Disabling ink ejection elements to decrease dot placement artifacts in an inkjet printhead

Information

  • Patent Grant
  • 6832823
  • Patent Number
    6,832,823
  • Date Filed
    Friday, May 30, 2003
    21 years ago
  • Date Issued
    Tuesday, December 21, 2004
    19 years ago
Abstract
The present invention includes as one embodiment an inkjet printing method for decreasing dot placement artifacts of an inkjet printhead having at least two substrates, each with overlapping and non-overlapping nozzle rows, the method including selectively disabling at least one ink ejection element associated with at least one nozzle in the overlapping nozzle rows based on a swath height error of the substrate.
Description




BACKGROUND OF THE INVENTION




Accurate dot placement of ink droplets on a print media with an ink-jet printer influences the quality of images printed on the print media. One problem that affects accurate dot placement is swath height errors of the inkjet printhead. Swath height errors are commonly produced by mechanical defects in the substrate of the printhead and can produce erroneous dot placement artifacts in the media scan axis.




To solve this problem, a variety of methods have been used to compensate for artifacts in the media scan axis. For example, one method included adjusting the media advance to match the swath height error of the particular printhead. With this approach, the selection of a single media advance correction scheme is applied to all printheads in the system.




However, this can be problematic in multi-printhead systems that have printheads with varying swath height errors. For example, in a particular printing system with multiple printheads, a first printhead may have a negative swath height error of 21 um, while a second printhead may have a positive swath height error of 15 um, and a third printhead may have no error at all. In this case, the single advance correction scheme will not correct the swath height errors for the entire printing system, but only one of the printheads.




In addition, a single advance correction may change the scaling factor of the image, which could have negative implications for line art drawing applications, such as printouts for computer aided design applications.




SUMMARY OF THE INVENTION




The present invention includes as one embodiment an inkjet printing method for decreasing dot placement artifacts of an inkjet printhead having at least two substrates, each with overlapping and non-overlapping nozzle rows, the method including selectively disabling at least one ink ejection element associated with at least one nozzle in the overlapping nozzle rows between substrates based on a swath height error of the substrates.











BRIEF DESCRIPTION OF THE DRAWINGS




The present invention can be further understood by reference to the following description and attached drawings that illustrate the preferred embodiments. Other features and advantages will be apparent from the following detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of the invention.





FIG. 1

shows a block diagram of an overall printing system incorporating one embodiment of the present invention.





FIG. 2

is an exemplary printer usable with the system of

FIG. 1

that incorporates one embodiment of the invention and is shown for illustrative purposes only.





FIG. 3

shows for illustrative purposes only a perspective view of an exemplary print cartridge usable with the printer of

FIG. 2

incorporating one embodiment of the printhead assembly of the present invention.





FIG. 4

is a schematic cross-sectional view taken through a portion of section line


4





4


of

FIG. 3

showing a portion of the ink chamber arrangement of an exemplary printhead substrate in the print cartridge of

FIGS. 1 and 3

.





FIG. 5

is a flow diagram of the operation of a printhead assembly according to

FIG. 3

that incorporates an embodiment of the present invention.





FIG. 6

is a block diagram of a printhead assembly according to

FIG. 3

that incorporates an embodiment of the present invention.





FIGS. 7A-7D

illustrate working examples of the operation of a multi-substrate printhead that incorporates an embodiment of the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




In the following description of the invention, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration a specific example in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the present invention.




I. General Overview:





FIG. 1

shows a block diagram of an overall printing system incorporating one embodiment of the present invention. The printing system


100


of one embodiment of the present invention includes a printhead assembly


102


, ink supply or ink reservoir


104


and print media


106


. At least one printhead assembly


102


and ink reservoir


104


are typically included in a printer


101


. Input data


108


is sent to the printing system


100


and includes, among other things, information about the print job.




The printhead assembly


102


further includes at least two overlapping substrates (not shown), such as semiconductor wafers or dies. The printhead assembly


102


may be comprised of a single device with multiple overlapping substrates. Also, the printing system can include multiple printhead assemblies for a wide page array printer, each with at least two overlapping substrates.




