way.
In one aspect, a sound-producing device includes a housing having a front and a top, a first electro-acoustic transducer facing from the front of the housing, a second electro-acoustic transducer facing from the top of the housing, a third electro-acoustic transducer facing from the top of the housing, and at least one processor that is configured to, during audio playback, generate a first array using the first and second electro-acoustic transducers, the first array providing a left height component of the audio playback, and generate a second array using the first and third electro-acoustic transducers, the second array providing a right height component of the audio playback.
Some examples include one of the above and/or below features, or any combination thereof. In some examples the first electro-acoustic transducer is located between the second electro-acoustic transducer and the third electro-acoustic transducer. In an example the front and top of the housing are perpendicular to each other.
Some examples include one of the above and/or below features, or any combination thereof. In some examples all of the electro-acoustic transducers used to generate the first array receive the same audio source signal and all of the electro-acoustic transducers used to generate the second array receive the same audio source signal. In an example the first array and the second array each comprise array filters that are applied to the audio source signal for each of the electro-acoustic transducers of the respective array. In an example the array filters for the second and third electro-acoustic transducers comprise broadband filters.
Some examples include one of the above and/or below features, or any combination thereof. In an example the array filter for the first electro-acoustic transducer rolls off above a predetermined frequency. In some examples the array filter for the first electro-acoustic transducer comprises a bandpass filter. In an example the bandpass filter has a low-frequency threshold of about 600 Hz and a high-frequency cutoff of about 2 kHz. In an example all of the array filters comprise non-minimum phase filters.
Some examples include one of the above and/or below features, or any combination thereof. In some examples the first and second arrays are applied only across an array frequency range. In an example the array frequency range is from about 600 Hz to about 6 kHz. In an example the first electro-acoustic transducer has a bandwidth of from about 600 Hz to about 18 kHz.
Some examples include one of the above and/or below features, or any combination thereof. In some examples the housing has a left end and a right end, the device further comprises a fourth electro-acoustic transducer facing from the left end of the housing and a fifth electro-acoustic transducer facing from the right end of the housing, and the processor is further configured to, during audio playback, generate a third array using the first, second, third, fourth and fifth electro-acoustic transducers, the third array providing a left component of the audio playback, and generate a fourth array using the first, second, third, fourth and fifth electro-acoustic transducers, the fourth array providing a right component of the audio playback. In an example the processor is further configured to, during audio playback, generate a fifth array using the first, second, third, fourth and fifth electro-acoustic transducers, the fifth array providing a center component of the audio playback. In an example the processor is further configured to, during audio playback, generate a sixth array based on a combination of the first and third arrays, the sixth array providing a left surround component of the audio playback, and generate a seventh array based on a combination of the second and fourth arrays, the seventh array providing a right surround component of the audio playback.
In another aspect a computer program product having a non-transitory computer-readable medium including computer program logic encoded thereon that, when executed on a sound-producing device that includes a housing having a front and a top, a first electro-acoustic transducer facing from the front of the housing, a second electro-acoustic transducer facing from the top of the housing, and a third electro-acoustic transducer facing from the top of the housing, causes the sound-producing device to, during audio playback, generate a first array using the first and second electro-acoustic transducers, the first array providing a left height component of the audio playback, and generate a second array using the first and third electro-acoustic transducers, the second array providing a right height component of the audio playback.
Some examples include one of the above and/or below features, or any combination thereof. In an example the first electro-acoustic transducer is located between the second electro-acoustic transducer and the third electro-acoustic transducer. In an example all of the electro-acoustic transducers used to generate the first array receive the same audio source signal and all of the electro-acoustic transducers used to generate the second array receive the same audio source signal, and wherein the first array and the second array each comprise array filters that are applied to the audio source signal for each of the electro-acoustic transducers of the respective array. In an example the array filters for the second and third electro-acoustic transducers comprise broadband filters and the array filter for the first electro-acoustic transducer comprises a bandpass filter.
Various aspects of at least one example are discussed below with reference to the accompanying figures, which are not intended to be drawn to scale. The figures are included to provide illustration and a further understanding of the various aspects and examples, and are incorporated in and constitute a part of this specification, but are not intended as a definition of the limits of the inventions. In the figures, identical or nearly identical components illustrated in various figures may be represented by a like reference character or numeral. For purposes of clarity, not every component may be labeled in every figure. In the figures:
The audio sources for object-based audio such as Dolby Atmos and DTS:X include spatial metadata. To properly render object-based audio the audio device(s) must have the capability to locate sounds in three-dimensional space. Audio devices such as soundbars that are often used for audio for video applications, as well as traditional surround-sound systems, are configured to produce horizontal sound that is generally in the plane that includes the expected listening location, and so are not natively capable of placing sounds in three-dimensional space. Such audio devices and systems are thus not able to faithfully reproduce object-based audio.
