The present invention relates generally to input devices and device display systems, and more particularly to invisible input systems and device display systems. The input devices and display systems may become visible when illuminated from behind through invisible holes.
In the world of consumer devices, and particularly consumer electronics, there is an ever-present demand for improved appearance, improved functionality, and improved aesthetics. Industrial design has become a highly skilled profession that focuses on fulfilling this need for enhanced consumer product appearance, functionality, and aesthetics.
One area that receives attention for improvement, particularly in consumer electronics, is user input and interface. Presently there exists a range of mechanically actuated (e.g., buttons, switches, levers, keys, keyboards, dials, click wheels, scroll wheels, and the like) or electrically actuated (e.g., touch pads, track pads, touch screens, multi-touch screens, and the like) input devices. These input devices interface with their associated electronic devices (e.g., computers, laptop computers, media devices, mobile phones, calculators, medical devices, etc. . . . ) in order to control a function of the device, for example, turn the device on or off, open a menu, move a cursor and so forth.
One challenge with these known input devices is that they may detract from the aesthetics of the device by interrupting the continuity of the device housing. To illustrate, compare a mobile phone having a traditional key pad with the iPhone produced by Apple Inc. of Cupertino, Calif. The iPhone has a flat touch-sensitive screen which presents a striking, seamless design, while the traditional mobile phone presents a cluttered array of keys and buttons. Besides the obvious aesthetic advantages of having a seamless design, a seamless design may have improved functionality and/or durability. For example, a traditional mechanical key pad can wear out over time and/or be ruined by dirt or moisture entering into the openings in the device housing. These openings are necessary to accommodate the traditional keys and buttons.
The iPhone touch screen uses capacitive sensing. This type of sensing takes advantage of the fact that two electrical fields separated by a dielectric produce capacitance. In the iPhone, a first electrical field is produced inside the iPhone by an array of electrodes. The second electrical field is provided by the user's finger. When the finger interacts with the glass touch surface a circuit inside the iPhone detects a change in capacitance and processes this change in order to compute, for example, the location and speed of the scrolling finger. Some modem track pads on laptop computers may function in a similar way, but normally have plastic or rubber track surfaces. In all of these devices the housing of the device is normally metal, while the track surface is normally a dielectric material such as rubber, plastic, or glass. Therefore, a truly seamless design has been impossible. Furthermore, a glass surface may be fragile.
Taken to its extreme, seamless design would have an invisible input. Since a metal housing is advantageous for aesthetic, environmental, and manufacturing reasons, this presents a particular challenge. One method to overcome this challenge is to include a plastic input painted to look like metal. However, this will not match the metal look and finish exactly, so the truly seamless design is not realized.
Another area that continually receives great attention for improvement is user displays. Providing crisp, attractive, unambiguous, and intuitively friendly displays and information for the user is very important in many consumer products. However, as consumer products constantly become smaller and smaller, and in some cases more and more complex, it becomes increasingly difficult to present and display user information in a manner that is easy for the user to grasp and understand, but is also in an uncluttered form and appearance that is aesthetically pleasing.
Much of the aesthetic appeal of a consumer product can quickly be compromised if there are too many display elements, or if too much display area is occupied by display elements that are not needed except at particular times. When not needed, these “passive” or unactivated display elements invariably remain visible to the user, even though they are in the “off” state. This is not only displeasing from an aesthetic standpoint, but it can be an annoying distraction that interferes with detection and understanding of other display elements that need to be observed at a given moment.
Illuminating display elements is known. Some display elements are illuminated continuously; others are illuminated only when appropriate to instruct and guide the user. Display elements that are not continuously illuminated can still be distracting, or at least aesthetically objectionable, when not illuminated (when in the off state) because they may still remain visible in the display area.
For example, one typical such display element is configured from transparent plastic inserts that penetrate through the metallic case of an electronic device, and are smoothly flush with the outer surface of the case. A large number of such always-visible display elements leads to a cluttered, confusing, and unattractive appearance. In fact, even a single such element, when not illuminated (i.e., in an inactive state), can become an unattractive distraction on an otherwise smooth and attractive surface.
Less expensive device housings, for example, those made of opaque plastic rather than metal, are often similarly provided with transparent plastic inserts for illuminated display elements. These display elements also conflict with a good aesthetic appearance when they are not illuminated. Also, displays using plastic or glass are less durable than metal and are more subject to breaking or cracking.
