Directly injected internal combustion engine system

Information

  • Patent Grant
  • 8495983
  • Patent Number
    8,495,983
  • Date Filed
    Tuesday, August 7, 2012
    12 years ago
  • Date Issued
    Tuesday, July 30, 2013
    11 years ago
Abstract
An engine system for a vehicle, comprising of a combustion chamber, a first in-cylinder direct injector configured to deliver a first substance including at least gasoline directly to the combustion chamber at a first pressure; and a second in-cylinder direct injector configured to deliver a second substance including at least an alcohol directly to the combustion chamber at a second pressure less than the first pressure.
Description
BACKGROUND AND SUMMARY

Engines may use various forms of fuel delivery to provide a desired amount of fuel for combustion in each cylinder. One type of fuel delivery uses a port injector for each cylinder to deliver fuel to respective cylinders. Still another type of fuel delivery uses a direct injector for each cylinder. Engines have also been described using more than one injector to provide fuel to a single cylinder in an attempt to improve engine performance. Specifically, in US 2005/0155578 an engine is described using a port fuel injector and a direct injector in each cylinder of the engine.


Another approach utilizing multiple injection locations for different fuel types is described in the papers titled “Calculations of Knock Suppression in Highly Turbocharged Gasoline/Ethanol Engines Using Direct Ethanol Injection” and “Direct Injection Ethanol Boosted Gasoline Engine: Biofuel Leveraging for Cost Effective Reduction of Oil Dependence and CO2 Emissions” by Heywood et al. Specifically, the Heywood et al. papers describes directly injecting ethanol to improve charge cooling effects, while relying on port injected gasoline for providing the majority of combusted fuel over a drive cycle.


The inventors herein have recognized several issues with such systems. For example, it may be desirable to utilize two direct in-cylinder injectors for each cylinder in order to expand the operating range of certain combustion modes by enabling the delivery of different substances directly to the combustion chamber. However, in-cylinder direct injection systems can add significant cost and complexity to the engine system.


As one example, the above issues may be addressed by an engine system for a vehicle, comprising a combustion chamber; a first in-cylinder direct injector configured to deliver a first substance including at least gasoline directly to the combustion chamber at a first pressure; and a second in-cylinder direct injector configured to deliver a second substance including at least an alcohol directly to the combustion chamber at a second pressure less than the first pressure.


As another example, the above issues may be addressed by a method of operating an internal combustion engine including at least one combustion chamber, comprising: during each of a plurality of cycles of the combustion chamber: injecting a first substance including at least gasoline directly into the combustion chamber at a first pressure via a first in-cylinder direct injector; injecting a second substance including at least an alcohol directly into the combustion chamber at a second pressure less than the first pressure via a second in-cylinder direct injector; and initiating combustion of a mixture of air and the first and the second injected substances within the combustion chamber.


In this way, it is possible to provide different substances directly to the combustion chamber while also reducing the cost and complexity of one of the injection systems by instead utilizing a lower pressure injector for the delivery of a knock suppressing substance such as an alcohol. Further, engine knock may be reduced during spark ignition operation and auto-ignition timing may be controlled during the controlled auto-ignition operation by adjusting the amounts and/or timings of the delivery of two or more different substances via separate higher and lower pressure direct injections systems as will be described in greater detail herein.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a depiction of an engine receiving a plurality of substances.



FIG. 2 shows a schematic depiction of an example engine including two in-cylinder direct injectors.



FIG. 3 shows a schematic depiction of an example engine including a boosting device such as a turbocharger.



FIG. 4 shows a schematic depiction of the two in-cylinder direct injectors.



FIG. 5A shows a first schematic depiction of example fuel systems connected to the injectors.



FIG. 5B shows a second schematic depiction of example fuel systems connected to the injectors.



FIG. 6 shows a graphical depiction of how the delivery of an absolute and/or relative amount of a knock suppressing substance such as can be varied with knock tendency.



FIG. 7 shows a graphical depiction of an example mode map for spark ignition and controlled auto-ignition combustion modes.



FIG. 8 is a flow chart depicting a control strategy for performing an injection strategy for the engine based on the selected combustion mode.



FIGS. 9A-9G show timing diagrams depicting example injection strategies that may be used with the example engine systems and control methods described herein.





DETAILED DESCRIPTION


FIG. 1 shows an engine 10 receiving delivery of a plurality of substances (1, 2, . . . , N) via arrow 8. The various substances may include multiple different fuels, fuel blends or other suitable substances. In one example, multiple different substances having different gasoline and/or alcohol and/or water concentrations may be delivered to the engine, and may be delivered in a mixed state, or separately delivered. Further, the relative amounts and/or ratios of the different substances provided may be controlled by a control system 6 in response to operating conditions, which may be provided and/or inferred via sensor(s) 4. Alternatively, or under some conditions, the relative amounts and/or ratios may be determined by the fuel blend added to the vehicle by the customer, and thus may not significantly vary during operation.


In one example, the different substances may represent different fuels having different levels of alcohol, including one substance being gasoline and the other being ethanol. In another example, engine 10 may use gasoline as a first substance and an alcohol containing fuel such as ethanol, methanol, a mixture of gasoline and ethanol (e.g., E85 which is approximately 85% ethanol and 15% gasoline), a mixture of gasoline and methanol (e.g., M85 which is approximately 85% methanol and 15% gasoline), a mixture of an alcohol and water, a mixture of an alcohol, water, and gasoline, etc as a second substance. In still another example, the first substance may be a gasoline alcohol blend with a lower alcohol concentration than a gasoline alcohol blend of a second substance.


In one embodiment, when using both gasoline and a fuel having alcohol (e.g., ethanol), it may be possible to adjust operating conditions to take advantage of the increased charge cooling of alcohol fuels (e.g., via direct injection) to provide improved engine performance, because of the different properties of alcohol. This phenomenon, combined with increased compression ratio, and/or boosting and/or engine downsizing, can then be used to obtain fuel economy benefits (by reducing the knock limitations on the engine), while also allowing engine operation with improved engine output torque, for example.


Referring now to FIG. 2, a single cylinder of a multi-cylinder engine, as well as the intake and exhaust paths connected to that cylinder are shown. Engine 10 is capable of using a plurality of different fuel blends as described above, for example, with reference to FIG. 1. As one example, engine 10 may utilize a mixture of gasoline and an alcohol containing fuel such as ethanol, methanol, a mixture of gasoline and ethanol (e.g., E85 which is approximately 85% ethanol and 15% gasoline), a mixture of gasoline and methanol (e.g., M85 which is approximately 85% methanol and 15% gas), etc.


In the embodiment shown in FIG. 2, engine 10 includes a first in-cylinder direct injector 66a and a second in-cylinder direct injector 66b. The first injector 66a may be operated to inject a first substance into the combustion chamber and the second injector may be operated to inject a second substance into the combustion chamber. In some examples, the first and second substances may include the same or similar composition and may be provided to the injectors from a common storage tank. In other examples, the second substance may have a different composition than the first substance, and maybe provided to the injectors from different or segregated storage tanks, or may be separated from a fuel mixture by a fuel separator.


As one example, the first substance may include a fuel and the second substance may include a knock suppressing substance such as ethanol, methanol, or water. Injectors 66a and 66b may have different configurations for injecting different substances as described in greater detail with reference to FIG. 4.


Internal combustion engine 10, comprising a plurality of combustion chambers, is controlled by electronic engine controller 12. Electronic engine controller 12 may be a component of control system 6 described with reference to FIG. 1. Combustion chamber 30 of engine 10 is shown including combustion chamber walls 32 with piston 36 positioned therein and connected to crankshaft 40. A starter motor (not shown) may be coupled to crankshaft 40 via a flywheel (not shown), or alternatively direct engine starting may be used. In one particular example, piston 36 may include a recess or bowl (not shown) to help in forming stratified charges of air and fuel, if desired. However, in an alternative embodiment, a flat piston may be used.