In some examples the present audio device is configured as a soundbar, with a housing that is generally in the shape of a rectangular prism with a front that generally faces the expected listening position in front of the television/monitor, a top that faces up (toward the ceiling of the room), and ends that face to the left and right. In some examples the center loudspeaker is in the front face, and there are left and right upward-facing loudspeakers in the top face of the housing close to and to the left and right of the center loudspeaker, respectively.
Soundbars are designed to be located close to a television or video monitor, usually just below it. Soundbars often include three to five loudspeakers that are all more or less co-planar. In order to reproduce object-based audio the soundbar needs to be configured to develop the traditional horizontal surround-sound channels (e.g., center, left, right, left surround, and right surround) and also needs to be configured to develop left and right height components, but without any loudspeakers located above the listener. In an example of the present disclosure the left height component is provided using a loudspeaker array that includes the center loudspeaker and the left upwardly-facing loudspeaker. In an example the right height component is provided using a loudspeaker array that includes the center loudspeaker and the right upwardly-facing loudspeaker.
Examples of the systems, methods and apparatuses discussed herein are not limited in application to the details of construction and the arrangement of components set forth in the following description or illustrated in the accompanying drawings. The systems, methods and apparatuses are capable of implementation in other examples and of being practiced or of being carried out in various ways. Examples of specific implementations are provided herein for illustrative purposes only and are not intended to be limiting. In particular, functions, components, elements, and features discussed in connection with any one or more examples are not intended to be excluded from a similar role in any other examples.
Examples disclosed herein may be combined with other examples in any manner consistent with at least one of the principles disclosed herein, and references to “an example,” “some examples,” “an alternate example,” “various examples,” “one example” or the like are not necessarily mutually exclusive and are intended to indicate that a particular feature, structure, or characteristic described may be included in at least one example. The appearances of such terms herein are not necessarily all referring to the same example.
Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. Any references to examples, components, elements, acts, or functions of the devices, computer program products, systems and methods herein referred to in the singular may also embrace embodiments including a plurality, and any references in plural to any example, component, element, act, or function herein may also embrace examples including only a singularity. Accordingly, references in the singular or plural form are not intended to limit the presently disclosed systems or methods, their components, acts, or elements. The use herein of “including,” “comprising,” “having,” “containing,” “involving,” and variations thereof is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. References to “or” may be construed as inclusive so that any terms described using “or” may indicate any of a single, more than one, and all of the described terms.
Active loudspeaker arrays incorporate more than a single loudspeaker or element, where each speaker is driven by its own digital signal processor (DSP) and amplifier channel. In general, active loudspeaker arrays have the following properties: two or more loudspeakers, all speakers receive the same source channel signal, and there is a unique transfer function, array filter (magnitude and phase per frequency) for each speaker driven by each source channel input. If there are multiple source channels, the additional source channels along with their associated array filters are summed together just prior to the individual loudspeakers.
In an example a minimum speaker set solution includes five loudspeakers arranged in a housing. In some examples the housing has a general rectangular prism shape wherein the front face and the top face are generally perpendicular. By generally perpendicular we mean that the front face is planar or close to planar and the top face is planar or close to planar (e.g., the faces might be rounded but generally will approximate a plane), and the front and top planes are at about 90 degrees to each other, generally within about plus or minus 15 degrees, and generally at most within about plus or minus 45 degrees to each other. In an example the center loudspeaker in the front face is a “twiddler” that has a resonance frequency that is optimized to cover the mid and treble frequency range (which in some examples is from about 600 Hz to about 18 kHz). In an example this center speaker is the primary center channel speaker. In an example the center speaker directly faces toward the expected listening position. In an example the left and right upwardly-facing or “up” speakers are full range (bass producing) loudspeakers that face directly up (for example with their primary radiation axes at about 90 degrees to the primary radiation axis of the center speaker) and are located close (e.g., in some examples as close as possible given hardware and housing constraints) to the center speaker. In some examples the left and right up speakers are located in the housing such that their main radiation axes are transverse to the main radiation axis of the center speaker, and pointed up. The angle between the main radiation axes of the left and right up speakers and the center speaker in examples can range from about 30 degrees to about 150 degrees. Also, in some examples there is a left speaker that is in or close to the left end of the housing and a right speaker that is in or close to the right end of the housing. In some examples both the left and right speakers are full-range speakers and face generally directly left and right, perhaps within about plus or minus 15-45 degrees of perpendicular to primary radiation axis of the center speaker and to the ends of the housing when the ends are generally planar and generally perpendicular to the front face of the housing. Note that the housing need not have faces. For example the housing can include a support structure that holds the loudspeakers and other hardware, with the loudspeakers located as described. The structure can be fully or partially wrapped or covered in a more decorative outer face that, at least in the parts that overlie the loudspeakers, is configured to pass sound into the external environment.
