The following documents are incorporated herein by reference as if fully set forth: German Patent Application No. 102014201880.3, filed Feb. 3, 2014.
The present invention relates to a coolant pump of an internal combustion engine, having a pump casing, in which a pump shaft is rotatably supported by a water pump bearing assembly. An impeller connected in a rotationally fixed manner to the pump shaft is associated with an intake space. During a rotation of the impeller together with the associated blades, a coolant as a working medium is pumped in a fluid or volume flow from the intake space, via a coolant outlet of the coolant pump, into a cooling system of the internal combustion engine.
In the case of liquid-cooled internal combustion engines, the coolant, in particular cooling water, is pumped in a preferably closed circuit through cooling passages in the region of the cylinders and of the cylinder head with the aid of a coolant pump in order to cool the internal combustion engine. The heated medium is then re-cooled in an air/water heat exchanger by a fan and/or by the relative airflow. The coolant pump used to circulate the coolant is normally driven by an accessory drive mounted in front of the crankcase or by a timing drive inserted within the crankcase.
Document DE 100 57 099 C2 discloses a coolant pump which is used to deliver coolant in internal combustion engines and comprises a pump shaft which is rotatably mounted in a pump casing and, at one end, carries an impeller which rotates in a flow or intake space of the pump casing. At the opposite end from the impeller, the pump shaft is driven by a belt pulley, which is connected for conjoint rotation to the shaft and is driven via a belt by a rotating component of the internal combustion engine. To protect the bearing assembly from the coolant and from impurities, a mechanical seal is provided between the bearing assembly of the pump shaft and the pump space supplied with coolant. The cooling systems of contemporary internal combustion engines for vehicles do not contain a filter system or any device or measures for removing impurities from the coolant.
It is the underlying object of the invention to integrate into a coolant pump a functional module by which functionally reliable, long-lasting and low-cost cleaning of the coolant in a manner optimized in terms of installation space can be achieved.
The abovementioned objective is met using one or more features of the invention. Advantageous embodiments of the invention are presented below and in the claims.
According to the invention, a coolant pump is provided which, on a side of the impeller facing away from the intake space, provides a functional module constructed as a dirt trap. Via at least one opening introduced into the impeller, the coolant or working medium flows into the functional module and can then flow out via a flow outlet. Through the concept according to the invention, a partial quantity of the coolant is continuously filtered in the operating state of the coolant pump, thereby continuously filtering impurities out of the coolant. By use of the invention, it is advantageously possible, for example, effectively to remove contaminants that have entered the coolant through the production process or the assembly of the internal combustion engine, e.g. molding sand remaining from the casting process for the crankcase, metal chips, dissolved particles, residues and other foreign bodies. The long-term and economically achievable cleaning of the coolant by the measure according to the invention furthermore improves functional reliability since the risk of erosion that can occur in the range of high flow rates in the cooling system in the case of uncleaned coolant is eliminated. By virtue of the structural design of the functional module associated with the impeller, the centrifugal forces can be used, as a result of which dirt particles collect in a centrifugal force field in the region of an inner circumference of the functional module designed as a dirt trap due to their higher density in the coolant which has flowed in, before the cleaned coolant can emerge.
It is precisely with regard to novel cooling systems, the operation of which depends on intact sealing surfaces of the seals and on switching thermostats, for example, that the invention offers a concept by which a desirable coolant that is free from dirt particles can be achieved, thereby significantly minimizing the probability of failure of individual components. The invention, in which the functional module is arranged on the side facing away from the intake space, can advantageously be combined with axially extending relief bores, which are introduced into modern impellers in order to reduce a level of axial force on the impeller and hence on the water pump bearing assembly. To avoid a buildup effect, which would prevent flow through the impeller openings, also referred to as relief bores, and the cleaning effect of the functional module, this includes at least an adequately dimensioned flow outlet. The position of the flow outlet is chosen so that it is not permanently covered by the accumulated dirt particles. Moreover, it is advantageously possible with the concept according to the invention to comply with or to better more stringent limits for residual dirt in cooling systems, especially in internal combustion engines for passenger vehicles.