Additionally, the separate visible inserts utilized by prior techniques sometimes do not fit perfectly in the holes in which they are inserted or formed. Such imperfect fit can invite entry of liquids, dirt, and the like, undesirably causing yet another disadvantage.
Thus, the need exists for commercially feasible device display systems with improved aesthetics that unobtrusively furnish information as appropriate, but otherwise do not distract or detract from the user's experience or the device's performance. Preferably, selected elements of such display systems would additionally become invisible in their off states.
In view of ever-increasing commercial competitive pressures, increasing consumer expectations, and diminishing opportunities for meaningful product differentiation in the marketplace, it is increasingly critical that answers be found to these challenges. Moreover, the ever-increasing need to save costs, improve efficiencies, improve performance, and meet such competitive pressures adds even greater urgency to the critical necessity that answers be found.
The invention relates in one embodiment an electronic device having an invisible input. The device has a frame having a top face with invisible holes formed therein. A capacitor reference is on an inner surface of the top face in the area of the invisible holes. An interior wall is separated from the top face and forms an interior space having a dielectric medium disposed therein. A capacitor plate is disposed on a surface of the interior wall opposite the first capacitor plate. A light source is disposed in the interior space and is configured to shine through the invisible holes. A capacitor sensor is electrically connected to the capacitive reference and the capacitor plate. When an object is placed on the frame in the area of the invisible holes and pressure is applied, the frame deforms. This deformation causes a change in capacitance between the capacitive reference and the capacitor plate. The capacitor sensor detects this change and converts it to an electrical signal.
The invention relates in another embodiment to an invisible input. The invisible input has a frame having a top face with invisible holes formed therein. A capacitor reference is on an inner surface of the top face in the area of the invisible holes. An interior wall is separated from the top face and forms an interior space having a dielectric medium disposed therein. A capacitor plate is disposed on a surface of the interior wall opposite the first capacitor plate. A light source is disposed in the interior space and is configured to shine through the invisible holes. A capacitor sensor is electrically connected to the capacitive reference and the capacitor plate. When an object is placed on the frame in the area of the invisible holes and pressure is applied, the frame deforms. This deformation causes a change in capacitance between the capacitive reference and the capacitor plate. The capacitor sensor detects this change and converts it to an electrical signal.
Certain embodiments of the invention have other aspects in addition to or in place of those mentioned above. The aspects will become apparent to those skilled in the art from a reading of the following detailed description when taken with reference to the accompanying drawings. The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
The present invention will now be described in detail with reference to a few preferred embodiments thereof as illustrated in the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art, that the present invention may be practiced without some or all of these specific details. In other instances, well known process steps have not been described in detail in order not to unnecessarily obscure the present invention.
Likewise, the drawings showing embodiments of the system are semi-diagrammatic and not to scale and, particularly, some of the dimensions are for the clarity of presentation and are shown greatly exaggerated in the drawing figures.
Similarly, although the views in the drawings for ease of description generally show similar orientations, this depiction in the figures. is arbitrary for the most part. Generally, the invention can be operated in any orientation. In addition, where multiple embodiments are disclosed and described having some features in common, for clarity and ease of illustration, description, and comprehension thereof, similar and like features one to another will ordinarily be described with like reference numerals.
Referring now to
In the vicinity of invisible button 20, a capacitor plate 80 is disposed on an inner surface of face 40, and another capacitor plate 85 is disposed on a top surface of interior wall 50 opposite plate 80. Capacitor plates 80 and 85 may be attached to, for example, printed circuit boards (PCBs) which are disposed on face 40 and/or wall 50. In one embodiment, wall 50 is a PCB. In another embodiment, capacitor plates 80 and/or 85 can comprise conductive paint printed on face 40 and wall 50. As used herein, a “capacitor plate” could be any conducting material which is separated from another conducting material. In the illustrated embodiment, capacitor plates 80 and 85 are shown as discrete objects attached to face 40 and wall 50. In another embodiment (not shown) the face 40 and wall 50 themselves may function as capacitor plates.
There is a fixed separation between capacitor plates 80 and 85 when button 20 is not being depressed. This is important because the capacitance, C, between separated plates 80 and 85 is a function of their separation. When button 20 is not depressed, the zero-pressure capacitance, C0, is related to the initial separation of plates 80 and 85. Departures from the initial separation will cause a change in capacitance, ΔC≡C−C0, which can be detected and processed by device 10. In practice, C0 may not be strictly a function of separation. Other factors, such as changes in temperature, humidity, age of components, and the like can cause minor fluctuations in C0. Therefore, a new estimate or baseline for the zero-pressure C0 may be updated. In one embodiment, this update can be done each time device 10 starts up. In another embodiment, this update can be done during certain time intervals (for example every few minutes). Updating C0 helps to ensure higher sensitivity and lower occurrences of false triggers.