With this loudspeaker arrangement, the device and system is configured to accomplish up to five unique active acoustic arrays: center, left, right, left height, and right height. For surround source channels a combination of the left and left height arrays is used to create the left surround channel and similarly a combination of the right and right height arrays is used to create the right surround channel. The active arrays cover much of the midrange frequencies, while the directionality of the individual speakers take over in the high frequency range. In an example the bass frequency range is not arrayed. Instead, all four full range speakers (i.e., all except the center speaker) are driven in phase for maximum efficiency.
Generally, for height channels it is desirable to attenuate energy projected forward towards the listening space. An arrangement such as described above, with the center speaker in the front of the housing and the left and right up speakers in the top of the housing close to but left and right of the center speaker, is beneficial for the left and right height arrays and also has minimal impact on the center channel array.
In examples herein a sound-producing device includes a housing having a front and a top. There is a first electro-acoustic transducer facing from the front of the housing, a second electro-acoustic transducer facing from the top of the housing, and a third electro-acoustic transducer facing from the top of the housing. The device includes processing capability that during audio playback is configured to generate a first array using the first and second electro-acoustic transducers, the first array providing a left height component of the audio playback, and generate a second array using the first and third electro-acoustic transducers, the second array providing a right height component of the audio playback. In an example the first and second arrays are applied only across an array frequency range. The array frequency range is in some examples from about 600 Hz to about 6 kHz, or more generally from a low frequency that is not arrayed (which can in some examples include the lowest frequencies) to a high frequency where the directionality of the individual speakers takes over, which is dependent in part on the particular speaker design and can in some examples be plus or minus about 3 kHz from this about 6 kHz target. Examples herein also include computer program products having a non-transitory computer-readable medium including computer program logic encoded thereon that, when executed, accomplish the functions described herein.
In examples, the first electro-acoustic transducer is located between the second electro-acoustic transducer and the third electro-acoustic transducer. In a specific example the front and top of the housing are perpendicular to each other. In an example the first electro-acoustic transducer is a twiddler with a bandwidth of from about 600 Hz to about 18 kHz and the second and third transducers are full-range transducers.
In some examples all of the electro-acoustic transducers used to generate the first array receive the same audio source signal and all of the electro-acoustic transducers used to generate the second array receive the same audio source signal. The first array and the second array each comprise array filters that are applied to the audio source signal for each of the electro-acoustic transducers of the respective array. In examples, the array filters for the second and third electro-acoustic transducers comprise broadband filters. More specifically, in some examples the array filter for the first electro-acoustic transducer rolls off above a predetermined frequency. In an example the array filter for the first electro-acoustic transducer comprises a bandpass filter. In a specific non-limiting embodiment the bandpass filter has a low-frequency threshold of about 600 Hz and a high-frequency cutoff of about 2 kHz. In some examples the low frequency threshold ranges from about 200 Hz to about 600 Hz. In some examples the high frequency cutoff ranges from about 2 kHz to about 4 kHz. All of the array filters are typically non-minimum phase filters.
In examples of the present disclosure the housing also has a left end and a right end, and the device includes a fourth electro-acoustic transducer facing from the left end of the housing and a fifth electro-acoustic transducer facing from the right end of the housing. In this example the processor during audio playback generates a third array and a fourth array, both using the first, second, third, fourth and fifth electro-acoustic transducers. The third array provides a left component of the audio playback and the fourth array provides a right component of the audio playback.
In an example the processor also generates a fifth array that also uses the first, second, third, fourth and fifth electro-acoustic transducers. The fifth array provides a center component of the audio playback. For examples with left and right surround components the processor generates sixth and seventh arrays, where the sixth array provides the left surround component and the seventh array provides the right surround component. In some examples the sixth array is based on a combination of the first and third arrays. In some examples the seventh array is based on a combination of the second and fourth arrays.