Combustion chamber, or cylinder, 30 is shown communicating with intake manifold 44 and exhaust manifold 48 via respective intake valves 52a and 52b (not shown), and exhaust valves 54a and 54b (not shown). Thus, while four valves per cylinder may be used, in another example, a single intake and single exhaust valve per cylinder may also be used. In still another example, two intake valves and one exhaust valve per cylinder may be used.


Combustion chamber 30 can have a compression ratio, which is the ratio of volumes when piston 36 is at bottom center to top center. Conventionally, the compression ratio is in the range of 9:1 to 10:1 However, when higher octane fuels, fuels with a higher latent enthalpy of vaporization, and/or direct injection is used, the compression ratio can be raised due to the mitigating effects that octane, latent enthalpy of vaporization, and direct injection have on knock.


Fuel injectors 66a and 66b are shown directly coupled to combustion chamber 30 for delivering injected fuel or other substance directly therein in proportion to the pulse width of signal dfpw received from controller 12 via electronic drivers 68 and 69, respectively. While FIG. 2 shows injectors 66a and 66b as side mounted injectors, one or both of the injectors may be instead located overhead of the piston, such as near the position of spark plug 92. Such a position may improve mixing and combustion due to the lower volatility of some alcohol based fuels. Alternatively, one or both of the injectors may be located overhead and near the intake valve to improve mixing. Additional injectors may also be used, such as port configured injectors.


A first substance may be delivered to direct injector 66a by a higher pressure fuel system including a fuel tank, one or more of fuel pumps, and a fuel rail. The first substance may include gasoline only, mixtures of gasoline and alcohol, or mixtures of gasoline and water, among other combinations. A second substance may be delivered to direct injector 66b by a lower pressure fuel system including a fuel tank, and a fuel pump at a lower pressure than the higher pressure fuel system, in which case the timing of the direct fuel injection provided by injector 66b may be more limited during the compression stroke than with the higher pressure fuel system coupled to injector 66a. The second substance can include alcohol only (e.g. ethanol, methanol, etc.), mixtures of alcohol and gasoline, or mixtures of alcohol, gasoline, and water. As one non-limiting example, the second substance provided by the lower pressure fuel system may include a greater concentration of alcohol than the first substance provided by the higher pressure fuel system. As another non-limiting example, the first and the second substance may include the same concentration or ratios of gasoline and alcohol. While not shown, the fuel lines supplying the various substances to injectors 66a and 66b may include a pressure transducer providing a signal to controller 12 for managing pump operation.


Intake manifold 44 is shown communicating with throttle body 58 via throttle plate 62. In this particular example, throttle plate 62 is coupled to electric motor 94 so that the position of elliptical throttle plate 62 is controlled by controller 12 via electric motor 94. This configuration may be referred to as electronic throttle control (ETC), which can also be utilized during idle speed control. In an alternative embodiment (not shown), a bypass air passageway is arranged in parallel with throttle plate 62 to control inducted airflow during idle speed control via an idle control by-pass valve positioned within the air passageway. In the latter alternative, throttle plate 62 is actuated by the operator of the vehicle, the cable, or other device, between the accelerator pedal and the throttle valve not shown.


Exhaust gas sensor 76 is shown coupled to exhaust manifold 48 upstream of catalytic converter 70 (where sensor 76 can correspond to various different sensors). For example, sensor 76 may be any of many known sensors for providing an indication of exhaust gas air/fuel ratio such as a linear oxygen sensor, a UEGO, a two-state oxygen sensor, an EGO, a HEGO, or an HC or CO sensor. In this particular example, sensor 76 is a two-state oxygen sensor that provides signal EGO to controller 12 which converts signal EGO into two-state signal EGOS. A high voltage state of signal EGOS indicates exhaust gases are rich of stoichiometry and a low voltage state of signal EGOS indicates exhaust gases are lean of stoichiometry. Signal EGOS may be used to advantage during feedback air/fuel control to maintain average air/fuel at stoichiometry during a stoichiometric, homogeneous mode of operation.


Distributorless ignition system 88 provides ignition spark to combustion chamber 30 via spark plug 92 in response to spark advance signal SA from controller 12.


Controller 12 may cause combustion chamber 30 to operate in a variety of combustion modes, including a homogeneous air/fuel mode and/or a stratified air/fuel mode by controlling injection timing, injection amounts, spray patterns, etc. Further, combined stratified and homogenous mixtures may be formed in the chamber. In one example, stratified layers may be formed by operating injector 66 during a compression stroke. In another example, a homogenous mixture may be formed by operating injector 66 during an intake stroke (which may be open valve injection). In yet another example, a homogenous mixture may be formed by operating injector 66 before an intake stroke (which may be closed valve injection). In still other examples, multiple injections from injector 66 may be used during one or more strokes (e.g., intake, compression, exhaust, etc.). Even further examples may be where different injection timings and mixture formations are used under different conditions, as described below.


Controller 12 can adjust the amount of fuel or other substance delivered by fuel injectors 66a and 66b so that the homogeneous, stratified, or combined homogenous/stratified air/fuel mixture in chamber 30 can be selected to be at stoichiometry, a value rich of stoichiometry, or a value lean of stoichiometry. As one non-limiting example, controller 12 can control fuel injectors 66a and 66b so that a homogeneous charge is formed in the combustion chamber for facilitating homogeneous charge compression ignition (HCCI) via controlled auto-ignition (CAI) as will be described herein.


Emission control device 72 is shown positioned downstream of catalytic converter 70. Emission control device 72 may be a three-way catalyst, particulate filter, NOx trap, or combinations thereof.


Controller 12 is shown as a microcomputer, including microprocessor unit 102, input/output ports 104, an electronic storage medium for executable programs and calibration values shown as read only memory chip 106 in this particular example, random access memory 108, keep alive memory 110, and a conventional data bus. Controller 12 is shown receiving various signals from sensors coupled to engine 10, in addition to those signals previously discussed, including measurement of inducted mass air flow (MAF) from mass air flow sensor 100 coupled to throttle body 58; engine coolant temperature (ECT) from temperature sensor 112 coupled to cooling sleeve 114; a profile ignition pickup signal (PIP) from Hall effect sensor 118 coupled to crankshaft 40; and throttle position TP from throttle position sensor 120; absolute manifold pressure signal MAP from sensor 122; an indication of knock from knock sensor 182; and an indication of absolute or relative ambient humidity from sensor 180. Engine speed signal RPM is generated by controller 12 from signal PIP in a conventional manner and manifold pressure signal MAP from a manifold pressure sensor provides an indication of vacuum, or pressure, in the intake manifold. During stoichiometric operation, this sensor can give an indication of engine load. Further, this sensor, along with engine speed, can provide an estimate of charge (including air) inducted into the cylinder. In one example, sensor 118, which is also used as an engine speed sensor, produces a predetermined number of equally spaced pulses every revolution of the crankshaft.


Continuing with FIG. 2, a variable camshaft timing system is shown. Specifically, camshaft 130 of engine 10 is shown communicating with rocker arms 132 and 134 for actuating intake valves 52a, 52b and exhaust valves 54a, 54b. Camshaft 130 is directly coupled to housing 136. Housing 136 forms a toothed wheel having a plurality of teeth 138. Housing 136 is hydraulically coupled to crankshaft 40 via a timing chain or belt (not shown). Therefore, housing 136 and camshaft 130 rotate at a speed substantially equivalent to the crankshaft. However, by manipulation of the hydraulic coupling as will be described later herein, the relative position of camshaft 130 to crankshaft 40 can be varied by hydraulic pressures in advance chamber 142 and retard chamber 144. By allowing high pressure hydraulic fluid to enter advance chamber 142, the relative relationship between camshaft 130 and crankshaft 40 is advanced. Thus, intake valves 52a, 52b and exhaust valves 54a, 54b open and close at a time earlier than normal relative to crankshaft 40. Similarly, by allowing high pressure hydraulic fluid to enter retard chamber 144, the relative relationship between camshaft 130 and crankshaft 40 is retarded. Thus, intake valves 52a, 52b, and exhaust valves 54a, 54b open and close at a time later than normal relative to crankshaft 40.


