Aspects of the invention relate to identifying entities in an information stream. Specifically, aspects are directed to resolving ambiguities in tagging entities in various types of media.
With the advent of the Internet and computing technologies in general, information about a wide array of topics has become readily available. The accessibility of such information allows a person to read about a topic and immediately obtain additional information about an entity mentioned in the article, webpage, white paper or other media. The entity may be a person, a movie, a song, a book title and the like. Alternatively, a person may wish to add the article or webpage to a database of information about the entity mentioned. However, the process of confirming that the entity mentioned corresponds to a particular known entity (e.g., a known entity in a database or an entity identified through a search) may be tedious and time consuming. Furthermore, tagging or associating an entity with the wrong person or title may lead to various inefficiencies in a system.
The following presents a simplified summary of the disclosure in order to provide a basic understanding of some aspects. It is not intended to identify key or critical elements of the invention or to delineate the scope of the invention. The following summary merely presents some concepts of the disclosure in a simplified form as a prelude to the more detailed description provided below.
One or more aspects described herein relate to identifying and tagging entities in a content item. In one example, an article about a scientific breakthrough may name the scientists that were involved in the effort and the institution (e.g., a school) where the research took place. The scientists and the institution may each be tagged as a known entity if those scientists or the institution are known to a database or system. By tagging the scientists or institution, a processing system may link a user to additional information about each of the entities such as other articles, videos and the like. Additionally or alternatively, content items, once tagged, may be organized or sorted based on entities that are referenced therein.
According to another aspect, candidate entities (i.e., entities that have not been confirmed as references to known entities) may be associated with some level of ambiguity in view of the candidate entity's similarity to multiple known entities. In such instances, the ambiguity is resolved before the candidate entity is tagged. Thus, disambiguation may be performed and may include the sorting and ranking of the multiple known entities for which the conflicted candidate entity may be a match according to a hierarchy of criteria. Once sorted, the lowest ranked known entity may be removed from consideration. The process may repeat until a single known entity remains, at which point the candidate entity may be tagged as corresponding to the remaining known entity.
According to yet another aspect, the identification, classification and disambiguation process for candidate entities may be based on prior knowledge that is collected from a variety of sources either automatically or manually or both. For example, some articles or other content items may be manually tagged to identify people mentioned in those content items. Accordingly, the manual decisions and taggings may serve as a basis for the matching, categorization and disambiguation of candidate entities. Language models and finite state automata (e.g., built by the prior knowledge) may also be used to classify and identify candidate entities in a content item. Finite state automata (FSA) refer generally to process models comprising a number of finite states and transitions between the states and actions. FSAs may be used to identify subsequences of characters in strings, e.g., to find potential names. The language model may then assign probabilities to the identified strings, allowing for the identification of unusual uses of language, and in particular ordinary phrases used as names.
According to one or more configurations, a feature detector may be used to identify attributes of a tagged content item or entity that may help with the matching, classification and disambiguation of other content items or entities. For example, if a person is referred to using an epithet in a tagged content item, the processing system may use or look for the epithet to determine whether a candidate entity in another content item refers to the same person.
In other embodiments, the present invention can be partially or wholly implemented on a computer-readable medium, for example, by storing computer-executable instructions or modules, or by utilizing computer-readable data structures.
Of course, the methods and systems of the above-referenced embodiments may also include other additional elements, steps, computer-executable instructions, or computer-readable data structures. In this regard, other embodiments are disclosed and claimed herein as well.
The details of these and other embodiments of the present invention are set forth in the accompanying drawings and the description below. Other features and advantages of the invention will be apparent from the description and drawings, and from the claims.
The present disclosure is illustrated by way of example and not limited in the accompanying figures in which like reference numerals indicate similar elements and in which:
The STB 106 is generally located at the subscriber location such as a subscriber's home, a tavern, a hotel room, a business, etc., and the receiving device 108 is generally provided by the subscribing client. The receiving device 108 may include a television, high definition television (HDTV), monitor, host viewing device, MP3 player, audio receiver, radio, communication device, personal computer, media player, digital video recorder, game playing device, etc. The device 108 may be implemented as a transceiver having interactive capability in connection with the STB 106, the headend 102 or both the STB 106 and the headend 102. Alternatively, STB 106 may include a cable modem for computers for access over cable.
The headend 102 is generally electrically coupled to the network 104, the network 104 is generally electrically coupled to the STB 106, and each STB 106 is generally electrically coupled to the respective device 108. The electrical coupling may be implemented as any appropriate hard-wired (e.g., twisted pair, untwisted conductors, coaxial cable, fiber optic cable, hybrid fiber cable, etc.) or wireless (e.g., radio frequency, microwave, infrared, etc.) coupling and protocol (e.g., Home Plug, HomePNA, IEEE 802.11(a-b), Bluetooth, HomeRF, etc.) to meet the design criteria of a particular application. While the distribution system 100 is illustrated showing one STB 106 coupled to one respective receiving device 108, each STB 106 may be configured with having the capability of coupling more than one device 108.
The headend 102 may include a plurality of devices 110 (e.g., devices 110a-110n) such as data servers, computers, processors, security encryption and decryption apparatuses or systems, and the like configured to provide video and audio data (e.g., movies, music, television programming, games, and the like), processing equipment (e.g., provider operated subscriber account processing servers), television service transceivers (e.g., transceivers for standard broadcast television and radio, digital television, HDTV, audio, MP3, text messaging, gaming, etc.), and the like. At least one of the devices 110 (e.g., a sender security device 110x), may include a security system.
In one or more embodiments, network 104 may further provide access to a wide area network (WAN) 112 such as the Internet. Accordingly, STB 106 or headend 102 may have access to content and data on the wide area network. Content items may include audio, video, text and/or combinations thereof. In one example, a service provider may allow a subscriber to access websites 114 and content providers 116 connected to the Internet (i.e., WAN 112) using the STB 106. Websites 114 may include news sites, social networking sites, personal webpages and the like. In another example, a service provider (e.g., a media provider) may supplement or customize media data sent to a subscriber's STB 106 using data from the WAN 112. Alternatively or additionally, one or more other computing devices 118 may be used to access either media distribution network 104 or wide area network 112.