The printhead assembly


102


further includes a nozzle masking controller


110


that sends instructions to selectively disable at least one ink ejection element associated with at least one nozzle in overlapping nozzle rows between substrates based on a swath height error of the substrate to reduce the artifacts caused by the swath height error. The nozzle masking controller


110


can also be implemented as firmware and/or hardware incorporated into the printer in a master controller device (not shown), or physically integrated with the printhead assembly


102


as a printhead controller device. In addition, the nozzle masking controller


110


can be implemented by a printer driver as software operating on a computer system (not shown) that is connected to the printer


101


or a processor (not shown) that is physically integrated with the printhead assembly


102


.




Each substrate or die includes plural ink ejection elements and associated ejection chambers for releasing the ink through corresponding nozzles or orifices in respective adjacent nozzle members. A single nozzle masking controller


110


can control all substrates in a printhead assembly


102


, or each substrate can have its own nozzle masking controller disposed thereon that is synchronized with the other nozzle masking controllers.




The substrates are preferably located adjacent to one another with overlapping and non-overlapping regions existing between each adjacent substrate. The nozzle masking controller


110


is operatively connected to the ink ejection elements of each substrate and receives and processes input data


108


to decrease dot placement artifacts by selectively disabling at least one ink ejection element associated with at least one nozzle in areas where the nozzle rows overlap between the substrates. The selective disablement is based on the swath height error of the substrate (discussed in detail below) to minimize the artifacts caused by the swath height errors, thereby improving image quality.




In general, the nozzle masking controller


110


determines the firing order of the ink ejection elements through the nozzles in the overlapping substrates. The location of a dot produced by an ink ejection element through a nozzle can be disabled in a column or row, by instructing the controller to not fire a particular ink ejection element of a particular nozzle. As such, the particular ink ejection elements that are not fired help correct for identified negative or positive swath height errors.




II. Exemplary Printing System:





FIG. 2

is an exemplary embodiment of a printer that incorporates a multi-substrate or multi-die module for a single printhead assembly according to an embodiment of the invention and is shown for illustrative purposes only. As discussed above, other printers, such as a wide page array printer with multiple single-substrate printhead assemblies can incorporate embodiments of the present invention.




Generally, printer


200


, which is shown in

FIG. 2

as one type of printer


101


of

FIG. 1

, can incorporate the printhead assembly


102


of FIG.


1


and further include a tray


222


for holding print media. When printing operation is initiated, print media, such as paper, is fed into printer


200


from tray


222


preferably using sheet feeder


226


. The sheet is then brought around in a U direction and then travels in an opposite direction toward output tray


228


. Other paper paths, such as a straight paper path, can also be used.




The sheet is stopped in a print zone


230


, and a scanning carriage


234


, supporting one or more printhead assemblies


236


, is scanned across the sheet for printing a swath of ink thereon. After a single scan or multiple scans, the sheet is then incrementally shifted using, for example a stepper motor or feed rollers to a next position within the print zone


230


. Carriage


234


again scans across the sheet for printing a next swath of ink. The process repeats until the entire sheet has been printed, at which point it is ejected into the output tray


228


.




The print assemblies


236


can be removeably mounted or permanently mounted to the scanning carriage


234


. Also, the printhead assemblies


236


can have self-contained ink reservoirs which provide the ink supply


104


of FIG.


1


. Alternatively, each print cartridge


236


can be fluidically coupled, via a flexible conduit


240


, to one of a plurality of fixed or removable ink containers


242


acting as the ink supply


104


of FIG.


1


.





FIG. 3

shows for illustrative purposes only a perspective view of an exemplary print cartridge


300


(an example of the printhead assembly


102


of

FIG. 1

) that incorporates one embodiment of the invention and is shown for illustrative purposes only. A detailed description of the present invention follows with reference to a typical print cartridge used with a typical printer, such as printer


200


of FIG.


2


. However, the embodiments of the present invention can be incorporated in any printhead and printer configuration.




Referring to

FIGS. 1 and 2

along with

FIG. 3

, the print cartridge


300


is comprised of a thermal head assembly


302


and a body


304


. The thermal head assembly


302


can be a flexible material commonly referred to as a Tape Automated Bonding (TAB) assembly. The thermal head assembly


302


contains a nozzle member


306


to which the plural substrates are attached to form the printhead assembly


102


.




Thermal head assembly


302


also has interconnect contact pads (not shown) and is secured to the printhead assembly


300


with suitable adhesives. Contact pads


308


, align with and electrically contact electrodes (not shown) on carriage


234


. The nozzle member


306


preferably contains plural parallel rows of offset nozzles


310


for each substrate through the thermal head assembly


306


created by, for example, laser ablation. Other nozzle arrangements can be used, such as non-offset parallel rows of nozzles.