While this example shows a system in which the intake and exhaust valve timing are controlled concurrently, variable intake cam timing, variable exhaust cam timing, dual independent variable cam timing, or fixed cam timing may be used. Further, variable valve lift may also be used. Further, camshaft profile switching may be used to provide a plurality (usually two) cam profiles which can be selected based on operating conditions. Further still, the valvetrain may be roller finger follower, direct acting mechanical bucket, electromechanical, electrohydraulic, or other alternatives to rocker arms.


Continuing with the variable cam timing system, teeth 138, being coupled to housing 136 and camshaft 130, allow for measurement of relative cam position via cam timing sensor 150 providing signal VCT to controller 12. Teeth 1, 2, 3, and 4 are preferably used for measurement of cam timing and are equally spaced (for example, in a V-8 dual bank engine, spaced 90 degrees apart from one another) while tooth 5 is preferably used for cylinder identification, as described later herein. In addition, controller 12 sends control signals (LACT, RACT) to conventional solenoid valves (not shown) to control the flow of hydraulic fluid either into advance chamber 142, retard chamber 144, or neither.


Relative cam timing can be measured in a variety of ways. In general terms, the time, or rotation angle, between the rising edge of the PIP signal and receiving a signal from one of the plurality of teeth 138 on housing 136 gives a measure of the relative cam timing. For the particular example of a V-8 engine, with two cylinder banks and a five-toothed wheel, a measure of cam timing for a particular bank is received four times per revolution, with the extra signal used for cylinder identification.


Sensor 160 may also provide an indication of oxygen concentration in the exhaust gas via signal 162, which provides controller 12 a voltage indicative of the O2 concentration. For example, sensor 160 can be a HEGO, UEGO, EGO, or other type of exhaust gas sensor. Also note that, as described above with regard to sensor 76, sensor 160 can correspond to various different sensors.


As described above, FIG. 2 merely shows one cylinder of a multi-cylinder engine, and it is understood that each cylinder has its own set of intake/exhaust valves, pair of in-cylinder direct fuel injectors, spark plug, etc.


While not shown in FIG. 2, engine 10 may be coupled to various boosting devices, such as a supercharger or turbocharger, as shown in FIG. 3. On a boosted engine, desired torque may also be maintained by adjusting wastegate and/or compressor bypass valves.


Referring now specifically to FIG. 3, an example engine 10 is shown with four in-line cylinders. In one embodiment, engine 10 may have a turbocharger 319, which has a turbine 319a coupled to the exhaust manifold 48 and a compressor 319b coupled to the intake manifold 44. While FIG. 3 does not show an intercooler, one may optionally be used. Turbine 319a is typically coupled to compressor 319b via a drive shaft 315. Various types of turbochargers and arrangements may be used. For example, a variable geometry turbocharger (VGT) may be used where the geometry of the turbine and/or compressor may be varied during engine operation by controller 12. Alternately, or in addition, a variable nozzle turbocharger (VNT) may be used when a variable area nozzle is placed upstream and/or downstream of the turbine in the exhaust line (and/or upstream or downstream of the compressor in the intake line) for varying the effective expansion or compression of gasses through the turbocharger. Still other approaches may be used for varying expansion in the exhaust, such as a waste gate valve. FIG. 3 shows an example bypass valve 320 around turbine 319a and an example bypass valve 322 around compressor 319b, where each valve may be controlled via controller 12. As noted above, the valves may be located within the turbine or compressor, or may be a variable nozzle.


Also, a twin turbocharger arrangement, and/or a sequential turbocharger arrangement, may be used if desired. In the case of multiple adjustable turbocharger and/or stages, it may be desirable to vary a relative amount of expansion though the turbocharger, depending on operating conditions (e.g. manifold pressure, airflow, engine speed, etc.). Further, a mechanically or electrically driven supercharger may be used, if desired.


Referring now to FIG. 4, two fuel injectors are shown (410 and 412). As one-example, injectors 410 and 412 may have with at least one different characteristic. Injector 410 may be used as direct injector 66a, while injector 412 may be used as direct injector 66b. The differing characteristic(s) between the injectors may be one or more of the following: injector size, injector dynamic range, materials, minimum pulse width, injector slope (flow to pulse width), orifice size, spray pattern, spray pattern area, spray targeting, or others as discussed herein. For example, injector 410 may be used as direct injector 66a to provide first substance to the combustion chamber at a higher pressure than injector 412, which may be used as direct injector 66b to provide a second substance different than the first substance to the combustion chamber at a lower pressure.


In one example, both injectors may be sized to meet peak torque requirements (for example a maximum airflow or aircharge). However, in an example where one injector provides gasoline and the other injector provides an alcohol blend (e.g., ethanol, E85, methanol, etc.), the power densities of the fuels may be different. In such a case, the injector for the alcohol based fuel may be sized to provide a different maximum fuel flow (e.g., approximately 37% higher to account for pure ethanol).


Referring now specifically to FIG. 4, injector 410, which is a direct cylinder injector, is shown receiving a command signal 20 from controller 12. Pressurized fuel is supplied to inlet 22, the flow of which is governed by an electromagnetic actuator having coil 24, coupled to needle 26 cooperating with pintle 28. The shape of pintle 28 may affect the spray geometry as well as the flow rate of the injector. Further, the size and shape of the needle may also affect flow and spray patterns, as well as response time.



FIG. 4 also shows injector 412, with similarly labeled components, including a command signal 430, inlet 432, coil 434, needle 436, and pintle 438. As noted above, the pintles 428 and 438 may different in size, shape, material, or combinations thereof. Further, inlets 422/432, coils 424/434, and/or needles 426/436 may have different geometry, shapes, sizes, materials, weights, surface finishes, etc.


In this way, the respective injectors may be designed to provide different functionality and/or injection type (e.g., fuel type) compatibility so that improved engine operation and control may be achieved. As noted herein, an injection type may refer to different injection locations, different substances being injected (e.g., water vs. fuel), different fuel types being injected, different fuel blends being injected, different alcohol contents being injected (e.g., 0% vs. 85%), etc. Further note that different injection types may also refer to different substances being injected via a common injector, where a type 1 injection may be a gasoline amount in the injection and type 2 injection may be an alcohol amount in the injection.


Referring now to FIGS. 5A and 5B, various fuel systems are described. Specifically, FIG. 5A shows an example of two independent fuel systems that may be used with injectors 66a and 66b, while FIG. 5B shows an example of two fuel systems that share a common fuel pump.


Referring now specifically to FIG. 5A, fully independent fuel systems are shown for delivering a first and a second substance to the engine via separate in-cylinder injectors. Specifically, a first tank 510 for holding a first substance is shown fluidly coupled with injector 66a via a lower pressure pump 512, a higher pressure pump 515, and fuel rail 516. Pump 512 may be configured as a lift pump and may be arranged within the tank 510. As one non-limiting example, the lower pressure pump 512 and higher pressure pump 515 in combination can deliver the first substance to injector 66a from tank 510 at a pressure within the range of 35 bar and 150 bar. In other examples, the effective pressure increase provided to injector 66a from tank 510 in the first example by pumps 512 and 515 may be instead provided by a single pump or by three or more pumps. Furthermore, it should be appreciated that while example pressure ranges for the higher pressure fuel system associated with injector 66a have been provided, other pressure ranges may be provided in other examples.


A second tank 520 for holding a second substance is shown fluidly coupled with injector 66b via a lower pressure pump 522 and fuel rail 524. As one non-limiting example, pump 522 can deliver the second substance to injector 66b from tank 520 at a pressure within the range of 20 and 35 bar. However, it should be appreciated that in other examples, higher or lower pressures may be provided by pump 522. Further, it should be appreciated that the fuel system associated with injector 66b can include two or more pumps. Pump 522 may be configured as a lift pump in some examples, and may be arranged within tank 520.