Information systems such as headend 102, websites 114 or content providers 116 may include databases that store known entities such as people (e.g., actors, directors), names of content items (e.g., movies, songs, television shows) and the like. Information about these entities may be tracked and stored so that content items relating to the same entity may be linked. Entities, as used herein, refer generally to unique objects to which a content item may make reference. In one example, a user reading an article about a movie may be provided with links to additional information about the movie, actors, directors or other people mentioned in the article, other movies, songs and the like. The database may be consulted to determine if the entities mentioned in the article are known to the system and if so, any additional information relating to the entities may be provided to the user.
In some instances, however, identifying and tagging entities in a content item may be difficult due to ambiguities. For example, the same name or title may correspond to multiple known entities. Accordingly, such ambiguities may be resolved with a sufficient degree of accuracy to provide a benefit to users. Aspects described herein relate to the identification, disambiguation and tagging of entities in a content item. The process may include various processes including a text or string matching process, a classification process and a disambiguation process. The text matching process generally includes the identification of candidate entities through a comparison of words and phrases in a content item with known entities. In one example, words or phrases may be processed for matches using a set of finite state automata. A candidate entity refers to a reference (e.g., a word or phrase) in a content item that meets a threshold probability of corresponding to a known entity. In one example, a candidate entity may include a set of all substrings that match a particular regular expression corresponding to a known entity. The classification process then takes the candidate entities and categorizes the entities into one or more categories corresponding to types of entities. Types of entities may include celebrities, movie titles, song names, actors, musicians, false positives and the like. By categorizing the entities in such a manner, some level of disambiguation is accomplished. Additionally, false positives may be weeded out of the processing stream. In the disambiguation process, candidate entities that are ambiguous within a category (e.g., two actors with the same name) may be further evaluated to identify the correct or most likely matching known entity. Each of these processes is described in further detail herein.
Once candidate entities have been identified using a string matching process, the identified candidate entities may be processed using statistical tagging and analysis in step 307. The statistical tagging and analysis may include 2 classification steps 310 and 315. In step 310, a first classification process may be used to sort the identified candidate entities into groups corresponding to known entities. Candidate entities may be classified into groups if they are determined to be a potential match with the known entity corresponding to a particular group. The classification may include statistical analyses and may be based on a variety of factors including the matches determined in the candidate entity identification process of step 305, textual information surrounding the candidate entity in the content item and/or decisions made for preceding candidate entities. Textual information may be considered to be surrounding a candidate entity if the text is within a predefined distance or number of words. Alternatively, surrounding textual information may be defined by a distance in characters, words, sentences, or paragraphs and/or combinations thereof. For other types of content items such as video or audio, surrounding material may be defined by a predefined amount of time around a candidate entity. In one example, a gender of the candidate entity may be determined based on surrounding key words such as in the phrase “Bridget plays a woman” (determining that Bridget is female based on the phrase “plays a woman”). In another example, a feature for determining whether an entity corresponds to a movie title may be defined as occurring 5 or fewer words after a set X of words, where set X includes a list of words that tend to correlate to movies. Thus, the above example movie feature detector may be used to determine that entity candidate ABC in the phrase “ABC was shown in 1000 theaters nationwide,” should be classified in a movie title category because “theaters” is in the set of words that tend to correlate to movies and is within 5 or fewer words of entity candidate ABC.
Other conclusions may also be drawn based on surrounding words or phrases including ages, dates of movies or songs, genre of a movie or book, marital status and the like. In another example, co-occurrences may be evaluated to determine a probability that a candidate entity refers to a known entity. Co-occurrences refer generally to the occurrence of two or more entities in the same content item. Some co-occurrences are more likely or probable than others due to various relationships between the entities or a frequency or rate at which the two entities appear together in content items. For example, a husband and wife are more likely to appear in a content item than two unrelated entities. Similarly, the director of a movie and the movie are more likely to be mentioned in the same content item than the director and a movie that he or she did not direct. In one or more embodiments, a statistical classifier such as a decision tree may be used to classify candidate entities into the various categories. Decision trees and decision tree learning are described in further detail at http://en.wikipedia.org/wiki/Decision_tree_learning. The decision tree classification may further be AdaBoosted (i.e., supplemented with Adaptive Boosting). Adaptive boosting is described in further detail at http://en.wikipedia.org/wiki/AdaBoost.
Referring again to
Based on the first classification analysis, candidate entities may be categorized with known entities based on a probability that the candidate entity matches a specified known entity and/or type of entity (e.g., movie title, actor). According to one or more arrangements, a match probability threshold may be set so that a candidate entity might only be categorized with a known entity or type of entity if the match probability meets the specified threshold. In some instances, a candidate entity might not be categorized with any known entities or entity category due to an insufficient match probability (i.e., discarded or otherwise categorized as a false positive).
Upon completion of the first classification process, the system may perform a second classification analysis to re-sort or re-classify the candidate entities in step 315 based on the information considered in the first classification as well as new information. The second classification analysis allows the classification system to re-evaluate categorizations of candidate entities from the first classification process by analyzing not only the decisions made for preceding entity candidates, but also decisions made for following entity candidates. Such decisions might not be (and generally are not) available during the first classification process since no analysis or decisions may have been made yet for following candidate entities. Thus, having the benefit of the first classification analysis, not only may the second classification process take into account decisions made for preceding candidate entities in the first process and the second process, but also candidate entities that appear later in the content item. In some instances, the second classification analysis may re-categorize candidate entities based on the additional information available to the classification engine. Additionally or alternatively, an entity that was not initially categorized in the first classification analysis may be categorized with a known entity during the second pass based on the additional information available in the second classification process.
By way of example, consider the following passage that may be analyzed through the process of
During a first analysis, the first instance of the word “aliens” may be categorized or classified as a candidate entity for a movie title (i.e., for a movie “Aliens”) based on a co-occurrence with DirectorOne who directed the movie “Aliens.” The decision that the first instance of aliens should be classified as potentially matching the movie “Aliens” may be based on previous decisions such as a determination that DirectorOne corresponds to the same DirectorOne that directed “Aliens.” In a second pass or analysis, however, the first instance of aliens may be discarded as a potential match with “Aliens” and as a candidate entity based on additional information. The additional information may include a decision made regarding the second instance of aliens in the passage. For example, because the second instance of aliens is preceded by the word “the” and followed by a verb, a decision may be made that the second instance of aliens is not a reference to the movie “Aliens” and is not a candidate entity. Based on the decision relating to the second instance of aliens, a classification system may determine during the second analysis that the first instance of aliens also does not correspond to a candidate entity, thereby overriding or changing the previous decision or classification that was made based on co-occurrence with DirectorOne in the first classification process.