III. Component Details:





FIG. 4

is a cross-sectional schematic taken through a portion of section line


4





4


of

FIG. 3

of the print cartridge


300


utilizing one embodiment of the present invention. A detailed description of one embodiment of the present invention follows with reference to a typical print cartridge


300


. However, embodiments of the present invention can be incorporated in any printhead configuration. Also, the elements of

FIG. 4

are not to scale and are exaggerated for simplification.




Referring to

FIGS. 1-3

along with

FIG. 4

, in general, the thermal head assembly


302


includes at least two overlapping substrates


410


(a single substrate is shown in

FIG. 4

for simplicity) and a barrier layer


412


located between the nozzle member


306


and each substrate


410


for insulating conductive elements from the substrate


410


, and for forming a plurality of ink ejection chambers


418


(one of which is shown). The plural substrates are located adjacent to one another with overlapping and non-overlapping regions existing between each substrate.




Also included is a corresponding plurality of ink ejection elements


416


disposed on the substrate


410


. The nozzle masking controller


110


is operatively connected to the ink ejection elements


416


. Each chamber


418


is associated with a different one of the ink ejection elements


416


. The nozzle masking controller


110


receives print data and processes the print data to decrease dot placement artifacts by selectively disabling certain ink ejection elements of certain nozzles in an overlapping region based on a swath height of the substrate to minimize the artifacts caused by swath height errors, thereby improving image quality.




An ink ejection or vaporization chamber


418


is adjacent each ink ejection element


416


of each substrate


410


, as shown in

FIG. 4

, so that each ink ejection element


416


is located generally behind a single orifice or nozzle


420


of the nozzle member


306


. Thus, each ink ejection element


416


is associated with, and ejects ink from, a corresponding nozzle


420


. The nozzles


420


are shown in

FIG. 4

to be located near an edge of the substrate


410


for illustrative purposes only. The nozzles


420


can be located in other areas of the nozzle member


306


, such as centered between an edge of the substrate


410


and an interior side of the body


304


.




The ink ejection elements


416


may be resistor heater elements or piezoelectric elements, but for the purposes of the following description, the ink ejection elements may be referred to as resistor heater elements. In the case of resistor heater elements, each ink ejection element


416


acts as an ohmic heater when selectively energized by one or more pulses applied sequentially or simultaneously to one or more of the contact pads via the integrated circuit. The orifices


420


may be of any size, number, and pattern, and the various figures are designed to simply and clearly show the features of one embodiment of the invention. The relative dimensions of the various features have been greatly adjusted for the sake of clarity.





FIG. 5

is a flow diagram of the operation of a printhead assembly according to

FIG. 3

that incorporates an embodiment of the present invention.

FIG. 6

is a block diagram of a printhead assembly according to

FIG. 3

that incorporates an embodiment of the present invention. Referring to

FIG. 6

along with

FIG. 5

, first, an actual swath height produced by each substrate


614


when printing dots is determined (step


500


). This can be accomplished with an optical system with a feedback processor


630


that examines and analyzes the dots printed on the print media with an optical system with a feedback processor


630


.




For example, the feedback processor


630


can have an internal scanning device for examining and analyzing in real time the dots as they leave the substrate and before they land on the print media. Alternatively, the feedback processor


630


can have an external scanning device for examining the dots after they have been printed on the print media. Further, although

FIG. 6

shows a feedback processor


630


and a nozzle masking controller


110


incorporated in each printhead


102


, a single feedback processor


630


and a single nozzle masking controller


110


can be external devices to each printhead and can be used to analyze and control all printheads.




Second, the centroid of each substrate is determined. The centroid can be determined by any suitable measurement device that measures certain areas and dimensions of the substrate for calculating the centroid of the substrate (step


502


). For example, the centroid can be estimated by printing a pattern on page, using a sensor, such as an offline sensor or one built into the inkjet printhead or printer, and using a weighted average to determine the centroid middle of the substrate. Also, the centroid can be determined by printing drops, using an optical sensor to collect data about the drops in mid air and then using a processor to calculate the centroid based on the data. In addition, the charges on drop can be examined to determine a centroid of the substrate.




Third, the actual swath height of each substrate


614


is compared to a predefined ideal swath height based on the centroid of each respective substrate (step


504


). The predefined ideal swath height is a theoretical swath height that is chosen by the manufacturer that will produce consistent and accurate ink drops.