In one example, the tank 510 contains a gasoline or a gasoline and alcohol blend with a greater concentration of gasoline than tank 520, while the tank 520 contains an alcohol or alcohol and gasoline blend which contains a greater concentration of alcohol than tank 510. However, other fuel types or substances may also be used as described herein.


Further still, it should be appreciated that in some examples, tanks 510 and 520 may form a common tank, whereby the first substance provided to the engine via injector 66a and the second substance provided to the engine via injector 66b may include the same composition. For example, injectors 66a and 66b may receive a fuel mixture including gasoline and an alcohol from a common fuel tank at different pressures via separate pumps.


Referring now to FIG. 5B, two fuel systems are shown for providing a fuel to the engine at different pressures. The example of FIG. 5B includes a single tank 530 holding a common fuel mixture. Thus, the first substance and the second substance provided to the engine via injectors 66a and 66b, respectively, can include the same composition. For example, a mixture of gasoline and an alcohol such as ethanol may be provided to the engine at different pressures from a tank 530. The fuel mixture can be first pressurized by a common lower pressure pump or lift pump 532. The higher pressure system associated with injector 66a can then raise the pressure further via pump 535 in contrast to the lower pressure system associated with injector 66b. As one non-limiting example, injector 66a can receive the first substance (e.g. fuel mixture) at a pressure within the range of between 35 bar and 150 bar and injector 66b can receive the second substance (e.g. the same fuel mixture) at a pressure within the range of between 20 bar and 35 bar.


One or both the fuel systems shown in FIGS. 5A and 5B may be returnless-type fuel systems, return-type fuel systems, or combinations thereof. Further, the fuel systems may have different characteristics, such as different size tanks, different size pump, different pump capacity, different pump pressure, different pump maximum flows, different on/off cycles (e.g., pump 512 may run more intermittently than pump 522), etc. Note that in some examples only one pump may operate under some conditions. For example, if fuel from tank 510 is not needed, or not enabled (e.g., during cold start conditions), pump 512 may be deactivated (or not activated) while pump 522 operates. In this way, less battery power may be used, and less vapors may be generated.


Referring now to FIG. 6A, a graph illustrating an example of how an amount (absolute amount or relative amount with reference to another substance) of a knock suppressing substance (e.g. an alcohol) such as ethanol that is delivered to the combustion chamber in response knock tendency (e.g., as torque increases, as speed reduces, as temperature increases, as humidity decreases, and/or combinations thereof). The graph in FIG. 6A illustrates with line 610 (versus 612) that when first phasing in ethanol (in addition to gasoline) at medium to high load, for example, near zero ethanol injection may not be feasible. As such, the control system can add a selected amount of ethanol or other knock suppressing substance at or near the minimum pulse width. In this way, for example, it is possible to provide sufficient ethanol to reduce tendency for knock without violating the minimum stable pulse width of the ethanol injectors. The approach shown in FIG. 6A may be used, for example, during spark ignition operation.


Referring now to FIG. 6B, a graph illustrating how the amount of the knock suppressing substance such as ethanol may be changed to either retard or advance auto-ignition where the combustion process in the combustion chamber is carried out by controlled auto-ignition. The ethanol pulse width or percentage ethanol is shown on the horizontal axis, while the auto-ignition timing is shown along the vertical axis. The ethanol or knock suppressing substance directly injected into the cylinder can be varied to provide the desired charge cooling effect, thereby affecting the timing of auto-ignition. The amount of cooling can therefore be controlled by varying the absolute and/or relative amount of knock suppressing substance injected into the cylinder. For example, the auto-ignition timing may be advanced by reducing the absolute or relative amount (relative to the delivery of another substance such as gasoline) of the knock suppressing substance such as ethanol that is delivered to the combustion chamber. Alternatively, the auto-ignition timing may be retarded by reducing the absolute and/or relative amount of knock suppressing substance such as ethanol that is delivered to the combustion chamber. Thus, the function described schematically by line 626 illustrates how ethanol pulse width or percentage ethanol can affect auto-ignition timing. In this way, the approach described with reference to FIG. 5B can be used where the combustion within the combustion chamber is initiated by auto-ignition.



FIG. 7 shows a graphical depiction of an example mode map for spark ignition and controlled auto-ignition combustion modes. In particular, the map of FIG. 7 shows how the SI operating mode and CAI operating modes may be performed for operating conditions such as engine load (as shown along the vertical axis) and engine speed (as shown along the horizontal axis). For example, the SI operating region as shown in FIG. 7 may be performed across substantially all operating conditions of the engine and is therefore bounded by the wide open throttle (WOT) curve, the vertical axis and the horizontal axis. Thus, as SI utilizes an ignition spark to control the timing of combustion, the SI operating mode may be more robust than the CAI operating mode. During operation in SI, the engine control system may control the injection of the knock suppressing substance as shown in FIG. 6A to reduce the knock tendency.



FIG. 7 also shows the CAI operating mode region as contained within a more limited operating range than the SI mode. For example, CAI may be more difficult to achieve at higher or lower engine loads and speeds since auto-ignition may be initiated by compression performed by the piston rather than by an ignition spark. Although in some examples, an ignition spark may be performed as a back-up to ensure that misfire does not occur. During operating in the CAI mode, such as to enable homogeneous charge compression ignition, the timing of auto-ignition may be controlled by varying the relative amounts of the fuel and knock suppression substance and/or absolute amount of the knock suppressing substance that is delivered to the combustion chamber as described with reference to FIG. 6B.



FIG. 7 also shows how the CAI mode operating range may be expanded in some examples by utilizing the knock suppressing substance such as ethanol to enable greater control of the auto-ignition timing as will be described in greater detail with reference to FIG. 8. Note that in some examples, the engine may be configured to operate in only the SI mode or only in the CAI mode. However, in some examples, the engine may be configured to operate between the SI mode and the CAI mode in response to operating conditions, for example, as directed by the mode map of FIG. 7. In other words, during higher or lower engine speed and engine load ranges, the SI mode may be performed whereby the addition of the knock suppressing substance may be used to reduce the knock tendency as described with reference to FIG. 6A. During engine speed and load conditions that are within the CAI or expanded CAI regions, the knock suppressing substance may be used to control the timing of auto-ignition as directed by FIG. 6B.



FIG. 8 is a flow chart depicting a control strategy for performing an injection strategy for the engine based on the selected combustion mode. As indicated at 810, the control system assesses various operating conditions such as engine speed, engine load, etc. via one or more sensors such as the exhaust gas sensor 76, Hall effect sensor 118, throttle position sensor 120, knock sensor 182, humidity sensor 180, cam timing sensor 150. At 812, a suitable combustion mode may be selected for the engine or at least one combustion chamber of the engine responsive to the operating conditions identified at 810. As one example, the control system may reference the mode map of FIG. 7 when selecting a suitable combustion mode.


As indicated at 814, if the CAI mode is selected at 812, the routine can proceed to 825. Alternatively, if the SI mode or other non-CAI mode is selected at 812, the routine can proceed to 816. As one example, the control system may initiate SI mode where the CAI mode is not selected as directed by the mode map of FIG. 7.


For example, at 816, the amount and timing of delivery of a fuel (e.g. gasoline) and a knock suppressing substance (e.g. an alcohol) may be selected based on operating conditions. As one example, the control system may reference a map or look-up table as described with reference to FIG. 6A, whereby the amount of the knock suppressing substance is controlled to reduce the knock tendency across a variety of engine conditions. At 818, the selected amount of the knock suppressing substance (e.g. ethanol) can be delivered to the combustion chamber at the selected timing via at least the lower pressure in-cylinder injector. At 820, the selected amount of the fuel substance (e.g. gasoline) can be delivered to the combustion chamber at the selected timing via at least the higher pressure in-cylinder injector. However, it should be appreciated that the fuel and the knock suppressing substance may also be provided to the combustion chamber via other injectors. At 822, the mixture of the fuel and knock suppressing substance may be combusted at the selected or desired ignition timing via an ignition spark. As one example, the control system may send an ignition command to ignition system 88 to initiate an ignition spark via spark plug 92.