Once candidate entities have been sorted, ambiguities may be resolved. For example, if a candidate entity is classified as being a match with more than one known entity, a disambiguation process may used to resolve which of the multiple known entities the candidate entity is associated with or a reference to.
Referring again to
In one example of the disambiguation process, reference chains 601 and 613 of
In one or more arrangements, conflicted reference chains may be initially ranked or sorted based on a first criterion of highest importance (e.g., matching/classification confidence). Once sorted, the lowest ranking conflicted reference chain may be removed from consideration. Next, the remaining reference chains may be ranked or sorted based on a second criterion of second highest importance (e.g., co-occurrences). Again, the lowest ranking conflicted reference chain (based on the second criterion) may be removed. The process may continue until a single reference chain remains.
In one or more alternative embodiments, criteria may be used in the sorting or ranking process in an additive manner. Stated differently, the first sorting process may use only the first criterion. The second sorting process, however, may use the first criterion and the second criterion. The third sorting process may subsequently use the first criterion, the second criterion and a third criterion. Alternatively, each sorting step might only consider a single criterion.
Referring again to
As noted herein, classification, disambiguation and tagging may involve the analysis and consideration of multiple factors and attributes. For example, the spelling, capitalization and surrounding symbols, words and phrases of a candidate entity may be taken into account when evaluating potential matches to known entities. In one or more configurations, these factors and attributes may include prior knowledge or processing such as manual tagging or identification of attributes, tagged data processing and dictionary processing. Manual tagging and identification, for example, may involve human tagging of entities in content items and the creation of entity dictionaries. Entity dictionaries may include thousands of entities with each entity being identified by a canonical name, a database identifier and an entity rank (i.e., a metric allowing entities to be sorted by intrinsic likely interest or relevance). Tagged data processing, on the other hand, may be an automatic process, a manual process or a combination thereof that evaluates tagged data in content items to identify co-occurrences, frequency of co-occurrences and probabilities of a word, phrase, character or entity existing relative to another word, phrase, character or entity.
According to one or more aspects, a priori (i.e., prior) knowledge may be collected and used to create or add to a statistical model such as a trigram language model configured to predict the likelihood that entities are mentioned in a content item. A tri-gram language model is a particular instance of an n-gram language model. An n-gram is a sequence of n words. To create such a language model, language is divided into a set of all possible n-grams. In one or more arrangements, a representative corpus of documents is selected and digested into the n-grams contained in these documents. For each n-gram, the language model would then count a number of occurrences found and divide by all the n-grams found. This results in the probability of that particular n-gram in the corpus and an estimate of its probability in the language generally; the more representative the corpus, the better the estimate. If a new sequence of words is identified, the new sequence of words may be divided up into n-grams in similar fashion. Each n-gram may then be looked-up in the table of probabilities composed earlier from dividing up the corpus. These probabilities may then be multiplied together to determine the probability of the newly identified sequence. One purpose of an n-gram language model is to identify improbable sequences corresponding to names. For example, the musician known as Prince is referred to without the article “the,” but ordinary princes get this article. Since seeing the word prince without a preceding article (e.g., “the”) is improbable, this may be an indication that the reference is to the musician Prince and not a prince.
Dictionary processing may include a variety of processes including segregating entity names that are numbers or single common words (e.g., Predator, Clerks, Prince), determining variants of entity names (e.g., abbreviations, nicknames, acronyms, omitting or using middle names, initials or epithets), forming lists for each known entity by mapping names and/or variants with a corresponding canonical name, database identifier and/or entity rank, generating acyclic finite state automata (e.g., TRIE (retrieval) regular expressions) which will match all and only those expressions in a list and importing of external entity data. External entity data may include co-occurrence information of entities tagged by an external site such as IMDB.COM and the like. Entity names that are numbers or single common words may be segregated due to the likelihood of these entity names being false positives. By segregating such entity names, a separate statistical model may be used to evaluate whether they are false positives or true entity candidates. The separate statistical model may, in one or more instances, have a higher threshold for classification as a true entity candidate than a statistical model used for other entity names. Acyclic deterministic finite state automata may be used to more efficiently identify matches in entity names. For example, consider a database of a million names and a process of finding a match with the entity candidate “Terry.” Finite state automata allows for the grouping of the one million names into finer and finer groups of a decision tree such that the entity candidate does not need to be compared to each of the one million names to find a match. Information relating to acyclic, deterministic FSAs may be found at http://en.wikipedia.org/wiki/Acyclic_deterministic_finite_automaton. The pre-processed information may be used by the matching process, the classification process and/or the disambiguation process. For example, name variants and variant lists may be used to identify candidate entities in a content item. In another example, the external entity data and language models may be used in classifying the candidate entities.
A feature detector may be used to determine various attributes of an entity or a tagged content item for matching and classification purposes. In one or more configurations, a priori data may be used to determine how the features interact and what patterns are significant. For example, if an entity is spelled in all capital letters, such an attribute may be used as a discriminating feature when evaluating potentially matching candidate entities. Thus, a candidate entity that is appears as “marvel” might not be considered a high confidence match with known entity MARVEL due to the difference in capitalization despite the same spelling. Attributes or features that are evaluated may include colons, commas, capitalization, exact matches and the like. In another example, the movie “MISSION: IMPOSSIBLE” includes a colon between the two words. Thus, if the tagging system identifies a candidate entity “MISSION IMPOSSIBLE,” the tagging system might not consider the candidate entity a strong match because the candidate entity lacks a colon even though the candidate entity is spelled and capitalized in the same manner.
The following list provides an example list of feature detectors that may be used to determine attributes of an entity or content item:
ColonFeature: This feature has the value 1 if the chunk of text in question contains a colon; 0 otherwise.