When a user presses down on invisible button 20, face 40 deflects between supports 70, as shown in
The on/off, or “binary,” mode of operation described above is the simplest mode. In other embodiments, the change in capacitance ΔC could be correlated to a “continuous” output functionality. In this implementation, a larger ΔC could be associated with a command to full intensity. A very small ΔC could be associated with a command to low intensity. For example, how far the user presses down could correlate to how bright to make a light, for example, how loud to play music, or how fast to go forward or backward in a movie. In this continuous functionality mode, the correlation between capacitor plate distance and change in capacitance ΔC must be found through routine experiment, theory, calculation or combinations thereof. In other embodiments, button 20 could have three levels of functionality. This is a compromise between the binary and continuous modes. For example, before the user presses down, device 10 is “off” when the user presses down a certain amount, device 10 operates at 50%, and when the user presses down a certain amount more, device 10 operates at 100%. This could mean that device 10 could be used to turn a light from off, to 50% intensity, to 100% intensity depending on user input. Of course, many variations of this multi-level functionality mode are possible (e.g., 4 or more levels).
Supports 70 limit the area where a user can activate button 20. In the illustrated embodiment, if a user presses down to the left of the left support 70, for example, capacitor plates 80 and 85 will not appreciably move towards each other. Therefore, a change in capacitance (if any) will not exceed the threshold required to register a button depression, i.e., ΔC<T. The supports can be closely spaced, thereby making the effective area of button 20 small, or the supports can be widely spaced, thereby making the effective area of button 20 large, as is shown in the illustrated embodiment. The configuration of supports 70 is shown for illustration only and may be widely varied. For example, there could be two supports, as shown in the illustrated embodiment, or there could be more than two supports, or only one support. In one embodiment (not shown), the entire surface 40 can function as button 20 if supports 70 are removed. In this implementation, the outer vertical part of frame 30 functions to keep face 40 and wall 50 separated when button 20 is not being depressed. Therefore, supports 70 are not necessary.
Supports 70 may be etched out of face 40 and/or wall 50 or they may be free standing. In one embodiment, Supports 70 are formed by etching the bottom surface of face 40 so that supports 70 extend downwardly. In another embodiment, supports 70 are formed by etching the top surface of interior wall 50 so that supports 70 extend upwardly. In another embodiment, face 40 and wall 50 and supports 70 are formed by etching out parts of a monolithic piece. In another embodiment, free standing supports 70 are affixed to face 40 and wall 50 by techniques known in the art, for example adhesives, welds, fasteners, etc.
In some embodiments, it may not be desirable to have button 20 visible or invisible all of the time. As previously mentioned, although frame 30 may have markings (e.g., paint, texture) to indicate the location of button 20, these markings would be visible all of the time and detract from the aesthetic simplicity of housing 30. To selectively control the visibility of button 20, tiny invisible micro-perforations or holes 90 can be formed in face 40 as shown in
In one embodiment, the backlight (e.g., LED 95) can be activated whenever electronic device 10 is “on.” In another embodiment, the backlight can be activated as a function of an operating state of device 10, for example, when a CD-ROM is inserted, when a memory stick is inserted, and so on, depending on the nature of electronic device 10. In another embodiment, the backlight can be activated as a function of ambient lighting conditions, for example, in low light (dark) conditions. In this embodiment, a light sensor (not shown) may interface with LED 95. In another embodiment, the backlight can be activated continuously. In another embodiment, the backlight can be activated when a user taps or presses down on button 20. In another embodiment, a motion sensor (not shown) may interface with LED 95 and activate it when motion is detected. In another embodiments heat and/or sound sensors (not shown) can interface with and activate LED 95 when heat and/or sound is detected.