In an example described herein device 10 includes five loudspeakers, all of which are configured to be arrayed under control of a processor or the like (not shown in
As described above, in order to reproduce object-based audio a soundbar needs to be configured to develop the traditional horizontal surround-sound channels (e.g., center, left, right, left surround, and right surround) and also needs to be configured to develop left and right height components, but without any loudspeakers located above the listener. In an example of the present disclosure the left height component is provided using a loudspeaker array that includes the center loudspeaker 30 and the left upwardly-facing loudspeaker 32. In an example the right height component is provided using a loudspeaker array that includes the center loudspeaker 30 and the right upwardly-facing loudspeaker 34. Also, there is an array filter for each audio channel source and for each transducer of the array. Thus in the example illustrated in
In
Elements of figures are shown and described as discrete elements in a block diagram. These may be implemented as one or more of analog circuitry or digital circuitry. Alternatively, or additionally, they may be implemented with one or more microprocessors executing software instructions. The software instructions can include digital signal processing instructions. Operations may be performed by analog circuitry or by a microprocessor executing software that performs the equivalent of the analog operation. Signal lines may be implemented as discrete analog or digital signal lines, as a discrete digital signal line with appropriate signal processing that is able to process separate signals, and/or as elements of a wireless communication system.
When processes are represented or implied in the block diagram, the steps may be performed by one element or a plurality of elements. The steps may be performed together or at different times. The elements that perform the activities may be physically the same or proximate one another, or may be physically separate. One element may perform the actions of more than one block. Audio signals may be encoded or not, and may be transmitted in either digital or analog form. Conventional audio signal processing equipment and operations are in some cases omitted from the drawing.
Examples of the systems and methods described herein comprise computer components and computer-implemented steps that will be apparent to those skilled in the art. For example, it should be understood by one of skill in the art that the computer-implemented steps may be stored as computer-executable instructions on a computer-readable medium such as, for example, hard disks, optical disks, Flash ROMS, nonvolatile ROM, and RAM. Furthermore, it should be understood by one of skill in the art that the computer-executable instructions may be executed on a variety of processors such as, for example, microprocessors, digital signal processors, gate arrays, etc. For ease of exposition, not every step or element of the systems and methods described above is described herein as part of a computer system, but those skilled in the art will recognize that each step or element may have a corresponding computer system or software component. Such computer system and/or software components are therefore enabled by describing their corresponding steps or elements (that is, their functionality), and are within the scope of the disclosure.
Functions, methods, and/or components of the methods and systems disclosed herein according to various aspects and examples may be implemented or carried out in a digital signal processor (DSP) and/or other circuitry, analog or digital, suitable for performing signal processing and other functions in accord with the aspects and examples disclosed herein. Additionally or alternatively, a microprocessor, a logic controller, logic circuits, field programmable gate array(s) (FPGA), application-specific integrated circuits) (ASIC), general computing processor(s), micro-controller(s), and the like, or any combination of these, may be suitable, and may include analog or digital circuit components and/or other components with respect to any particular implementation.
Functions and components disclosed herein may operate in the digital domain, the analog domain, or a combination of the two, and certain examples include analog-to-digital converters) (ADC) and/or digital-to-analog converter(s) (DAC) where appropriate, despite the lack of illustration of ADC's or DAC's in the various figures. Further, functions and components disclosed herein may operate in a time domain, a frequency domain, or a combination of the two, and certain examples include various forms of Fourier or similar analysis, synthesis, and/or transforms to accommodate processing in the various domains.
Any suitable hardware and/or software, including firmware and the like, may be configured to carry out or implement components of the aspects and examples disclosed herein, and various implementations of aspects and examples may include components and/or functionality in addition to those disclosed. Various implementations may include stored instructions for a digital signal processor and/or other circuitry to enable the circuitry, at least in part, to perform the functions described herein.
Having described above several aspects of at least one example, it is to be appreciated various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be part of this disclosure and are intended to be within the scope of the invention. Accordingly, the foregoing description and drawings are by way of example only, and the scope of the invention should be determined from proper construction of the appended claims, and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
3624298 | Davis | Nov 1971 | A |
20040105559 | Aylward | Jun 2004 | A1 |
20060147056 | Klayman | Jul 2006 | A1 |
20140023363 | Apte | Jan 2014 | A1 |
20150223002 | Mehta | Aug 2015 | A1 |
20160182996 | Takumai | Jun 2016 | A1 |
20180132034 | Burette | May 2018 | A1 |
20190098412 | Chen | Mar 2019 | A1 |
20210200264 | Kim | Jul 2021 | A1 |
20210204085 | Claar | Jul 2021 | A1 |
20220159397 | Starobin | May 2022 | A1 |
Number | Date | Country | |
---|---|---|---|
20230370771 A1 | Nov 2023 | US |