CommaParentheticalFeature: Marks whether the chunk in question is contained in a comma or dash delimited parenthetical expression. For example, “The director, George Lucas, . . . . ”
CommonMutualInformationFeature: Looks for words that disproportionately indicate one type—celebrity, movie, TV show—or another before or after chunk. Mutual information generally refers to the extent to which one event predicts another. Smoke and fire have high mutual information, for example. During the training stage, a process calculates the mutual information between words in a small window surrounding a chunk of known type and the type of that chunk. It then ranks these and selects those most predictive of the type. When a new chunk is considered, the mutual information within this window for each type is added up and provided as a feature value. If something is ambiguous between a TV show title and a movie title, for instance, this can provide evidence for disambiguation.
DefiniteFeature: Whether the chunk begins with ‘the’. Among other things this indicates that the chunk itself is a noun phrase, or at least the beginning of one. This is weak evidence in favor of the chunk indicating a title, however, it allows the classifiers to model the properties of such titles separately.
DigitFeature: Whether the chunk contains a digit. Chunks containing digits might often be false positives.
ExactMatchFeature: Whether the chunk in question follows a tagging of the exact same sequence. Whatever evidence led the classifiers to tag the earlier chunk then weighs in favor of tagging this chunk.
FirstSentenceFeature: Has the value 1 for any chunk in the first sentence. The classifiers can use this feature to construct a separate statistical model for expressions in the first sentence, which tend to behave differently from other sentences in the document.
IdCountFeature: Assigns to its feature the ratio of the number of counts of a chunk's most common id to the number of words in the text.
InitialCapsFeature: Whether the chunk is capitalized.
InternalPunctuationFeature: Whether there are punctuation marks among the words of the chunk. This is often counter evidence against the chunk being a desirable referring expression.
ListPatternFeature: Whether this chunk appears to occur in the context of a list—e.g., “Brad Pitt, Angelina Jolie, Scarlett Johansson, Matthew Yglesias, Zbigniew Brzezinski.” List contexts are problematic because they separate interior chunks from the ordinary evidence used to recognize expressions of particular types. This feature allows the classifiers to model this sort of chunk separately.
MatchByTypeFeature: Counts number of times the chunk in question was assigned different types by the first-pass classifier. The chunk itself is excluded so as not to recycle the first classification directly. This is an insoluble ambiguity detector, allowing the classifiers to give up rather than make an incorrect decision.
OuterInFeature: Whether the chunk is preceded by ‘in’, a preposition that often appears before titles.
OuterTheFeature: Whether the chunk is preceded by ‘the’. Among other things this indicates that the chunk itself is not a complete noun phrase, as that would include the ‘the’. This then is counter evidence against the chunk being a referring expression of interest.
ParenthesesFeature: Whether the chunk occurs inside parentheses. This commonly occurs with actor names in contexts such as “the uncle (Zach Brat) then . . . ”
PossessedFeature: Whether the chunk is the object of possession; for example “boat” in “John's boat”. Person names seldom occur in this context.
PossessiveFeature: Whether the chunk is marked as the possessor of some other thing, e.g., “John” in “John's boat”. This tends to correlate with personhood.
ProperMutualInformationFeature: Like the common mutual information feature but focuses on phrases that do not occur in a list of common English words. This would include words such as “L.A.”, “Hollywood”, “Academy Awards”, “New York”, and so on.
QuoteFeature: Whether the chunk occurs inside quotes, as is often the case with titles.
RankFeature: Assigns each type the maximum “entity rank” of any id appropriate to that type. Entity rank is a value that seeks to estimate the fame of or public interest in an entity. Writers are less likely to use high rank names ambiguously.
RatioFeature: Ratio of common words to words in a chunk. If the chunk is mostly common words it is more likely to be a false positive.
SentenceXFeature: Whether it appears that the chunk in question occurs at the beginning of a sentence. This is a highly topical position; more importantly, topical entities are likely to be mentioned there.
SingleWordFeature: Whether the chunk contains a single word. This feature allows the classifiers to model such chunks separately.
SuperMatchPerTypeFeature: Counts the types of previous super matches of the chunk in question. A super match is a tagged chunk that contains the chunk in question as a substring. This feature is used to push all likely references to the same entity to a common type. This feature detector generally runs in the second pass (i.e., the second classification process).
SurroundingCapsFeature: Whether the words around the chunk have initial capitalization. This is an indication that the tagger picked a piece of a large expression—“the King” in “Return of the King”, for example.
TotalPerTypeFeature: Measures the frequency of each tag type normalized by the number of tags. The type of the current chunk, if any, is ignored. This is an ambiguity detector. It can help the classifiers determine when they should give up and ignore the chunk.
TypeDistanceBackFeature: Number of words back from this chunk to other tagged chunks of particular types. This helps, for example, in determining that an expression refers to a TV show rather than a movie of this same name when the chunk appears amid other chunks tagged as TV shows.
TypeDistanceForwardFeature: Like the previous feature (i.e., TypeDistanceBackFeature) but looking in the opposite direction.
UnbalancedQuoteFeature: Whether the chunk is bracketed on only one side by a quote character. This is an indication that it is part of a larger title.
UncapitalizedFeature: Whether there is some word in the chunk that does not have initial capitalization. Again this may indicate a false tagging.
WhoFeature: Whether the chunk is followed by the word ‘who’, ‘whom’, or ‘whose, all indications that it refers to a person.
WordCountFeature: Counts the words in the chunk. The classifier may choose to model chunks of different lengths differently.
XDigitFeature: Whether the chunk is followed by a digit.
Identification module 703 may be configured to identify candidate entities in a content item using various methods including those described previously. For example, raw text may be fed into the identification module 703 so that candidate entities may be identified therefrom. The candidate entities may then be fed into a classification module 705 configured to classify the candidate entities according to likely matches with types of entities. Classification module 705 may use various classification rules and criteria including those described previously. Classification module 705 may process the candidate entities two or more times as discussed herein. The resulting categorizations may then be submitted to a reference chainer 707 configured to form reference chains based on the categorizations. Once chained, conflict resolution module 709 may resolve any conflicts between reference chains using a hierarchy of criteria. The unconflicted reference chains may then be processed by a gap filler 711 that is configured to add in any false negatives that were identified in the previous processes. The identified candidate entities in a content item may then be tagged based on the finalized reference chains.