As indicated at 823, if engine knock is indicated, for example, via a knock sensor, the absolute amount and/or relative amount of the knock suppressing substance that is delivered to the combustion chamber may be increased. For example, the pulse width of the lower pressure injector may be increased to provide additional knock suppressing substance to the combustion chamber to thereby reduce engine knock. Note that the increase in the absolute amount of the knock suppressing substance may also be accompanied by a corresponding reduction in the amount of the fuel provided to the combustion chamber via the higher pressure injector to maintain a prescribed air/fuel ratio. Thus, air/fuel ratio detection in the exhaust gases may be used to assist the control system to vary the injections performed by the higher and lower pressure injectors responsive to knock detection.


Returning to 814, if CAI mode is selected, at 825 the amount and timing of the delivery of the fuel and knock suppressing substance may be selected based on the operating conditions identified at 810 to control the timing of auto-ignition. For example, the control system may reference a map or look-up table as described with reference to FIG. 6B. At 828, the selected amount of the knock suppressing substance may be delivered to the combustion chamber at the selected timing via at least the lower pressure injector to control the auto-ignition timing. At 826, the selected amount of the fuel may be delivered to the combustion chamber at the selected timing via the higher pressure injector.


At 830, it may be judged whether to advance the auto-ignition timing. For example, the control system may control the auto-ignition timing within a prescribed range around TDC. If the auto-ignition timing is to be advanced, at 832 the control system may reduce the absolute amount of the knock suppressing substance that is delivered to the combustion chamber and/or reduce the relative amount of the knock suppression substance compared to the fuel that is delivered to the combustion chamber. Additionally, or alternatively, the control system may vary the timing of the injection of the knock suppressing substance via at least the lower pressure injector to advance the auto-ignition timing.


Alternatively, at 836, if it is judged that the auto-ignition timing is to be retarded, then at 838, the control system may increase the absolute amount of the knock suppressing substance that is delivered to the combustion chamber and/or increase the relative amount of the knock suppression substance compared to the fuel that is delivered to the combustion chamber. Additionally, or alternatively, the control system may vary the timing of the injection of the knock suppressing substance via at least the lower pressure injector to retard the auto-ignition timing. Further, as indicated at 842, the control system may also vary the amount of the fuel delivered to the combustion chamber via the higher pressure injector responsive to a change in the absolute amount of the knock suppressing substance to maintain a prescribed air/fuel ratio.


In this way, the control system may utilize different fueling strategies via a lower pressure in-cylinder direct injector and a higher pressure in-cylinder direct injector depending on the selected combustion mode.



FIG. 9 shows timing diagrams depicting example injection strategies that may be used with the example engine systems and control methods described herein, whereby the combustion chamber is configured with two direct in-cylinder injectors that can deliver the same or different substances to the combustion chamber. Each of graphs 9A-9G show a plurality of four stroke engine cycles each including an intake stroke (I), a compression stroke (C), and power stroke (P), and an exhaust stroke (E). Further, the piston position is indicated between strokes as top dead center (TDC) and bottom dead center (BDC).


During at least a portion of the intake stroke, at least one intake valve of the cylinder may be momentarily opened to admit air into the combustion chamber. The air admitted to the cylinder may be compressed by the piston during the compression stroke along with any of the first and/or second substances that were delivered to the combustion chamber by the first and/or second direct in-cylinder injectors. After the mixture of air and either of the injected substances are compressed, the mixture may be ignited to provide for the power stroke, whereby the combustion causes the mixture to expand forcing the piston toward BDC. Note that combustion may be initiated by an ignition spark in the case of SI combustion or by compression performed by the piston in the case of CAI combustion. Finally, at least some of the products of the combustion event may be exhaust from the cylinder during the exhaust stroke by momentarily opening at least one of the exhaust valves to release the gases from the combustion chamber. In this way, the four stroke cycle may be repeated.


Note that the cycles shown in each of the graphs of FIGS. 9A-9G may be sequentially performed as shown or may be separated by one or more intermediate cycles. Further, it should be appreciated that while a four stroke operation has been described with reference to FIG. 9, in other embodiments, the engine may be operated with two strokes per cycle, six strokes per cycle, or any other suitable number of strokes per cycle.


In each of the examples of FIG. 9, the delivery of the first substance (e.g. a knock suppressing substance such as an alcohol) via the lower pressure direct injector has been indicated by the un-shaded region 910 and the delivery of the second substance (e.g. a fuel such as gasoline) via the higher pressure injector has been indicated by the shaded region 920. As described herein, the first and/or the second substances may include liquids, or may alternatively include vapors. Thus, the second substance may include at least a fuel such as gasoline and the first substance may include at least a knock suppressing substance of a greater concentration than the second substance or vice-versa.


As one non-limiting example, the lower pressure injector may inject the first substance including at least ethanol and the higher pressure injector may inject the second substance including at least gasoline or a mixture of gasoline and ethanol, whereby the first substance has a greater concentration of ethanol than the second substance. As another example, the lower pressure direct injector can deliver the second substance including at least gasoline or a mixture of gasoline and ethanol and the higher pressure direct injector can deliver the first substance including at least ethanol of a higher concentration than the second substance.


As yet another example, the lower pressure injector may inject the first substance and the higher pressure injector may inject the second substance, whereby the first substance has a higher or lower octane rating than the second substance.


As shown by FIG. 9A, during some conditions, only the lower pressure direct injector may be operated to deliver the first substance to the combustion chamber as indicated at 910 by the first example cycle. During other conditions, both the lower pressure direct injector and the higher pressure direct injector may be operated to respectively deliver the first substance at 910 and the second substance at 920 to the combustion chamber as indicated by the second example cycle. During other conditions, only the higher pressure direct injector may be operated to deliver the second substance at 920 to the combustion chamber as indicated by the third example cycle. For example, during SI operation, a fuel including at least gasoline may be provided to the engine via the higher pressure direct injector during conditions where the engine is not knock limited, while during conditions where the engine is knock limited, the lower pressure injector may also be operated to provide a knock suppressing substance such as ethanol to the combustion chamber in addition to the fuel provided by the higher pressure injector.


As shown by FIG. 9B, the amount of a first substance provided to the combustion chamber via the lower pressure direct injector may be increased relative to the amount of a second substance provided to the combustion chamber via the higher pressure direct injector over one or more cycles. Further, FIG. 9B shows how during some conditions, the absolute amount of the first substance delivered to the combustion chamber by the lower pressure direct injector may be less than, equal to, or greater than the absolute amount of the second substance delivered to the combustion chamber by the higher pressure direct injector.


For example, as shown by FIG. 9B, the amount of a knock suppressing substance such as ethanol that is delivered to the combustion chamber by the lower pressure injector may be increased over one or more cycles relative to the amount of a fuel substance such as gasoline that is delivered to the combustion chamber by the higher pressure injector. This approach may be used, for example, to increase charge cooling so that during SI combustion the likelihood, occurrence, or intensity of engine knock is reduced, or may be used to retard auto-ignition timing during CAI combustion.


For example, as shown by FIG. 9C, the amount of a knock suppressing substance such as ethanol that is delivered to the combustion chamber by the lower pressure injector may be reduced over one or more cycles relative to the amount of a fuel substance such as gasoline that is delivered to the combustion chamber by the higher pressure injector. This approach may be used, for example, to decrease charge cooling so that during SI combustion the likelihood, occurrence, or intensity of engine knock is reduced, or may be used to advance auto-ignition timing during CAI combustion.