According to an advantageous embodiment of the invention, the functional module is constructed as a dirt trap of basket- or screen-like construction. The functional module, which has a sufficient reservoir or volume to accommodate the dirt particles, forms an effective separating and collecting element. On the other hand, the functional module is distinguished by a low flow resistance, allowing optimum approach flow and through flow of coolant.
As a measure for improving the filtering effect and hence the removal rate of the functional module, provision is made according to the invention to position both the opening forming a flow inlet and the flow outlet in a corresponding manner close to the pump shaft in the functional module. Here, the flow outlet is preferably introduced within the contour of the functional module.
A preferred solution of the invention which is optimized in terms of installation space envisages integrating the functional module within an existing contour of the impeller. By this neutral arrangement in terms of installation space, the dirt trap or functional module can be introduced into the impeller before the impeller is inserted into the casing of the coolant pump to complete assembly. Consequently, there is a further cost advantage since the dirt trap does not have to be handled as an additional component requiring a separate assembly step. An expedient way of forming a functional module which can be produced at low cost is to introduce a rotationally symmetrical recess into the front side of the impeller, preferably by a machining process. The recess of rotationally symmetrical configuration intended to receive the dirt particles is closed by a cover element with an integrated flow outlet. As an alternative, a perforated cover element or a screen disk can be inserted as a flow outlet.
According to the invention, a separate component can furthermore be positioned as a functional module behind the impeller of the coolant pump. Particularly suitable for this purpose is a functional module of pot-shaped configuration which is fixed in a sealed manner and, in particular, materially, on the impeller by way of a cylindrical sleeve. A disk-type end wall, preferably embodied in the form of a screen, connects the outer sleeve to a bushing guided on the pump shaft. In the operating state, the inflowing coolant impinges within the functional module upon the, preferably perforated, screen-type end wall, which forms a baffle. Due to the centrifugal force of the rotating impeller, the dirt particles or foreign bodies will settle on the inside of the tubular sleeve owing to their higher density before the cleaned coolant flows out of the functional module.
According to the invention, the functional module forming a separate component is produced from a metallic material or from a temperature-stable and acid-resistant plastic.
Durable fixing of the prefabricated functional module forming a dirt trap is accomplished, on the one hand, by a press fit of the central bushing of the end wall on the pump shaft and, on the other hand, by a material connection of the sleeve to the impeller.
According to another embodiment of the invention, the flow outlet of the functional module comprises a filter element. Here, the mesh width of the filter element defines a dirt particle size that can be separated out of the coolant of the cooling system. As an alternative to a local flow outlet, it is also possible for the perforated or screen-like end wall of the separate functional module or the screen disk of the functional module integrated into the impeller to have an appropriately defined mesh width to be able to clean the coolant as intended.
Further features of the invention will emerge from the following description of the drawings, in which illustrative embodiments of the invention are shown. The embodiments illustrated show examples of solutions according to the invention, but these do not represent a definitive delimitation of the invention. In the drawings:
In
Number | Date | Country | Kind |
---|---|---|---|
10 2014 201 880 | Feb 2014 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
3838901 | Sampatacos | Oct 1974 | A |
20100252081 | Classen | Oct 2010 | A1 |
20110162597 | Draheim et al. | Jul 2011 | A1 |
20120076640 | Popp et al. | Mar 2012 | A1 |
20130081583 | Weiss et al. | Apr 2013 | A1 |
Number | Date | Country |
---|---|---|
102149923 | Aug 2011 | CN |
102418711 | Apr 2012 | CN |
103032341 | Apr 2013 | CN |
19643794 | Feb 1998 | DE |
10057099 | Jun 2002 | DE |
102008022354 | Nov 2009 | DE |
102009048349 | Nov 2010 | DE |
102011012826 | Jan 2012 | DE |
WO 2010069703 | Jun 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20150219003 A1 | Aug 2015 | US |