Tagging system 700 may include one or more processors, random access memory (RAM) modules or read-only memory (ROM) modules and may comprise a single apparatus or multiple apparatuses. For example, tagging system 700 may be a distributed system that spans multiple networked or otherwise connected devices. The components and modules of system 700 may comprise hardware, software, firmware or any combinations thereof.
The methods and features recited herein may further be implemented through any number of computer readable media that are able to store computer readable instructions. Examples of computer readable media that may be used include RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, DVD or other optical disk storage, magnetic cassettes, magnetic tape, magnetic storage and the like.
Additionally or alternatively, in at least some embodiments, the methods and features recited herein may be implemented through one or more integrated circuits (ICs). An integrated circuit may, for example, be a microprocessor that accesses programming instructions or other data stored in a read only memory (ROM). In some such embodiments, the ROM stores programming instructions that cause the IC to perform operations according to one or more of the methods described herein. In at least some other embodiments, one or more of the methods described herein are hardwired into an IC. In other words, the IC is in such cases an application specific integrated circuit (ASIC) having gates and other logic dedicated to the calculations and other operations described herein. In still other embodiments, the IC may perform some operations based on execution of programming instructions read from ROM or RAM, with other operations hardwired into gates and other logic of IC. Further, the IC may output image data to a display buffer.
Although specific examples of carrying out the invention have been described, those skilled in the art will appreciate that there are numerous variations and permutations of the above-described systems and methods that are contained within the spirit and scope of the invention as set forth in the appended claims. Additionally, numerous other embodiments, modifications and variations within the scope and spirit of the appended claims will occur to persons of ordinary skill in the art from a review of this disclosure.
This application is a continuation of and claims the benefit of priority from co-pending application Ser. No. 12/464,392, filed May 12, 2009. The contents of the above application are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4227177 | Moshier | Oct 1980 | A |
5493677 | Balogh et al. | Feb 1996 | A |
5521841 | Arman et al. | May 1996 | A |
5530859 | Tobias, II et al. | Jun 1996 | A |
5535063 | Lamming | Jul 1996 | A |
5553281 | Brown et al. | Sep 1996 | A |
5576755 | Davis et al. | Nov 1996 | A |
5594897 | Goffman | Jan 1997 | A |
5640553 | Schultz | Jun 1997 | A |
5649182 | Reitz | Jul 1997 | A |
5666528 | Thai | Sep 1997 | A |
5682326 | Klingler et al. | Oct 1997 | A |
5717914 | Husick et al. | Feb 1998 | A |
5729741 | Liaguno et al. | Mar 1998 | A |
5737495 | Adams et al. | Apr 1998 | A |
5737734 | Schultz | Apr 1998 | A |
5742816 | Barr et al. | Apr 1998 | A |
5761655 | Hoffman | Jun 1998 | A |
5765150 | Burrows | Jun 1998 | A |
5799315 | Rainey et al. | Aug 1998 | A |
5819292 | Hitz et al. | Oct 1998 | A |
5845279 | Garofalakis et al. | Dec 1998 | A |
5857200 | Togawa | Jan 1999 | A |
5924090 | Krellenstein | Jul 1999 | A |
5928330 | Goetz et al. | Jul 1999 | A |
5937422 | Nelson et al. | Aug 1999 | A |
5956729 | Goetz et al. | Sep 1999 | A |
5982369 | Sciammarella et al. | Nov 1999 | A |
6038560 | Wical | Mar 2000 | A |
6052657 | Yamron et al. | Apr 2000 | A |
6055543 | Christensen et al. | Apr 2000 | A |
6058392 | Sampson et al. | May 2000 | A |
6167377 | Gillick et al. | Dec 2000 | A |
6188976 | Ramaswamy et al. | Feb 2001 | B1 |
6278992 | Curtis et al. | Aug 2001 | B1 |
6320588 | Palmer et al. | Nov 2001 | B1 |
6343294 | Hawley | Jan 2002 | B1 |
6345253 | Viswanathan | Feb 2002 | B1 |
6363380 | Dimitrova | Mar 2002 | B1 |
6366296 | Boreczky et al. | Apr 2002 | B1 |
6374260 | Hoffert et al. | Apr 2002 | B1 |
6415434 | Kind | Jul 2002 | B1 |
6418431 | Mahajan et al. | Jul 2002 | B1 |
6463444 | Jain et al. | Oct 2002 | B1 |
6545209 | Flannery et al. | Apr 2003 | B1 |
6546385 | Mao et al. | Apr 2003 | B1 |
6567980 | Jain et al. | May 2003 | B1 |
6580437 | Liou et al. | Jun 2003 | B1 |
6675174 | Bolle et al. | Jan 2004 | B1 |
6698020 | Zigmond et al. | Feb 2004 | B1 |
6771875 | Kunieda et al. | Aug 2004 | B1 |
6789088 | Lee et al. | Sep 2004 | B1 |
6792426 | Baumeister et al. | Sep 2004 | B2 |
6877134 | Fuller et al. | Apr 2005 | B1 |
6882793 | Fu et al. | Apr 2005 | B1 |
6901364 | Nguyen et al. | May 2005 | B2 |
6937766 | Wilf et al. | Aug 2005 | B1 |
6970639 | McGrath et al. | Nov 2005 | B1 |
7155392 | Schmid et al. | Dec 2006 | B2 |
7177861 | Tovinkere et al. | Feb 2007 | B2 |