Comparing the actual swath height to the ideal swath height based on the centroid can be accomplished by first calculating the actual number of overlapping dots at an area where the substrates overlap and then calculating the theoretical number of overlapping dots at an area where the substrates overlap using the centroids and the theoretical swath height. The difference between the overlapping dots is then calculated by subtracting the theoretical number of overlapping dots from the actual number of overlapping dots. Next, it is determined whether an adjustment is necessary (based on the severity of the swath height error) for each substrate based on a predefined unit (step


506


). The centroid is found to determine how the substrates line up with each other. This determination allows the system to avoid summing errors from one substrate to the next. In other words, when the centroid of each die is located, the swath height error can be determined, which allows the system to then correct each overlap area accordingly.




In one embodiment, the unit is nozzle spacing and if the difference between the actual swath height and the ideal swath height is zero, then an adjustment is not performed. However, if the difference is greater than or equal to 1 unit or less than or equal to negative 1 unit, then the adjustment is performed, where 1 unit is equal to the spacing between consecutive nozzles for all columns of nozzles. The feedback processor


630


calculates the swath height error (which could be a negative or positive error) by comparing the actual swath height to the theoretical swath height. A negative swath height error occurs when the actual swath height is less than the ideal swath height, while a positive swath height error occurs when the actual swath height is greater than the ideal swath height.




If an adjustment is deemed appropriate, the number of nozzles per data row (for firing purposes of the ink ejection elements


620


) is adjusted by the nozzle masking controller


110


according to a predefined relationship for each substrate that needs an adjustment (step


508


). In the embodiment above where the difference is calculated in nozzle spacing units, if the difference is negative, the number of overlapping nozzles is increased from the actual number of overlapping dots to the theoretical number of dots.




In contrast, if the difference is positive, the number of overlapping nozzles is decreased from the actual number of overlapping dots to the theoretical number of dots. Further, if four or more nozzles are used to print a data row in the overlap region, two of the ink ejection elements that fire outer dots for that row are disabled. Last, the substrates are calibrated so that all of the printhead assemblies


102


,


236


,


300


print at the same time (step


510


). In one embodiment, the predefined relationship of step


508


is defined by the following expression:






L
=


(




n
=
1

α







H
n


)

-

(




n
=
1


α
-
1








S
n


)












where L is the total length (measured in the number of nozzles) of each printhead assembly


102


, H is the height of each individual substrate, S is the height of the overlap region between substrates and where α is equal to the total number of substrates. In the above expression, the total length L of the printhead assembly


102


is equal to the sum of the height of each individual substrate minus the overlap region between substrates.




In one example using the above expression, the swath height could be calculated from the height of a nozzle column, z, and a height of nozzle overlap, y. In the case of an exemplary four-substrate module, where each nozzle column is the same height and the nozzle overlap is equal, the swath height would equal 4z−3y.




III. WORKING EXAMPLE





FIGS. 7A-7D

illustrate working examples of printhead assemblies that incorporate embodiments of the present invention.

FIGS. 7A-7D

each show multi-substrate printhead assemblies, each having 4 substrates with 20 nozzles, and is shown for illustrative purposes only. Each substrate is shown with a data row (DR), nozzle number (NN) and dot position (DP).

FIGS. 7A

and


7


C illustrate data mapping of a respective substrate with 20 nozzles before the nozzle masking controller


110


of

FIG. 1

is activated. The substrate of

FIG. 7A

has a negative swath height error and the substrate of

FIG. 7C

has a positive swath height error.

FIGS. 7B and 7D

each illustrate data mapping of the substrates of

FIGS. 7A and 7C

, respectively, after the nozzle masking controller


110


of

FIG. 1

is activated.




In the examples of

FIGS. 7A-7D

, the swath height could be calculated from the height of the nozzle column, and the height of the nozzle overlap. The swath height would equal 4 nozzle column minus 3 nozzle overlaps for an exemplary 4 substrate module, where each nozzle column is the same height and the nozzle overlap is equal. As two nozzles are printed per row, the nominal height of the column of each substrate is 10 data rows and the nominal overlap of nozzles is 4 nozzles. The ideal swath height would have a total of 34 data rows to allow 1200 dpi printed with the multi-substrate module.