In another embodiment, the pattern of holes 22 can be made to resemble the function of button 20, for example, the pattern can resemble a triangle to indicate a “play” function when controlling music selections, or the pattern can resemble a square to indicate a “stop” function. In this way, when the backlighting is activated, a play or stop symbol appears on device 10 at the location of button 20. In another embodiment (not shown), pattern 22 can resemble text or numbers. Micro-perforated invisible holes 90 are explained in greater detail in U.S. patent application Ser. No. 11/551,988 filed Oct. 30, 2006, titled “INVISIBLE, LIGHT-TRANSMISSIVE DISPLAY SYSTEM,” and U.S. patent application Ser. No. 11/456,833 filed Jul. 11, 2006 titled “INVISIBLE, LIGHT-TRANSMISSIVE DISPLAY SYSTEM.” The Ser. No. 11/551,988 and the Ser. No. 11,456,833 applications are both herein incorporated in their entirety by reference thereto.
As discussed above, button 20 is particularly suited to applications involving binary or on/off operations. Button 20 is also suited to applications involving continuous output functions; but, as discussed, a possibly complicated correlation between button displacement and change in capacitance is necessary for button 20 to be able to control a continuous output function. A simpler way to control a continuous output function involves using multiple pairs of capacitive plates, as will be discussed below.
Referring now to
A first pair of capacitor plates 170 and 175 and a second pair of capacitor plates 180 and 185 are situated along the left and right sides, respectively, of invisible slider 110. Upper plate 170 is disposed on an inner surface of face 130, and capacitor plate 175 is disposed on a top surface of interior wall 140. Capacitor plates 170 and 175 may be attached to, for example, PCBs which are attached to face 130 and/or wall 140. In one embodiment, wall 140 is a PCB. In another embodiment, capacitor plates 170 and/or 175 can comprise conductive paint printed on face 130 and wall 140. The second pair of capacitor plates 180 and 185 are disposed similar to the first pair 170 and 175. In the illustrated embodiment, capacitor plates 170/175 and 180/185 are shown as discrete objects attached to face 130 and wall 140. In another embodiment (not shown) the face 130 and wall 140 themselves may have conductive areas and non-conductive areas so as to form a pair of opposing capacitor plates. When two or more sensors are used, for example, two or more pairs of capacitor plates, the slider function is enabled.
There is a fixed separation between the opposite capacitor plates of each pair (170/175 and 180/185) when slider 110 is not being depressed. This is important because the capacitance, C, between plates 170/175 and 180/185 is a function of their separation. Departures from the initial separation will cause a change in capacitance, ΔC, which can be detected and processed by device 100. In this embodiment the first pair of capacitive plates 170/175 is characterized by C1 and ΔC1, while the second pair of capacitive plates 180/185 is characterized by C2 and ΔC2. As discussed above, the zero-pressure capacitances between plates 170/175 and plates 180/185 may be updated to account for changes due to other factors such as temperature, humidity, age of components, etc.
Referring back to
When a user presses down on invisible slider 110, the metal outer face 130 deflects between supports 160, as shown in
At this point, electronics (not shown) associated with device 100 can compare the signal S1 generated by the first pair of capacitor plates 170/175 with the signal S2 generated by the second pair of capacitor plates 180/185 in order adjust a continuous output function in accordance with the exact position along slider 110 of the user's finger. One way to do this is by taking a ratio of the two signals. In the illustrated embodiment, the separation between the first pair of capacitor plates 170/175 is very small and so S1 will be a large signal. The second pair of capacitive plates 180/185 are relatively unperturbed from their initial (neutral) positions. Therefore, the signal they generate, S2, will be very small. Consequently, the ratio S1:S2 will be enormous. A large signal ratio can be correlated to having the user's finger near end 190. When the user is pressing down near end 190, he intends to command a high intensity, perhaps near 100%. Therefore, device 100 will operate near 100% intensity. This could mean that music is played loudly, a light comes on brightly, or any other continuous output function is commanded to near 100% intensity.
In another implementation, slider 110 can be used to control a scrolling function, for example to scroll down (or left/right) a page of text or to scroll through music selections. When the user presses slider 110 near end 190, the scroll will go, for example, forward at maximum speed. When the user presses slider 110 near end 195, the scroll will go in reverse at maximum speed. Intermediate positions on slider 110 will command a scroll at a lesser speed in the commanded direction (i.e., forward or reverse). These functions are given by way of example, slider 110 can be used to control any continuous output function associated with device 100.