7206303 | Karas et al. | Apr 2007 | B2 |
7272558 | Soucy et al. | Sep 2007 | B1 |
7376642 | Nayak et al. | May 2008 | B2 |
7472137 | Edelstein et al. | Dec 2008 | B2 |
7490092 | Sibley et al. | Feb 2009 | B2 |
7548934 | Platt et al. | Jun 2009 | B1 |
7584102 | Hwang et al. | Sep 2009 | B2 |
7739286 | Sethy et al. | Jun 2010 | B2 |
7788266 | Venkataraman et al. | Aug 2010 | B2 |
7792812 | Carr | Sep 2010 | B1 |
7814267 | Iyengar et al. | Oct 2010 | B1 |
7921116 | Finkelstein et al. | Apr 2011 | B2 |
7925506 | Farmaner et al. | Apr 2011 | B2 |
7958119 | Eggink et al. | Jun 2011 | B2 |
7983902 | Wu et al. | Jul 2011 | B2 |
8041566 | Peters et al. | Oct 2011 | B2 |
8078467 | Wu et al. | Dec 2011 | B2 |
8117206 | Sibley et al. | Feb 2012 | B2 |
8265933 | Bates et al. | Sep 2012 | B2 |
8527520 | Morton et al. | Sep 2013 | B2 |
8572087 | Yagnik | Oct 2013 | B1 |
20010014891 | Hoffert et al. | Aug 2001 | A1 |
20020035573 | Black et al. | Mar 2002 | A1 |
20020087315 | Lee et al. | Jul 2002 | A1 |
20020143774 | Vandersluis | Oct 2002 | A1 |
20020194181 | Wachtel | Dec 2002 | A1 |
20030014758 | Kim | Jan 2003 | A1 |
20030033297 | Ogawa | Feb 2003 | A1 |
20030050778 | Nguyen et al. | Mar 2003 | A1 |
20030061028 | Dey et al. | Mar 2003 | A1 |
20030093790 | Logan et al. | May 2003 | A1 |
20030135582 | Allen et al. | Jul 2003 | A1 |
20030163443 | Wang | Aug 2003 | A1 |
20030163815 | Begeja et al. | Aug 2003 | A1 |
20030195877 | Ford et al. | Oct 2003 | A1 |
20030204513 | Bumbulis | Oct 2003 | A1 |
20040111465 | Chuang et al. | Jun 2004 | A1 |
20040117831 | Ellis et al. | Jun 2004 | A1 |
20040139091 | Shin | Jul 2004 | A1 |
20040215634 | Wakefield et al. | Oct 2004 | A1 |
20040225667 | Hu et al. | Nov 2004 | A1 |
20040243539 | Skurtovich et al. | Dec 2004 | A1 |
20040254795 | Fujii et al. | Dec 2004 | A1 |
20040267700 | Dumais et al. | Dec 2004 | A1 |
20050044105 | Terrell | Feb 2005 | A1 |
20050060647 | Doan et al. | Mar 2005 | A1 |
20050091443 | Hershkovich et al. | Apr 2005 | A1 |
20050097138 | Kaiser et al. | May 2005 | A1 |
20050114130 | Java et al. | May 2005 | A1 |
20050152362 | Wu | Jul 2005 | A1 |
20050193005 | Gates et al. | Sep 2005 | A1 |
20050222975 | Nayak et al. | Oct 2005 | A1 |
20060004738 | Blackwell et al. | Jan 2006 | A1 |
20060037046 | Simms et al. | Feb 2006 | A1 |
20060074671 | Farmaner et al. | Apr 2006 | A1 |
20060088276 | Cho et al. | Apr 2006 | A1 |
20060100898 | Pearce et al. | May 2006 | A1 |
20060112097 | Callaghan et al. | May 2006 | A1 |
20060156399 | Parmar et al. | Jul 2006 | A1 |
20060161546 | Callaghan et al. | Jul 2006 | A1 |
20060167859 | Verbeck Sibley et al. | Jul 2006 | A1 |
20060212288 | Sethy et al. | Sep 2006 | A1 |
20060235843 | Musgrove et al. | Oct 2006 | A1 |
20060253780 | Munetsugu et al. | Nov 2006 | A1 |
20060256739 | Seier et al. | Nov 2006 | A1 |
20070011133 | Chang | Jan 2007 | A1 |
20070050343 | Siddaramappa et al. | Mar 2007 | A1 |
20070050366 | Bugir et al. | Mar 2007 | A1 |
20070067285 | Blume et al. | Mar 2007 | A1 |
20070078708 | Yu et al. | Apr 2007 | A1 |
20070083374 | Bates et al. | Apr 2007 | A1 |
20070156677 | Szabo | Jul 2007 | A1 |
20070208567 | Amento et al. | Sep 2007 | A1 |
20070211762 | Song et al. | Sep 2007 | A1 |
20070214123 | Messer et al. | Sep 2007 | A1 |
20070214488 | Nguyen et al. | Sep 2007 | A1 |
20070233487 | Cohen et al. | Oct 2007 | A1 |
20070233656 | Bunescu et al. | Oct 2007 | A1 |
20070239707 | Collins et al. | Oct 2007 | A1 |
20070250901 | McIntire et al. | Oct 2007 | A1 |
20070260700 | Messer | Nov 2007 | A1 |
20070271086 | Peters et al. | Nov 2007 | A1 |
20080033915 | Chen | Feb 2008 | A1 |
20080046929 | Cho et al. | Feb 2008 | A1 |
20080059418 | Barsness et al. | Mar 2008 | A1 |
20080091633 | Rappaport et al. | Apr 2008 | A1 |
20080118153 | Wu et al. | May 2008 | A1 |
20080133504 | Messer et al. | Jun 2008 | A1 |
20080162533 | Mount et al. | Jul 2008 | A1 |
20080163328 | Philbin et al. | Jul 2008 | A1 |
20080168045 | Suponau et al. | Jul 2008 | A1 |
20080183681 | Messer et al. | Jul 2008 | A1 |
20080183698 | Messer et al. | Jul 2008 | A1 |
20080189110 | Freeman et al. | Aug 2008 | A1 |
20080204595 | Rathod et al. | Aug 2008 | A1 |
20080208796 | Messer et al. | Aug 2008 | A1 |
20080208839 | Sheshagiri et al. | Aug 2008 | A1 |
20080208864 | Cucerzan et al. | Aug 2008 | A1 |
20080221989 | Messer et al. | Sep 2008 | A1 |
20080222105 | Matheny | Sep 2008 | A1 |
20080222106 | Rao et al. | Sep 2008 | A1 |
20080222142 | O'Donnell | Sep 2008 | A1 |
20080235209 | Rathod et al. | Sep 2008 | A1 |
20080235393 | Kunjithapatham et al. | Sep 2008 | A1 |
20080250010 | Rathod et al. | Oct 2008 | A1 |
20080256097 | Messer et al. | Oct 2008 | A1 |
20080266449 | Rathod et al. | Oct 2008 | A1 |
20080281801 | Larson et al. | Nov 2008 | A1 |
20080288641 | Messer et al. | Nov 2008 | A1 |
20080319962 | Riezler et al. | Dec 2008 | A1 |
20090006315 | Mukherjea et al. | Jan 2009 | A1 |
20090006391 | Ram | Jan 2009 | A1 |