In one example, assuming the multi-substrate module of

FIG. 7A

has an uncorrected swath height error of −73 μm with 37 data rows, each having 2 nozzle rows and 2 dot positions per data row in non-overlapping areas and 4 nozzle rows and 4 dot positions per data row in overlapping regions. The corrected swath height error is shown in FIG.


7


B and is corrected by the feedback processor


630


of

FIG. 6

, which determines the amount of negative swath height error, and the nozzle masking controller


110


of

FIG. 1

, and then disables certain ink ejection element associated with certain nozzles to effectively reduce the amount of swath height error. The method of

FIG. 5

can be used to correct swath height error for this example.




Namely, as shown in

FIG. 7B

, the data rows in the overlap region include disabled ink ejection elements associated with particular nozzles. Namely, substrate


1


includes two disabled ink ejection elements associated with the nozzles shown with an ‘X’ over dot positions associated with nozzle numbers


17


and


19


. Similarly, substrate


2


includes two disabled ink ejection elements associated with the nozzles shown with an “X” over dot positions associated with nozzle numbers


2


and


4


. Substrate


2


also includes two more disabled ink ejection elements associated with the nozzles shown with an “X” over dot positions associated with nozzle numbers


17


and


19


that overlap with substrate


3


.




Similarly, substrate


3


includes four disabled ink ejection elements associated with particular nozzles, two at the overlap region with substrate


2


, shown with an “X” over dot positions associated with nozzle numbers


2


and


4


and two at the overlap region with substrate


4


, shown with an “X” over dot positions associated with nozzle numbers


17


and


19


.




Last, substrate


4


includes two disabled ink ejection elements associated with the nozzles at the overlap region with substrate


3


shown with an “X” over dot positions associated with nozzle numbers


2


and


4


. This reduces the number of data rows from 37 data rows to 34 data rows. In this example, the disablement of the ink ejection elements of associated nozzles maintains a four nozzle overlapping scheme while still reducing the swath height error of the multi-module to only −12 μm. Even though two of the four ink ejection elements associated with the nozzles in the overlap areas are disabled, redundancy is maintained since all data is printed with the two ink ejection elements associated with the nozzles that are not disabled.




For positive swath height errors, the multi-substrate module of

FIG. 7C

has an uncorrected swath height error of +87 μm with only 31 data rows, each having 2 nozzle rows and 2 dot positions per data row in non-overlapping areas and 6 nozzle rows and 6 dot positions per data row in overlapping regions. The corrected swath height error is shown in FIG.


7


D and is corrected by the feedback processor


630


of

FIG. 6

, which determines the amount of positive swath height error, and the nozzle masking controller


110


of

FIG. 1

, and then disables certain ink ejection elements associated with certain nozzles to effectively reduce the amount of swath height error. The method of

FIG. 5

can be used to correct swath height error for this example.




Specifically, as shown in

FIG. 7D

, the data rows in the overlap region include disabled ink ejection elements of associated nozzles. Namely, substrate


1


includes two disabled ink ejection elements associated with the nozzles shown with an “X” over dot positions associated with nozzle numbers


18


and


20


. Similarly, substrate


2


includes two disabled ink ejection elements associated with the nozzles shown with an “X” over dot positions associated with nozzle numbers


1


and


3


. Substrate


2


also includes two more disabled ink ejection elements associated with the nozzles shown with an “X” over dot positions associated with nozzle numbers


18


and


20


that overlap with substrate


3


.




Similarly, substrate


3


includes four disabled ink ejection elements associated with nozzles, two at the overlap region with substrate


2


, shown with an “X” over dot positions associated with nozzle numbers


1


and


3


and two at the overlap region with substrate


4


, shown with an “X” over dot positions associated with nozzle numbers


18


and


20


.




Last, substrate


4


includes two disabled ink ejection elements associated with the nozzles at the overlap region with substrate


3


shown with an “X” over dot positions associated with nozzle numbers


1


and


3


. This increase the number of data rows from 31 data rows to 34 data rows. In this example, the disablement of the ink ejection elements associated nozzles maintains a four nozzle overlapping scheme while still reducing the swath height error of the multi-module to only 19.5 μm. Even though two of the four ink ejection elements associated with the nozzles in the overlap areas are disabled, redundancy is maintained since all data is printed with the two nozzles that are not disabled.