FIG. 9D shows how the timing of delivery of the first and/or second substances may be advanced over one or more engine cycles. Further, FIG. 9D shows how the timing delay between the injections may be increased or decreased between cycles. The timing of delivery of the first and/or second substance as well as the timing delay between the delivery of the first and the second substances can be varied to control the timing of auto-ignition during CAI combustion and/or the amount of knock suppression provided during SI combustion.



FIG. 9E shows how the timing of delivery of the first and/or second substances may be retarded over one or more engine cycles. Further, FIG. 9E shows how the timing delay between the injections may be increased or decreased between cycles. The timing of delivery of the first and/or second substance as well as the timing delay between the delivery of the first and the second substances can be varied to control the timing of auto-ignition during CAI combustion and/or the amount of knock suppression provided during SI combustion.



FIG. 9F shows how the relative amounts of the first and second substances, the absolute amounts of the first and second substances, the timing of delivery of the first substance and the second substances, and the relative delay between the injections can be varied to control auto-ignition timing during CAI mode and provide knock suppression during SI mode.



FIG. 9G shows how during some conditions, the injections provided by the injectors can at least partially overlap in time as indicated by the first cycle. As indicated by the second cycle, the higher pressure injector can provide a substance to the cylinder before the lower pressure injector. As indicated by the third cycle, the higher pressure injector can provide a plurality of injections of a substance into the cylinder both before and/or after the lower pressure injection.


Note that the example control and estimation routines included herein can be used with various engine and/or vehicle system configurations. The specific routines described herein may represent one or more of any number of processing strategies such as event-driven, interrupt-driven, multi-tasking, multi-threading, and the like. As such, various acts, operations, or functions illustrated may be performed in the sequence illustrated, in parallel, or in some cases omitted. Likewise, the order of processing is not necessarily required to achieve the features and advantages of the example embodiments described herein, but is provided for ease of illustration and description. One or more of the illustrated acts or functions may be repeatedly performed depending on the particular strategy being used. Further, the described acts may graphically represent code to be programmed into the computer readable storage medium in the engine control system.


It will be appreciated that the configurations and routines disclosed herein are exemplary in nature, and that these specific embodiments are not to be considered in a limiting sense, because numerous variations are possible. For example, the above technology can be applied to V-6, I-4, I-6, V-12, opposed 4, and other engine types. The subject matter of the present disclosure includes all novel and nonobvious combinations and subcombinations of the various systems and configurations, and other features, functions, and/or properties disclosed herein.


The following claims particularly point out certain combinations and subcombinations regarded as novel and nonobvious. These claims may refer to “an” element or “a first” element or the equivalent thereof. Such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements. Other combinations and subcombinations of the disclosed features, functions, elements, and/or properties may be claimed through amendment of the present claims or through presentation of new claims in this or a related application. Such claims, whether broader, narrower, equal, or different in scope to the original claims, also are regarded as included within the subject matter of the present disclosure.

Claims
  • 1. A vehicle engine system, comprising: a combustion chamber having a spark plug;a first in-cylinder direct injector configured to deliver a first substance including at least gasoline directly to the combustion chamber at a first pressure; anda second in-cylinder direct injector configured to deliver a second substance including at least an alcohol and water directly to the combustion chamber at a second pressure less than the first pressure.
  • 2. The engine system of claim 1, wherein the alcohol includes methanol.
  • 3. The engine system of claim 2, further comprising a control system configured to vary the relative amounts of the first substance and the second substance delivered to the combustion chamber responsive to an operating condition.
  • 4. The engine system of claim 3, wherein the operating condition includes engine load.
  • 5. The engine system of claim 3, wherein the operating condition includes a combustion mode performed by the combustion chamber.
  • 6. The engine system of claim 5, wherein the control system is further configured to vary the combustion mode performed by the combustion chamber between a spark ignition mode and an auto-ignition mode.
  • 7. The engine system of claim 1, wherein the second substance includes a greater concentration of the alcohol than the first substance.
  • 8. The engine system of claim 1, wherein the second pressure is within the range of 20 bar to 35 bar and the first pressure is within the range of 35 bar to 150 bar.
  • 9. A method of operating an internal combustion engine including a plurality of combustion chambers, comprising: boosting intake air delivered to the plurality of combustion chambers via a turbocharger; andduring each of a plurality of cycles of a combustion chamber: injecting a first substance including at least gasoline directly into the combustion chamber at a first pressure via a first in-cylinder direct injector at least partially during a compression stroke;injecting a second substance including at least water and methanol directly into the combustion chamber at a second pressure less than the first pressure via a second in-cylinder direct injector; andinitiating combustion of a mixture of air and the first and the second injected substances within the combustion chamber via spark ignition of a spark plug positioned in the cylinder.
  • 10. The method of claim 9, wherein the second pressure is substantially less than the first pressure.
  • 11. The method of claim 10, wherein the second substance includes a greater concentration of the methanol than the first substance and where at least some of the second substance is delivered to the combustion chamber before the first substance is delivered to the combustion chamber.
  • 12. The method of claim 9, wherein the method further comprises, during each of the plurality of cycles of the combustion chamber, adjusting relative amounts of the first and second substance that are injected into the combustion chamber responsive to engine load, engine speed, and an indication of engine knock.
  • 13. The method of claim 9, wherein said combustion of the mixture is initiated by compression performed by a piston of the combustion chamber to achieve auto-ignition of the mixture; and wherein the method further comprises, during each of the plurality of cycles of the combustion chamber, adjusting relative amounts of the first and second substance that are injected into the combustion chamber responsive to a timing of the auto-ignition of the mixture.
  • 14. The method of claim 13, wherein said mixture forms a substantially homogeneous mixture within the combustion chamber before combustion.
  • 15. The method of claim 9, wherein during a first portion of the plurality of cycles, combustion of the mixture is initiated by an ignition spark performed by a spark plug; and during a second portion of the plurality of cycles, the mixture is combusted by auto-ignition via compression performed by a piston of the combustion chamber; and wherein the method further comprises, during the second portion of the plurality of cycles, varying an amount of the second substance injected into the combustion chamber relative to an amount of the first substance injected into the combustion chamber responsive to a timing of the auto-ignition of the mixture.
  • 16. An engine cylinder method, comprising: boosting intake air delivered to the cylinder;during a cylinder cycle: injecting gasoline directly into the cylinder via a first in-cylinder direct injector partially during a compression stroke near top-dead-center;injecting a water and methanol mixture directly into the cylinder via a second in-cylinder direct injector during an intake stroke preceding the compression stroke; andinitiating combustion of air and the first and second injector injections via a spark.
  • 17. The method of claim 16 wherein the boosting includes boosting the intake air via a turbocharger.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 13/168,245 filed Jun. 24, 2011, which is now U.S. Pat. No. 8,235,024, which is a continuation of U.S. patent application Ser. No. 11/871,496 filed Oct. 12, 2007, which is now U.S. Pat. No. 7,971,567, the entire contents of each of which are incorporated herein by reference for all purposes.