20090013002 | Eggink et al. | Jan 2009 | A1 |
20090025054 | Gibbs et al. | Jan 2009 | A1 |
20090055381 | Wu et al. | Feb 2009 | A1 |
20090077078 | Uppala et al. | Mar 2009 | A1 |
20090083257 | Bargeron et al. | Mar 2009 | A1 |
20090094113 | Berry et al. | Apr 2009 | A1 |
20090123021 | Jung et al. | May 2009 | A1 |
20090144260 | Bennett et al. | Jun 2009 | A1 |
20090144609 | Liang | Jun 2009 | A1 |
20090157680 | Crossley et al. | Jun 2009 | A1 |
20090198686 | Cushman, II et al. | Aug 2009 | A1 |
20090204599 | Morris et al. | Aug 2009 | A1 |
20090205018 | Ferraiolo et al. | Aug 2009 | A1 |
20090240650 | Wang et al. | Sep 2009 | A1 |
20090240674 | Wilde et al. | Sep 2009 | A1 |
20090271195 | Kitade et al. | Oct 2009 | A1 |
20090282069 | Callaghan et al. | Nov 2009 | A1 |
20090326947 | Arnold et al. | Dec 2009 | A1 |
20100042602 | Smyros et al. | Feb 2010 | A1 |
20100063886 | Stratton et al. | Mar 2010 | A1 |
20100070507 | Mori | Mar 2010 | A1 |
20100094845 | Moon et al. | Apr 2010 | A1 |
20100138653 | Spencer et al. | Jun 2010 | A1 |
20100250598 | Brauer et al. | Sep 2010 | A1 |
20110004462 | Houghton et al. | Jan 2011 | A1 |
20110016106 | Xia | Jan 2011 | A1 |
20110077943 | Miki et al. | Mar 2011 | A1 |
20110125728 | Smyros et al. | May 2011 | A1 |
20110191099 | Farmaner et al. | Aug 2011 | A1 |
20110246503 | Bender et al. | Oct 2011 | A1 |
20120036119 | Zwicky et al. | Feb 2012 | A1 |
20120078932 | Skurtovich, Jr. et al. | Mar 2012 | A1 |
20120150636 | Freeman et al. | Jun 2012 | A1 |
20120191695 | Xia | Jul 2012 | A1 |
20130054589 | Cheslow | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
2688921 | Dec 2009 | CA |
2689376 | Dec 2009 | CA |
2689379 | Dec 2009 | CA |
2694943 | Feb 2010 | CA |
2695709 | Mar 2010 | CA |
2697565 | Apr 2010 | CA |
2685833 | May 2010 | CA |
2703569 | May 2010 | CA |
2708842 | Jun 2010 | CA |
1241587 | Sep 2002 | EP |
1950739.1 | Feb 2003 | EP |
1462950 | Sep 2004 | EP |
1501305 | Jan 2005 | EP |
9179987.4 | Dec 2009 | EP |
9180762.8 | Dec 2009 | EP |
9180776.8 | Dec 2009 | EP |
10154725.5 | Feb 2010 | EP |
09815446.1 | Mar 2010 | EP |
10155340.2 | Mar 2010 | EP |
10162666.1 | May 2010 | EP |
10167947 | Jun 2010 | EP |
2448874 | Nov 2008 | GB |
2448875 | Nov 2008 | GB |
9950830 | Oct 1999 | WO |
0205135 | Jan 2002 | WO |
2005050621 | Jun 2005 | WO |
2006099621 | Sep 2006 | WO |
2007115224 | Oct 2007 | WO |
2008053132 | May 2008 | WO |
2009052277 | Apr 2009 | WO |
Entry |
---|
Shahraray: “Impact and Applications of Video Content Analysis and Coding in the intemet and Telecommunications”, AT&T Labs Research, a Position Statement for Panel 4: Applications the 1998 International Workshop on Very Low Bitrate Video Coding, 3 pages. |
Kalina Bontcheva et al “Shallow Methods for Named Entity Coreference Resolution”, Proc. of Taln 2002, Jan. 1, 2002. |
Raphael Volz et al., “Towards ontologybased disambiguation of geographical identifiers”, Proceedings of the WWW2007 Workship I3: Identity, Identifiers, Identification, Entity-Centric Approaches to Information and Knowledge Management on the Web, Jan. 1, 2007. |
Wacholder N et al., “Disambiguation of Proper Names in Text”, Proceedings of the Conference on Applied Natural Language Processing, Association Computer Linguistics, Morrisontown, NJ, Mar. 1, 2007. |
Boulgouris N. V. et al., “Real-Time Compressed-Domain Spatiotemporal Segmentation and Ontologies for Video Indexing and Retrieval”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, No. 5, pp. 606-621, May 2004. |
Changsheng Xu et al., “Using Webcast Text for Semantic Event Detection in Broadcast Sports Video”, IEEE Transactions on Multimedia, vol. 10, No. 7, pp. 1342-1355, Nov. 2008. |
Liang Bai et al., “Video Semantic Content Analysis based on Ontology”, International Machine Vision and Image Processing Conference, pp. 117-124, Sep. 2007. |
Koskela M. et al., “Measuring Concept Similarities in Multimedia Ontologies: Analysis and Evaluations”, IEEE Transactions on Multimedia, vol. 9, No. 5, pp. 912-922, Aug. 2007. |
Steffen Staab et al., “Semantic Multimedia”, Reasoning Web; Lecture Notes in Computer Science, pp. 125-170, Sep. 2008. |
European Search Report EP09179987.4, dated Jun. 4, 2010. |
Li, Y. et al., “Reliable Video Clock Time Recognition,” Pattern Recognition, 2006, 1CPR 1006, 18th International Conference on Pattern Recognition, 4 pages. |
Salton et al., Computer Evaluation of Indexing and Text Processing Journal of the Association for Computing Machinery, vol. 15, No. 1, Jan. 1968, pp. 8-36. |
European Search Report for Application No. 09180776.8, mailed Jun. 7, 2010, 9 pages. |
European Search Report EP 09180762, dated Mar. 22, 2010. |
European Application No. 09175979.5—Office Action mailed Mar. 15, 2010. |
EP Application No. 09 175 979.5—Office Action mailed Apr. 11, 2011. |
Smith, J.R. et al., “An Image and Video Search Engine for the World-Wide Web” Storage and Retrieval for Image and Video Databases 5, San Jose, Feb. 13-14, 1997, Proceedings of Spie, Belingham, Spie, US, vol. 3022, Feb. 13, 1997, pp. 84-95. |