The foregoing has described the principles, preferred embodiments and modes of operation of the present invention. However, the invention should not be construed as being limited to the particular embodiments discussed. As an example, the above-described inventions can be used in conjunction with inkjet printers that are not of the thermal type, as well as inkjet printers that are of the thermal type. Thus, the above-described embodiments should be regarded as illustrative rather than restrictive, and it should be appreciated that variations may be made in those embodiments by workers skilled in the art without departing from the scope of the present invention as defined by the following claims.



Claims
  • 1. A method for decreasing dot placement artifacts of an inkjet printhead having at least two substrates, each with overlapping and non-overlapping nozzle rows and forming a printhead module, the method comprising:selectively disabling at least one ink ejection element associated with at least one nozzle in the overlapping nozzle rows based on a swath height error of the substrates; disabling alternating ink election elements associated with nozzles in a data row in the overlapping region; and increasing a total number of data rows of the substrates if the swath height error is greater than or equal to 1 nozzle spacing unit wherein 1 nozzle spacing unit is equal to a spacing between adjacent nozzles.
  • 2. The method of claim 1, further comprising firing a predefined number of nozzles per data row if the swath height error is not equal to zero.
  • 3. The method of claim 1, further comprising decreasing a total number of data rows of the substrates if the swath height error is less than or equal to negative 1 nozzle spacing unit, wherein 1 nozzle spacing unit is equal to a spacing between adjacent nozzles.
  • 4. The method of claim 1, further comprising calibrating the substrates so that all of the printheads print at the same time.
  • 5. The method of claim 1, further comprising determining an actual swath height produced by each substrate.
  • 6. The method of claim 5, further comprising comparing the actual swath height of each substrate to a predefined ideal swath height to define the swath height error.
  • 7. An inkjet printing system, comprising:plural substrates, each with a plurality of ink ejection elements, each ink ejection element coupled to a corresponding one of a plurality of ink ejection chambers for ejecting ink through a corresponding one of a plurality of nozzles, each nozzle for printing in a corresponding one of a plurality of nozzle rows; a masking controller operatively connected to the ink ejection elements, the controller configured to receive and process print data to selectively disable at least one ink ejection element associated with a particular nozzle in areas where nozzle rows overlap between substrates based on a swath height error of the substrates; and a feedback processor operatively coupled to the substrate and the masking controller, the feedback processor configured to determine actual swath heights produced by the substrates.
  • 8. The inkjet printing system of claim 7, wherein the masking controller is physically integrated with one of the substrates.
  • 9. The inkjet printing system of claim 7, wherein the masking controller is implemented as firmware incorporated into the inkjet printing system.
  • 10. The inkjet printing system of claim 7, wherein the masking controller is implemented by a printer driver as software operating on a computer system that is connected to the inkjet printing system.
  • 11. The inkjet printing system of claim 7, wherein the masking controller is implemented by a processor that is physically integrated with one of the substrates.
  • 12. The inkjet printing system of claim 7, wherein the plural substrates form multiple single substrate printhead modules.
  • 13. The inkjet printing system of claim 7, wherein the plural substrates form a single printhead module.
  • 14. The inkjet printing system of claim 7, wherein the plural substrates form multiple single substrate printhead modules and a single printhead module.
  • 15. The inkjet printing system of claim 7, wherein the feedback processor is configured to compare the actual swath height of each substrate to a predefined ideal swath height.
  • 16. The inkjet printing system of claim 7, wherein the masking controller is further configured to fire a predetermined number of nozzles per data row if the swath height error is not equal to zero.
  • 17. The inkjet printing system of claim 7, wherein the masking controller further disables alternating ink ejection elements associated with nozzles in a data row in the overlapping region and increases a total number of data rows of the substrates if the swath height error is greater than or equal to 1 unit, wherein 1 nozzle spacing unit is equal to a spacing between adjacent nozzles.
  • 18. The inkjet printing system of claim 7, wherein the masking controller further disables alternating ink ejection elements associated with nozzles in a data row in the overlapping region and decreases a total number of data rows of the substrates if the swath height error is less than or equal to negative 1 unit, wherein 1 nozzle spacing unit is equal to a spacing between adjacent nozzles.
  • 19. The inkjet printing system of claim 18, wherein the inkjet printhead includes plural substrates and wherein the swath height error is adjusted in accordance with the expression: L=(∑n=1α⁢ ⁢Hn)-(∑n=1α-1⁢ ⁢Sn)where L is a total length measured in a number of nozzles of each printhead, H is a height of each individual substrate, S is a height of an overlap region between substrates and where α is equal to a total number of substrates.