US Referenced Citations (258)
Number Name Date Kind
2101554 Meyer Dec 1937 A
2221405 Nallinger Nov 1940 A
3589348 Reichhelm Jun 1971 A
3794000 Hodgkinson Feb 1974 A
3826234 Cinquegrani Jul 1974 A
4031864 Crothers Jun 1977 A
4122803 Miller Oct 1978 A
4136652 Lee Jan 1979 A
4205650 Szwarchiber Jun 1980 A
4210103 Dimitroff et al. Jul 1980 A
4256075 Fukui et al. Mar 1981 A
4311118 Slagle Jan 1982 A
4325329 Taylor Apr 1982 A
4331121 Stokes May 1982 A
4385593 Brooks May 1983 A
4402296 Schwarz Sep 1983 A
4411243 Hardenberg et al. Oct 1983 A
4459930 Flory Jul 1984 A
4480616 Takeda Nov 1984 A
4489596 Linder et al. Dec 1984 A
4499885 Weissenbach et al. Feb 1985 A
4502453 Kabasin et al. Mar 1985 A
4519341 McGarr May 1985 A
4541383 Jessel Sep 1985 A
4558665 Sandberg et al. Dec 1985 A
4590904 Wannenwetsch May 1986 A
4648367 Gillbrand et al. Mar 1987 A
4664091 Royer May 1987 A
4706630 Wineland et al. Nov 1987 A
4810929 Strumbos Mar 1989 A
4817576 Abe et al. Apr 1989 A
4930537 Farmer Jun 1990 A
4945881 Gonze et al. Aug 1990 A
4962789 Benscoter Oct 1990 A
4993386 Ozasa et al. Feb 1991 A
4993388 Mitsumoto Feb 1991 A
4998518 Mitsumoto Mar 1991 A
5017826 Oshima et al. May 1991 A
5018483 Kashima et al. May 1991 A
5044331 Suga et al. Sep 1991 A
5044344 Tuckey et al. Sep 1991 A
5050555 Mitsumoto Sep 1991 A
5056490 Kashima Oct 1991 A
5056494 Kayanuma Oct 1991 A
5060610 Paro Oct 1991 A
5097803 Galvin Mar 1992 A
5111795 Thompson May 1992 A
5131228 Mochizuki et al. Jul 1992 A
5150683 Depa et al. Sep 1992 A
5174247 Tosa et al. Dec 1992 A
5188087 Saito Feb 1993 A
5193508 Motoyama et al. Mar 1993 A
5204630 Seitz et al. Apr 1993 A
5230309 Suga et al. Jul 1993 A
5233944 Mochizuki Aug 1993 A
5241933 Morikawa Sep 1993 A
5335637 Davis et al. Aug 1994 A
5336396 Shetley Aug 1994 A
5357908 Sung et al. Oct 1994 A
5360034 Der Manuelian Nov 1994 A
5408979 Backlund et al. Apr 1995 A
5417239 Ford May 1995 A
5469830 Gonzalez Nov 1995 A
5477836 Hyodo et al. Dec 1995 A
5508582 Sugimoto et al. Apr 1996 A
5515280 Suzuki May 1996 A
5560344 Chan Oct 1996 A
5565157 Sugimoto et al. Oct 1996 A
5694908 Hsu Dec 1997 A
5713336 King et al. Feb 1998 A
5722362 Takano et al. Mar 1998 A
5740784 McKinney Apr 1998 A
5782092 Schultalbers et al. Jul 1998 A
5806500 Fargo et al. Sep 1998 A
5875743 Dickey Mar 1999 A
5887566 Glauber et al. Mar 1999 A
5921222 Freeland Jul 1999 A
5979400 Nishide Nov 1999 A
6017646 Prasad et al. Jan 2000 A
6035837 Cohen et al. Mar 2000 A
6042955 Okamoto Mar 2000 A
6112705 Nakayama et al. Sep 2000 A
6112725 McKinney Sep 2000 A
6119637 Matthews et al. Sep 2000 A
6189516 Hei Ma Feb 2001 B1
6213086 Chmela et al. Apr 2001 B1
6229253 Iwata et al. May 2001 B1
6234123 Iiyama et al. May 2001 B1
6237339 Asen et al. May 2001 B1
6318083 Machida et al. Nov 2001 B1
6325039 Goto Dec 2001 B1
6332448 Ilyama et al. Dec 2001 B1
6344246 Fischer et al. Feb 2002 B1
6371151 Saylor Apr 2002 B1
6382225 Tipton May 2002 B1
6467470 Carlsson et al. Oct 2002 B1
6494192 Capshaw et al. Dec 2002 B1
6505579 Lee Jan 2003 B1
6553974 Wickman et al. Apr 2003 B1
6617769 Suzuki Sep 2003 B2
6619242 Kaneko Sep 2003 B2
6622663 Weissman et al. Sep 2003 B2
6622664 Holder et al. Sep 2003 B2
6622690 Ando et al. Sep 2003 B2
6651432 Gray, Jr. Nov 2003 B1
6659068 Urushihara et al. Dec 2003 B2
6681739 Mamiya et al. Jan 2004 B2
6684849 zur Loye et al. Feb 2004 B2
6691669 Surnilla et al. Feb 2004 B2
6698387 McFarland et al. Mar 2004 B1
6711893 Ueda et al. Mar 2004 B2
6792966 Harvey Sep 2004 B2
6805107 Vinyard Oct 2004 B2
6845616 Jauss Jan 2005 B2
6866950 Connor et al. Mar 2005 B2
6928983 Mashiki Aug 2005 B2
6951202 Oda Oct 2005 B2
6959693 Oda Nov 2005 B2
6972093 Partridge et al. Dec 2005 B2
6978762 Mori Dec 2005 B2
6988485 Ichise et al. Jan 2006 B2
6990956 Niimi Jan 2006 B2
7011048 Gurin et al. Mar 2006 B2
7013844 Oda Mar 2006 B2
7055500 Miyashita et al. Jun 2006 B2
7082926 Sadakane et al. Aug 2006 B2
7107942 Weissman et al. Sep 2006 B2
7159568 Lewis et al. Jan 2007 B1
7178503 Brehob Feb 2007 B1
7225787 Bromberg et al. Jun 2007 B2
7255080 Leone Aug 2007 B1
7261064 Bhaisora et al. Aug 2007 B2
7278396 Leone et al. Oct 2007 B2
7287492 Leone et al. Oct 2007 B2
7287509 Brehob Oct 2007 B1
7293552 Leone et al. Nov 2007 B2
7302933 Kerns Dec 2007 B2
7337754 Dearth et al. Mar 2008 B2
7350504 Yasunaga et al. Apr 2008 B2
7357101 Boyarski Apr 2008 B2
7367317 Miyazaki et al. May 2008 B2
7373931 Lennox et al. May 2008 B2
7389751 Leone Jun 2008 B2
7395786 Leone et al. Jul 2008 B2
7406947 Lewis et al. Aug 2008 B2
7412966 Lewis et al. Aug 2008 B2
7424881 Kerns Sep 2008 B2
7426907 Dearth et al. Sep 2008 B2
7426908 Brehob Sep 2008 B2
7426925 Leone et al. Sep 2008 B2
7428895 Leone et al. Sep 2008 B2
7444987 Cohn et al. Nov 2008 B2
7454285 Christie et al. Nov 2008 B2
7461628 Blumberg et al. Dec 2008 B2
7487631 Cueman et al. Feb 2009 B2
7493879 Fujii et al. Feb 2009 B2
7493897 Arakawa et al. Feb 2009 B2
7533651 Surnilla May 2009 B2
7556023 Ilhoshi et al. Jul 2009 B2
7578281 Russell et al. Aug 2009 B2
7581528 Stein et al. Sep 2009 B2
7584740 Boyarski Sep 2009 B2
7594498 Lewis et al. Sep 2009 B2
7637250 Bromberg et al. Dec 2009 B2
7640912 Lewis et al. Jan 2010 B2
7640913 Blumberg et al. Jan 2010 B2
7640914 Lewis et al. Jan 2010 B2
7640915 Cohn et al. Jan 2010 B2
7647899 Dearth et al. Jan 2010 B2
7647916 Leone et al. Jan 2010 B2
7665428 Dearth et al. Feb 2010 B2
7665452 Russell et al. Feb 2010 B2
7676321 Andri Mar 2010 B2
7681554 Stein et al. Mar 2010 B2
7694666 Lewis et al. Apr 2010 B2
7703446 Bromberg et al. Apr 2010 B2
7721710 Leone et al. May 2010 B2
7726265 Bromberg et al. Jun 2010 B2
7730872 Leone et al. Jun 2010 B2
7740009 Shelby et al. Jun 2010 B2
7765982 Lewis et al. Aug 2010 B2
7779813 Hahn Aug 2010 B2
7789063 Lewis et al. Sep 2010 B2