If the user presses down near the midpoint of slider 110 (i.e., half way between ends 190 and 195), as is shown in
The 100% and 50% intensity situations are shown in
Supports 160 limit the area where a user can activate slider 110. In the illustrated embodiment, if a user presses down to the left of the left support 160, for example, neither pair of capacitor plates 170/175 or 180/185 will appreciably move towards each other. Therefore, a change in capacitance (if any) will not exceed the threshold required to register a slider depression. The supports can be closely spaced, thereby making the effective area of slider 110 small, or the supports can be widely spaced, thereby making the effective area of slider 110 large, as is shown in the illustrated embodiment. The configuration of supports 160 is shown for illustration only and may be widely varied. For example, there could be two supports, as shown in the illustrated embodiment, or there could be more than two supports, or only one support. In one embodiment (not shown), the entire face 130 can function as slider 110 if supports 160 are removed. In this implementation, the outer vertical part of frame 120 functions to keep face 130 and wall 140 separated when slider 110 is not being depressed. Therefore, supports 160 are not necessary.
Supports 160 may be etched out of surfaces 130 and/or 140 or they may be free standing. In one embodiment, supports 160 are formed by etching the bottom surface of face 130 so that supports 160 extend downwardly. In another embodiment, supports 160 are formed by etching the top surface of interior wall 140 so that supports 160 extend upwardly. In another embodiment, face 130 and wall 140 and supports 160 are formed by etching out parts of a monolithic piece. In another embodiment, free standing supports 160 are affixed to face 130 and wall 140 by techniques known in the art, for example adhesives, welds, fasteners, etc.
In some embodiments, it may not be desirable to have slider 110 visible or invisible all the time. As previously mentioned, although face 130 may have markings (e.g., paint, texture) to indicate the location of slider 110, these markings would be visible all of the time and detract from the aesthetic simplicity of face 130. To selectively control the visibility of slider 110, tiny micro-perforations or holes 280 can be formed in face 130 as shown in
Invisible slider 110 is depicted as being linear in
In one embodiment, the backlight (e.g., LED 290) can be activated whenever electronic device 100 is “on.” In another embodiment, the backlight can be activated as a function of an operating state of device 100, for example, when a CD-ROM is inserted, when a memory stick is inserted, and so on, depending on the nature of electronic device 100. In another embodiment, the backlight can be activated as a function of ambient lighting conditions, for example, in low light (dark) conditions. In this embodiment, a light sensor (not shown) may interface with LED 290. In another embodiment, the backlight can be activated continuously. In another embodiment, the backlight can be activated when a user taps or presses down on slider 110. In another embodiment, a motion sensor (not shown) may interface with LED 290 and activate it when motion is detected. In another embodiment heat and/or sound sensors (not shown) can interface with and activate LED 290 when heat and/or sound is detected.
A pattern (similar to pattern 22 shown in
Conventional touch sensitive track pads require a dielectric outer track surface; consequently they, unlike the housing of most electronic devices, are not made from metal resulting in a clearly visible transition between housing and track pad. Referring to
Referring now to
Track pad 310 is similar to slider 110, but track pad 310 has a two-dimensional matrix of capacitor plate pairs, while slider 110 has a one-dimensional line of capacitor plate pairs (see
There is a fixed separation between the opposite capacitor plates of each pair when track pad 310 is not being depressed. This is important because the capacitance, C, between two plates is a function of their separation. Departures from the initial separation will cause a change in capacitance, ΔC, which can be detected and processed by device 300. In this embodiment the first pair of capacitive plates 340 are characterized by C1 and ΔC1, the second pair of capacitive plates 350 are characterized by C2 and ΔC2, and the third pair of capacitive plates 360 are characterized by C3 and ΔC3. In the case of a three by three matrix 330 there will be nine capacitances C1, C2, C3, C4, C5, C6, C7, C8, C9 involved as shown in
Invisible track pad 310 operates in much the same way that invisible slider 110 does, except now a matrix of nine capacitances (for a three by three matrix shown in
As with conventional track pads, invisible track pad 310 can also compute the speed of an object scrolling over its surface, and it can also employ multi-touch technology. Multi-touch consists of a touch surface (track pad, screen, table, wall, etc.), as well as software that recognizes multiple simultaneous touch points, as opposed to the standard touchscreen (e.g., computer touchpad, ATM), which recognizes only one touch point.