Kontothoanassis, Ledonias et al. “Design, Implementation, and Analysis of a Multimedia Indexing and Delivery Server”, Technical Report Series, Aug. 1999, Cambridge Research Laboratory. |
European Patent Application No. 09175979.5—Office Action dated Dec. 13, 2011. |
International Preliminary Examination Report for PCT/US01/20894, dated Feb. 4, 2002. |
Towards a Multimedia World-Wide Web Information retrieval engines, Sougata Mukherjea, Kyoji Hirata, and Yoshinori Hara Computer Networks and ISDN Systems 29 (1997) 1181-1191. |
Experiments in Spoken Document Retrieval at CMU, M.A. Siegler, M.J. Wittbrock, S.T. Slattery, K. Seymore, R.E. Jones, and A.G. Hauptmann, School of Computer Science Carnegie Mellon University, Pittsburgh, PA 15213-3890, Justsystem Pittsburgh Research Center, 4616 Henry Street, Pittsburgh, PA 15213. |
Eberman, et al., “Indexing Multimedia for the Internet”, Compaq, Cambridge Research laboratory, Mar. 1999, pp. 1-8 and Abstract. |
Ishitani, et al., “Logical Structure Analysis of Document Images Based on Emergent Computation”, IEEE Publication, pp. 189-192, Jul. 1999. |
First Office Action in EP01950739.1-1244 dated Mar. 27, 2009. |
Chen, “Extraction of Indicative Summary Sentences from Imaged Documents”, IEEE publication, 1997, pp. 227-232. |
Messer, Alan et al., “SeeNSearch: A Context Directed Search Facilitator for Home Entertainment Devices”, Paper, Samsung Information Systems America Inc., San Jose, CA. |
Hsin-Min Wang and Berlin Chen, “Content-based Language Models for Spoken Document Retrieval”, ACM, 2000, pp. 149-155. |
Marin, Feldman, Ostendorf and Gupta, “Filtering Web Text to Match Target Genres”, International Conference on Acoustics, Speech and Signal Processing, 2009, Piscataway, NJ, Apr. 19, 2009, pp. 3705-3708. |
European Search Report for application No. 10167947.0, mailed Sep. 28, 2010. |
“Ying Zhang and Phil Vines. 2004. Using the web for automated translation extraction in cross-language information retrieval. In Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval (SIGIR '04). ACM, New York, NY, USA, 162-169”. |
IPER PCT/US2009/069644—Jun. 29, 2011. |
ISR PCT/US2009/069644—Mar. 4, 2010. |
ESR—EP10154725.5—Nov. 2, 2010. |
ESR—EP10155340.2—Nov. 25, 2010. |
Partial ESR—EP10155340.2—Jul. 12, 2010. |
ESR—EP10162666.1—Aug. 4, 2011. |
ESR—EP10167947.0—Sep. 28, 2010. |
ISR PCT/US2001/020894—Nov. 25, 2003. |
Extended European Search Report—EP 09815446.1—mailing date: May 7, 2013. |
Behrang Mohit and Rebecca Hwa, 2005. Syntax-based Semi-Supervised Named Entity Tagging. In Proceedings of the ACL Interactive Poster and Demonstration Sessions, pp. 57-60. |
Shumeet Baluja, Vibhu Mittal and Rahul Sukthankar, 1999. Applying machine learning for high performance named-entity extraction. In Proceedings of Pacific Association for Computational Linguistics. |
R. Bunescu and M. Pasca. 2006. Using encyclopedic knowledge for named entity disambiguation. In Proceedings of EACL—2006, pp. 9-16. |
S. Cucerzan. 2007. Large-Scale Named Entity Disambiguation Based on Wikipedia Data. In Proceedings of EMNLP-CoNLL 2007, pp. 708-716. |
Radu Florian, 2002. Named entity recognition as a house of cards: Classifier stacking. In Proceedings of CoNL2002, pp. 175-178. |
Martin Jansche, 2002. Named Entity Extraction with Conditional Markov Models and Classifiers. In Proceedings of CoNLL—2002. |
Thamar Solorio, 2004. Improvement of Named Entity Tagging by Machine Learning. Repone Tecnico No. CCC-04-004. INAOE. |
Chen, Langzhou, et al. “Using information retrieval methods for language model adaptation.” INTERSPEECH. 2001. |
Sethy, Abhinav, Panayiotis G. Georgiou, and Shrikanth Narayanan. “Building topic specific language models from webdata using competitive models.” INTERSPEECH. 2005. |
Response to European Office Action—EP Appl. 9180762.8—Submitted Jul. 29, 2015. |
European Office Action—EP Appl. 10162666.1—dated Jul. 10, 2015. |
Canadian Office Action—CA Application 2,697,565—dated Dec. 15, 2015. |
European Office Action—EP Appl. 09815446.1—dated Feb. 17, 2016. |
Canadian Office Action—CA Appl. 2,688,921—mailed Feb. 16, 2016. |
European Office Action—EP 10154725.5—Dated Apr. 24, 2015. |
Canadian Office Action—CA App 2,695,709—dated Jun. 20, 2016. |
Canadian Office Action—CA Appl. 2,689,376—dated Feb. 23, 2016. |
Canadian Office Action—CA Appl. 2,703,569—dated Apr. 19, 2016. |
Canadian Office Action—CA Appl. 2,708,842—dated May 9, 2016. |
Canadian Office Action—CA Appl. 2,694,943—dated Jun. 1, 2016. |
Response to European Office Action—EP 10162666.1—Dated Oct. 14, 2015. |
Response to European Office Action—EP Appl. 10154725.5—submitted Oct. 14, 2015. |
Canadian Office Action—CA App 2,697,565—dated Dec. 28, 2016. |
Canadian Office Action—CA Appl. 2,703,569—Feb. 8, 2017. |
Number | Date | Country | |
---|---|---|---|
20140040272 A1 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12464392 | May 2009 | US |
Child | 14012289 | US |