7845315 Leone et al. Dec 2010 B2
7849842 Lewis et al. Dec 2010 B1
7869930 Stein et al. Jan 2011 B2
7877189 Leone Jan 2011 B2
7886729 Russell et al. Feb 2011 B2
7900933 Tones et al. Mar 2011 B2
7909019 Stein Mar 2011 B2
7913668 Lewis et al. Mar 2011 B2
7933713 Leone Apr 2011 B2
7942128 Leone et al. May 2011 B2
7971567 Zubeck et al. Jul 2011 B2
7971575 Lewis et al. Jul 2011 B2
8015951 Dearth et al. Sep 2011 B2
8028678 Stein Oct 2011 B2
8065979 Leone et al. Nov 2011 B2
8118009 Pursifull et al. Feb 2012 B2
8132555 Lewis et al. Mar 2012 B2
8235024 Zubeck et al. Aug 2012 B2
8245690 Stein Aug 2012 B2
8297255 Bidner et al. Oct 2012 B2
20010035215 Tipton et al. Nov 2001 A1
20020139111 Ueda et al. Oct 2002 A1
20030089337 Cohn et al. May 2003 A1
20030127072 Gmelin et al. Jul 2003 A1
20040035395 Heywood et al. Feb 2004 A1
20040065274 Cohn et al. Apr 2004 A1
20040083717 Zhu et al. May 2004 A1
20040149644 Partridge et al. Aug 2004 A1
20040250790 Heywood et al. Dec 2004 A1
20040261763 Hashimoto et al. Dec 2004 A1
20050051135 Tomoda et al. Mar 2005 A1
20050066939 Shimada et al. Mar 2005 A1
20050097888 Miyashita May 2005 A1
20050103285 Oda May 2005 A1
20050109316 Oda May 2005 A1
20050109319 Oda May 2005 A1
20050155577 Ichise et al. Jul 2005 A1
20050155578 Ichise et al. Jul 2005 A1
20050166896 Sadakane et al. Aug 2005 A1
20050172931 Mori Aug 2005 A1
20050178356 Shibagaki Aug 2005 A1
20050178360 Satou Aug 2005 A1
20050183698 Yonezawa Aug 2005 A1
20050274353 Okubo et al. Dec 2005 A1
20060016429 Mashiki Jan 2006 A1
20060075991 Heywood et al. Apr 2006 A1
20060090732 Shibagaki May 2006 A1
20060102136 Bromberg et al. May 2006 A1
20060102145 Cohn et al. May 2006 A1
20060102146 Cohn et al. May 2006 A1
20060180099 Aimoto et al. Aug 2006 A1
20060191727 Usami et al. Aug 2006 A1
20070028861 Kamio et al. Feb 2007 A1
20070028905 Shinagawa et al. Feb 2007 A1
20070034192 Kamio et al. Feb 2007 A1
20070119391 Fried et al. May 2007 A1
20070119411 Kerns May 2007 A1
20070204813 Arai et al. Sep 2007 A1
20070219679 Coulmeau Sep 2007 A1
20070219701 Hashimoto et al. Sep 2007 A1
20070221163 Kamio Sep 2007 A1
20080046161 Blumberg et al. Feb 2008 A1
20080053399 Bromberg et al. Mar 2008 A1
20080092851 Arakawa et al. Apr 2008 A1
20080156303 Bromberg et al. Jul 2008 A1
20080173278 Bromberg et al. Jul 2008 A1
20080288158 Leone Nov 2008 A1
20090065409 Kamio et al. Mar 2009 A1
20090159057 Pursifull et al. Jun 2009 A1
20100006050 Bromberg et al. Jan 2010 A1
20100024772 Lewis et al. Feb 2010 A1
20100288232 Bromberg et al. Nov 2010 A1
20120067033 Leone et al. Mar 2012 A1
20120152211 Pursifull et al. Jun 2012 A1
20120166065 Lewis et al. Jun 2012 A1
Foreign Referenced Citations (22)
Number Date Country
1536203 Oct 2004 CN
19954979 Jun 2001 DE
1057988 Nov 2006 EP
59068535 Apr 1984 JP
61065066 Apr 1986 JP
62210229 Sep 1987 JP
01195926 Aug 1989 JP
02070968 Mar 1990 JP
3111664 May 1991 JP
5163976 Jun 1993 JP
7019124 Jan 1995 JP
2002227730 Aug 2002 JP
2005146973 Jun 2005 JP
2007056754 Mar 2007 JP
200882258 Apr 2008 JP
2031238 Mar 1995 RU
9739235 Oct 1997 WO
2004097198 Nov 2004 WO
2006023313 Mar 2006 WO
2006055540 May 2006 WO
2007106354 Sep 2007 WO
2007106416 Sep 2007 WO
Non-Patent Literature Citations (17)
Entry
U.S. Appl. No. 60/790,715, filed Apr. 10, 2006, Bromberg et al.
U.S. Appl. No. 60/746,507, filed May 5, 2006, Cohn et al.
U.S. Appl. No. 60/747,865, filed May 22, 2006, Heywood et al.
U.S. Appl. No. 60/973,499, filed Sep. 19, 2007, Bromberg.
U.S. Appl. No. 60/948,753, filed Jun. 10, 2007, Bromberg et al.
Australian examiner's first report on patent application No. 2007202600, Australian Government, IP Australia, Nov. 3, 2011, 2 pages.
Office Action of Chinese Application No. 200610148453.4, Issued Mar. 24, 2011, State Intellectual Property Office of PRC, 9 Pages.
Unknown Author, “Honda Making Significant Progress on HCCI Engine for Hybrid Application,” http://www.greencarcongress.com/2005/10/honda—making—si.html, Oct. 28, 2005, 8 pages.
Bromberg, L. et al., “Calculations of Knock Suppressions in Highly Turbocharged Gasoline/Ethanol Engines Using Direct Ethanol Injector,” Jul. 7, 2005, Massachusetts Institute of Technology.
Cohn, D.R. et al., “Direct Injection Ethanol Boosted Gasoline Engines: Biofuel Leveraging for Cost Effective Reduction of Oil Dependence and CO2 Emissions,” Mar. 15, 2005, Massachusetts Institute of Technology.
Kamio, J. et al., “Study on HCCI-SI Combustion Using Fuels Containing Ethanol,” SAE Technical Papers Series No. 2007-01-4051, Powertrain & Fluid Systems Conference & Exhibition, Rosemont IL, Oct. 29-Nov. 1, 2007, 12 pages.
Hunter, M. Park, “1962 Oldsmobile Jetfire,” originally appeared in Special Interest Autos, Apr. 1996, http://www.tctc.com/˜part/mph/pageCLIP/page62JET/62jet.htm, Nov. 7, 2006.
Brusca, S. et al., “Water Injection in IC-SI Engines to Control Detonation and the Reduce Pollutant Emissions,” SAE Technical Paper No. 2003-01-1912, May 19-22, 2003.
Russ, Stephen, “A Review of the Effect of Engine Operating Conditions on Borderline Kick,” SAE Technical Paper Series 960497, Feb. 26-29, 1996.
Vance, Bill, “Turbocharger Boosted Engine's Efficiency: Developed to maintain high-altitude performance,” for the Calgary Herald Edmonton, http://www.ucalgary.ca/˜csimpson/Articles/JetFire.html, Nov. 7, 2006.
ISA/UK, Intellectual Property Office Search Report of GB 0822341.4, Mar. 10, 2009, United Kingdom, 2 pages.
Pursifull, Ross Dykstra et al., “On-Board Fuel Vapor Separation for Multi-Fuel Vehicle,” U.S. Appl. No. 13/619,755, filed Sep. 14, 2012, 53 pages.
Related Publications (1)
Number Date Country
20120298072 A1 Nov 2012 US
Continuations (2)
Number Date Country
Parent 13168245 Jun 2011 US
Child 13569016 US
Parent 11871496 Oct 2007 US
Child 13168245 US