In some embodiments, it may not be desirable to have track pad 310 visible or invisible all the time. As previously mentioned, although frame 320 may have markings (e.g., paint, texture) to indicate the location of track pad 310, these markings would be visible all of the time and detract from the aesthetic simplicity of frame 320. To selectively control the visibility of track pad 310, tiny micro-perforations or holes (not shown) can be formed in frame 320 in the area of track pad 310. Track pad 310 can be selectively backlit to highlight its location by, for example, shining light through the invisible holes. In one embodiment, a light source, for example a light emitting diode (LED) can be placed on surface 390 under the location of track pad 310. As shown in
In one embodiment, the backlight (e.g., LED) can be activated whenever device 300 is “on.” In another embodiment, the backlight can be activated as a function of an operating state of device 300, for example, when a CD-ROM is inserted, when a memory stick is inserted, and so on, depending on the nature of electronic device 300. In another embodiment, the backlight can be activated as a function of ambient lighting conditions, for example, in low light (dark) conditions. In this embodiment, a light sensor (not shown) may interface with the backlight (LED). In another embodiment, the backlight can be activated continuously. In another embodiment, the backlight can be activated when a user taps or presses down on track pad 310. In another embodiment, a motion sensor (not shown) may interface with the backlight and activate it when motion is detected. In another embodiments heat and/or sound sensors (not shown) can interface with and activate the backlight when heat and/or sound is detected.
A pattern (similar to pattern 22 shown in
The measurable changes in capacitance caused by changing the separation between two capacitor plates, for example plates 80 and 85 (
As used herein, the term “ground” does not imply an actual connection to the Earth. Rather, a ground is commonly idealized in the electrical arts as an infinite source or sink for charge, which can absorb an unlimited amount of current without changing its potential. Of course, this is only an idealization, and as such, many surfaces can be considered a “ground” for purposes of the present invention. The term “ground” is to be broadly construed. In one embodiment, the frame of an electronic device can serve as a ground reference. In another embodiment, a ground reference can be disposed on the frame of an electronic device.
The capacitance-to-ground method can be used in place of the mutual capacitance methods discussed above. In one embodiment, invisible button 20 discussed with reference to
In another embodiment, invisible slider 110 discussed with reference to
In another embodiment, invisible trackpad 310 discussed with reference to
In other embodiments (not shown), the present invention can include mutual capacitance (i.e., opposing capacitor plates) and capacitance-to-ground (i.e., a capacitor plate and an opposing ground reference) in the same device.
The invisible input devices described above (button 20, slider 110, and track pad 310) can be used in many different implementations. Several implementations are described below. These implementations are given by way of example only, and not by way of limitation. The person of skill in the art recognizes that the present invention has wide applicability.
The present invention can be used, in one embodiment, as a closed-lid external button for a laptop computer. Referring now to
Referring now to
In another embodiment, the present invention can be used to replace traditional track pads and/or traditional track pad buttons with invisible buttons or invisible track pads. Referring now to
In another embodiment, invisible controls can be added to laptop computer 5000 using the present invention. In one implementation, invisible control 5009 is shown in
Invisible control 5009 may be a contextual control, meaning that the function of control 5009 is dependent upon an operating state of the device (in this case laptop computer 5000). The backlight may also be activated as a function of the operating state of the device. For example, control 5009 becomes visible automatically when a DVD is inserted into computer 5000, when a music CD is insert into computer 5000, or when iTunes® is active. The function of control 5009 is then adapted to either play the DVD, play the music CD, or to control iTunes® functions. iTunes® is a trade mark for a digital media player application created by Apple Inc. of Cupertino, Calif. In other implementations, invisible contextual controls (not shown) can be used to deactivate a camera, eject a disk or USB stick, or to illuminate the keyboard depending on the state of laptop 5000. Each of these invisible contextual controls can be made to become visible under appropriate situations (e.g., when the camera is on, the disk or USB stick is in, or if it is dark, respectively). Even the entire keyboard 5020 can be replaced with an array of invisible buttons. In fact, all of the conventional keys, buttons, track pads, etc. on a laptop or other electronic device can be replaced by invisible inputs according to the present invention. In this way, the truly seamless design has become a reality.
While this invention has been described in terms of several preferred embodiments, there are alterations, permutations, and equivalents, which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and apparatuses of the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention.