  • 20. An inkjet printhead assembly having a plurality of substrates with plural ink ejection elements, each ink ejection element, and the substrate having nozzle rows each associated with a print data row, the inkjet printhead comprising:means for determining a swath height error of the substrate; means for selectively disabling at least one ink ejection element associated with at least one nozzle in areas where nozzle rows overlap between substrates based on a swath height errors of the substrates to reduce the artifacts caused by the swath height errors; and means, operatively coupled to the substrate and the masking controller, for determining actual swath heights produced by the substrates.
  • 21. A method for operating an inkjet printhead having at least two substrates with plural ink ejection elements, each ink ejection element associated with a corresponding nozzle, the method comprising:determining an actual swath height produced by the substrate; comparing the actual swath height to a predefined ideal swath height to define a swath height error; selectively disabling at least one ink ejection element associated with at least one nozzle in areas where nozzle rows overlap between substrates based on a swath height errors of the substrates to reduce the artifacts caused by the swath height errors; and using a feedback processor operatively coupled to the substrate and the masking controller to determine actual swath heights produced by the substrates.
  • 22. The method of claim 21, further comprising firing a predetermined number of nozzles per data row if a swath height error is not equal to zero.
  • 23. The method of claim 21, further comprising disabling alternating ink ejection elements associated with nozzles in a data row in the overlapping region and increasing a total number of data rows of the substrates if a swath height error is greater than or equal to 1 unit, wherein 1 nozzle spacing unit is equal to a spacing between adjacent nozzles.
  • 24. The method of claim 21, further comprising disabling alternating ink ejection elements associated with nozzles in a data row in the overlapping region and decreasing a total number of data rows of the substrates if a swath height error is less than or equal to negative 1 unit, wherein 1 nozzle spacing unit is equal to a spacing between adjacent nozzles.
  • 25. The method of claim 21, wherein the at least two substrates form multiple single substrate printhead modules and further comprising calibrating all of the substrates so that all the printhead modules print at the same time.
  • 26. The method of claim 21, wherein the at least two substrates form a single printhead module and further comprising calibrating all of the substrates so that all the printhead modules print at the same time.
  • 27. The method of claim 21, wherein the at least two substrates form multiple single substrate printhead modules and a single printhead module and further comprising calibrating all of the substrates so that all the printhead modules print at the same time.
  • 28. In a system for decreasing dot placement artifacts of an inkjet printhead having plural substrates each having nozzle rows each associated with a print data row, wherein the substrates form plural printhead assemblies, a computer-readable medium having computer-executable instructions for performing a process on a computer, the process comprising:selectively disabling at least one ink ejection element associated with at least one nozzle in areas where nozzle rows overlap between substrates based on a swath height errors of the substrates to reduce the artifacts caused by the swath height errors; and using a feedback processor operatively coupled to the substrate and the masking controller to determine actual swath heights produced by the substrates.
  • 29. The computer-readable medium having computer-executable instructions for performing the process of claim 28, further comprising firing a predetermined number of nozzles per data row if a swath height error is not equal to zero.
  • 30. The computer-readable medium having computer-executable instructions for performing the process of claim 29, further comprising disabling alternating ink ejection elements associated with nozzles in a data row in the overlapping region and increasing a total number of data rows of the substrates if the swath height error is greater than or equal to 1 unit, wherein 1 nozzle spacing unit is equal to a spacing between adjacent nozzles.
  • 31. The computer-readable medium having computer-executable instructions for performing the process of claim 29, further comprising disabling alternating ink ejection elements associated with nozzles in a data row in the overlapping region and decreasing a total number of data rows of the substrates if the swath height error is less than equal to negative 1 unit, wherein 1 nozzle spacing unit is equal to a spacing between adjacent nozzles.
  • 32. The computer-readable medium having computer-executable instructions for performing the process of claim 29, further comprising calibrating the substrates so that all the printhead modules print at the same time.
US Referenced Citations (6)
Number Name Date Kind
5861899 Nguyen et al. Jan 1999 A
6196652 Subirada et al. Mar 2001 B1
6243109 Ishinaga et al. Jun 2001 B1
6257699 Tracy et al. Jul 2001 B1
6310640 Askeland Oct 2001 B1
6773086 Serra et al. Aug 2004 B2