This is a continuation of U.S. patent application Ser. No. 16/184,809, entitled “Disappearing Button or Slider,” filed on Nov. 8, 2018, which is a continuation of U.S. patent application Ser. No. 15/217,273, entitled “Disappearing Button or Slider,” filed on Jul. 22, 2016, now U.S. Pat. No. 10,146,383, issued Dec. 4, 2018, which is a continuation of U.S. patent application Ser. No. 14/282,375, entitled “Disappearing Button or Slider,” filed on May 20, 2014, now U.S. Pat. No. 9,400,579, issued on Jul. 26, 2016, which is a continuation of U.S. patent application Ser. No. 13/888,579, entitled “Disappearing Button or Slider,” filed on May 7, 2013, now U.S. Pat. No. 8,786,568, issued on Jul. 22, 2014, which is a continuation of U.S. patent application Ser. No. 12/257,956, entitled “Disappearing Button or Slider,” filed on Oct. 24, 2008, now U.S. Pat. No. 8,436,816, issued on May 7, 2013, the disclosures of which are hereby incorporated by reference herein in their entireties. This is related to U.S. patent application Ser. No. 11/551,988 filed Oct. 30, 2006, titled “INVISIBLE, LIGHT-TRANSMISSIVE DISPLAY SYSTEM,” and assigned to the assignee of the present application. The Ser. No. 11/551,988 application is a continuation-in-part of U.S. patent application Ser. No. 11/456,833 filed Jul. 11, 2006 titled “INVISIBLE, LIGHT-TRANSMISSIVE DISPLAY SYSTEM,” and assigned to the assignee of the present application. The Ser. No. 11/551,988 and the Ser. No. 11,456,833 applications are both herein incorporated in their entirety by reference thereto.
Number | Name | Date | Kind |
---|---|---|---|
4058765 | Richardson et al. | Nov 1977 | A |
4844072 | French et al. | Jul 1989 | A |
5291534 | Sakurai et al. | Mar 1994 | A |
5887995 | Holehan | Mar 1999 | A |
5992240 | Tsuruoka et al. | Nov 1999 | A |
6029214 | Dorfman | Feb 2000 | A |
6279253 | Inbar et al. | Aug 2001 | B1 |
6388660 | Manser et al. | May 2002 | B1 |
6614579 | Roberts et al. | Sep 2003 | B2 |
6655863 | Lin | Dec 2003 | B2 |
6788295 | Inkster | Sep 2004 | B1 |
6791531 | Johnston et al. | Sep 2004 | B1 |
6933929 | Novak | Aug 2005 | B1 |
7020508 | Stivoric et al. | Mar 2006 | B2 |
7047092 | Wimsatt | May 2006 | B2 |
7088343 | Smith et al. | Aug 2006 | B2 |
7129943 | Zhang et al. | Oct 2006 | B2 |
7158122 | Roberts | Jan 2007 | B2 |
7158373 | Smith | Jan 2007 | B2 |
7176897 | Roberts | Feb 2007 | B2 |
7230610 | Jung et al. | Jun 2007 | B2 |
7324095 | Sharma | Jan 2008 | B2 |
7561146 | Hotelling | Jul 2009 | B1 |
7570065 | Harish et al. | Aug 2009 | B2 |
7595788 | Son | Sep 2009 | B2 |
7663612 | Bladt | Feb 2010 | B2 |
7730401 | Gillespie et al. | Jun 2010 | B2 |
7880131 | Andre et al. | Feb 2011 | B2 |
7884315 | Andre et al. | Feb 2011 | B2 |
7889176 | Harley et al. | Feb 2011 | B2 |
7898523 | Van | Mar 2011 | B1 |
7907394 | Richardson et al. | Mar 2011 | B2 |
7911455 | Nishikawa et al. | Mar 2011 | B2 |
7958457 | Brandenberg et al. | Jun 2011 | B1 |
7995314 | Titus | Aug 2011 | B2 |
8014155 | Kanayama et al. | Sep 2011 | B2 |
8035621 | Joo et al. | Oct 2011 | B2 |
8072442 | Castagner et al. | Dec 2011 | B2 |
8126513 | Yoshida et al. | Feb 2012 | B2 |
8212771 | Sanchez-Garcia | Jul 2012 | B1 |
8284164 | Han | Oct 2012 | B2 |
8311370 | Ha et al. | Nov 2012 | B2 |
8312372 | Chen et al. | Nov 2012 | B2 |
8436816 | Leung et al. | May 2013 | B2 |
8471822 | Lightenberg | Jun 2013 | B2 |
8587559 | Gandhi et al. | Nov 2013 | B2 |
8654524 | Pance et al. | Feb 2014 | B2 |
8749523 | Pance et al. | Jun 2014 | B2 |
8786568 | Leung et al. | Jul 2014 | B2 |
20020024713 | Roberts et al. | Feb 2002 | A1 |
20020046353 | Kishimoto | Apr 2002 | A1 |
20020050978 | Rosenberg et al. | May 2002 | A1 |
20020188872 | Willeby | Dec 2002 | A1 |
20030025668 | Lin | Feb 2003 | A1 |
20030122691 | Olodort et al. | Jul 2003 | A1 |
20040263484 | Mantysalo et al. | Dec 2004 | A1 |
20050008669 | Chen | Jan 2005 | A1 |
20050069695 | Jung et al. | Mar 2005 | A1 |
20050179668 | Edwards | Aug 2005 | A1 |
20050185364 | Bell et al. | Aug 2005 | A1 |
20050190040 | Huntzicker et al. | Sep 2005 | A1 |
20050192727 | Shostak | Sep 2005 | A1 |
20050219228 | Alameh et al. | Oct 2005 | A1 |
20060025897 | Shostak | Feb 2006 | A1 |
20060066319 | Dallenbach | Mar 2006 | A1 |
20060066579 | Bladt | Mar 2006 | A1 |
20060066581 | Lyon et al. | Mar 2006 | A1 |
20060159345 | Clary et al. | Jul 2006 | A1 |
20060267934 | Harley et al. | Nov 2006 | A1 |
20060267961 | Onoda | Nov 2006 | A1 |
20060289284 | Han | Dec 2006 | A1 |
20070062292 | Sato et al. | Mar 2007 | A1 |
20070113681 | Nishimura et al. | May 2007 | A1 |
20070165002 | Wassingbo | Jul 2007 | A1 |
20070184727 | Kanayama et al. | Aug 2007 | A1 |
20070192692 | Chen et al. | Aug 2007 | A1 |
20070205776 | Harish et al. | Sep 2007 | A1 |
20070242037 | Son | Oct 2007 | A1 |
20070247800 | Smith et al. | Oct 2007 | A1 |
20070260708 | Beaton et al. | Nov 2007 | A1 |
20080018609 | Baker et al. | Jan 2008 | A1 |
20080024470 | Andre et al. | Jan 2008 | A1 |
20080078590 | Sequine | Apr 2008 | A1 |
20080084404 | Andre et al. | Apr 2008 | A1 |
20080122839 | Berglund et al. | May 2008 | A1 |
20080259046 | Carsanaro | Oct 2008 | A1 |
20090003023 | Knadler et al. | Jan 2009 | A1 |
20090009477 | Yukawa et al. | Jan 2009 | A1 |
20090009945 | Johnson et al. | Jan 2009 | A1 |
20090016003 | Ligtenberg et al. | Jan 2009 | A1 |
20090085894 | Gandhi et al. | Apr 2009 | A1 |
20090116183 | Mundt | May 2009 | A1 |
20090140871 | Titus | Jun 2009 | A1 |
20090146955 | Truong | Jun 2009 | A1 |
20090201263 | Hofmann | Aug 2009 | A1 |
20090270166 | Thukral et al. | Oct 2009 | A1 |
20090287798 | Law et al. | Nov 2009 | A1 |
20090303680 | Mihara | Dec 2009 | A1 |
20100053087 | Dai et al. | Mar 2010 | A1 |
20100103137 | Ciesla et al. | Apr 2010 | A1 |
20100109999 | Qui | May 2010 | A1 |
20100164836 | Liberatore | Jul 2010 | A1 |
20100321249 | Chiang et al. | Dec 2010 | A1 |
20110038114 | Pance et al. | Feb 2011 | A1 |
20110043227 | Pance et al. | Feb 2011 | A1 |
20110138275 | Yu | Jun 2011 | A1 |
20110166824 | Haisty et al. | Jul 2011 | A1 |
20120190386 | Anderson | Jul 2012 | A1 |
20140095107 | Haisty et al. | Apr 2014 | A1 |
20140253506 | Leung et al. | Sep 2014 | A1 |
20140368502 | Goossens | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
201069560 | Jun 2008 | CN |
Entry |
---|
“Algorithm for Decreasing the Error Rate of Data Publisher”, NA9103223_Disclosure_text IBM Technical Disclosure Mar. 1, 1991, IBM vol. 33, 1991, pp. 223-227. |
Number | Date | Country | |
---|---|---|---|
20210109567 A1 | Apr 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16184809 | Nov 2018 | US |
Child | 17129603 | US | |
Parent | 15217273 | Jul 2016 | US |
Child | 16184809 | US | |
Parent | 14282375 | May 2014 | US |
Child | 15217273 | US | |
Parent | 13888579 | May 2013 | US |
Child | 14282375 | US | |
Parent | 12257956 | Oct 2008 | US |
Child | 13888579 | US |