Disarticulated compression socket

Information

  • Patent Grant
  • 10406003
  • Patent Number
    10,406,003
  • Date Filed
    Thursday, June 21, 2018
    6 years ago
  • Date Issued
    Tuesday, September 10, 2019
    5 years ago
  • Inventors
  • Original Assignees
    • (Windsor, CO, US)
  • Examiners
    • Sweet; Thomas
    • Bahena; Christie L
    Agents
    • Berg Hill Greenleaf Ruscitti LLP.
Abstract
A disarticulated compression socket configured to secure a residual limb. The disarticulated compression socket may include a rigid socket frame having one or more compression apertures each having one or more disarticulated compression inserts. Each disarticulated compression insert may be coupled with, and responsive to, a compression actuator configured to adjust the disarticulated compression insert individually, or in concert. In one preferred embodiment, at least one compression actuator may be coupled with one, or a plurality of disarticulated compression inserts and further configured to retract and/or expand the coupled disarticulated compression inserts securing the residual limb within said socket frame. Control of the compression actuators may be manual or automatic in response to a signal from a sensor. Additional embodiments may also include one or more lateral release channels configured to accommodate soft tissue expansion of the residual limb as it is compressed and/or secured within the socket frame.
Description
TECHNICAL FIELD

Generally, the inventive technology disclosed herein relates to the field of prosthetic devices, and more particularly a disarticulated compression socket that may be configured to secure a residual limb


BACKGROUND OF THE INVENTION

Traditional prosthetic devices typically operate by securing the residual limb into a rigid or semi-rigid socket. A socket may commonly refer to the portion of a prosthesis that fits around and secures a residual limb, and to which prosthetic components, such as a foot, are attached. Traditional prosthetic devices, such as sockets, are generally designed to stabilize the skeletal components of the residual limb and allow minimal relative movement between the socket and the residual limb. To effectively support the residual limb and allow for the efficient transfer of mechanical loads from the residual limb to the ground, the prosthetic sockets are designed to provide a sufficient support to secure the residual limb within the socket, while at the same time allowing sufficient flexibility to allow for circulation and account for other physiological, temporal or environmental changes that may affect the shape and/or volume of the residual limb.


One significant drawback of traditional prosthetic sockets is the inability to account for shape and volume fluctuations of the residual limb. Traditional prosthetic sockets are generally produced in a fixed or static form such that they do not have the ability to accommodate changes in the residual limb-socket interface. For example, it is known that a number or factors may cause a residual limb to change shape and/or present an altered volumetric profile. Shape and volume fluctuations in a residual limb may be due to many factors, including but not limited to: edema, muscle atrophy, weight gain/loss, renal dialysis, salt and water intake, alcohol consumption, menses, changes in wearing time, and activity.


Additionally, the act of wearing a prosthetic socket, in combination with the mechanical action of walking, or other movements, causes a reduction in the overall volume of a residual limb over time. When there are shape and volume fluctuations, the residual limb-socket interface is compromised, which can lead to discomfort, pain, destabilizing motion between the socket and residual limb, as well as damage to surrounding soft tissue.


As such, there exists a need for a non-static prosthetic socket that may overcome the limitations of prior traditional systems. The current invention overcomes the limitations of, and indeed surpasses the functionality of traditional static prosthetic socket systems. It is therefore the object of the present invention to provide a simple, versatile, cost effective, non-static prosthetic socket. Specifically, one aim of the present technology is to provide a disarticulated compression socket that may be adjustable, for example through compression or expansion to efficiently secure a residual limb within the body of the socket. Additional aims of the present invention include providing a disarticulated compression socket that may allow for anatomically directed compression, as well as features to accommodate soft tissue expansion.


Accordingly, the objects of the methods and apparatus described herein address each of the aforementioned problems and goals in a practical manner. Naturally, further objects of the inventive technology will become apparent from the description and drawings below.


SUMMARY OF INVENTION

It is the object of the present invention to provide a disarticulated compression socket to address the comprehensive concerns outlined above. Additional objects of the current invention may also provide various disarticulated prosthetics that may modulate their internal volume whether by expansion or compression of specified components to more efficiently and comfortably secure the residual limb within the prosthetic. As one of several preferred embodiments, the inventive technology may provide for a disarticulated compression socket having a plurality of disarticulated compression inserts responsive to one or more compression actuators that may form an efficient large surface area contact with a residual limb when compressed. An additional aim of the current inventive technology may provide for a disarticulated compression socket having a plurality of disarticulated compression inserts responsive to one or more compression actuators that exert a lateral compressive force on a residual limb secured within the prosthetic. This lateral compressive force by the disarticulated compression inserts may conform to the laterally positioned muscle groups of a residual limb allowing for a more efficient compression and securement of the residual limb in the prosthetic. This lateral compressive force by may also form an efficient large surface area contact with a residual limb when laterally compressed.


Another aim of the current inventive technology may provide for a disarticulated compression socket having a plurality of disarticulated compression inserts responsive to one or more compression actuators that exert a lateral compressive force with a swivel action on a residual limb secured within the prosthetic. This lateral and swiveled compressive force by the disarticulated compression inserts may conform to the laterally positioned major muscle groups of a residual limb, allowing for a more efficient compression and securement of the residual limb in the prosthetic. This lateral and swiveled compressive force by may also form an efficient large surface area contact with a residual limb when laterally compressed and allowed to swivel to conform to the slope and musculature of a residual limb.


Another aim of the current inventive technology may provide for a disarticulated compression socket having one or more lateral release channels that may more efficiently accommodate soft tissue displaced by the compressive force placed on the residual limb. Such lateral release channels may be positioned to conform to major laterally positioned muscle groups to more efficiently accommodate soft tissue expansion, including muscle as well as natural volume expansion of the residual limb.


An additional aim of the current inventive technology may provide for an automatic disarticulated compression socket having a plurality of disarticulated compression inserts responsive to one or more compression actuators that automatically exert a compressive force on a residual limb secured within the prosthetic in response to a signal from a sensor, such as a position or pressure sensor. In one embodiment the sensor may continually take and receive data regarding the position and volume of the residual limb and signal one or more compression actuators to constantly modulate the position of one or more disarticulated compression inserts generating an automatically modulating compressive force on the residual limb. This modulating compressive force, lateral or otherwise, by the disarticulated compression inserts may be pre-set to conform to the individual user's anatomical presentation or may be modulated automatically over time or in response to an external stimuli.


The numerous aims, features and functions of the various embodiments of the disarticulated compression socket will become readily apparent and better understood in view of the description and accompanying drawings. The following description is not intended to limit the scope of the disarticulated compression socket system including methods of use and creation as are evidently shown below, but instead merely provides exemplary embodiments for ease of understanding.





BRIEF DESCRIPTION OF THE DRAWINGS

The inventive disarticulated compression socket described with reference to the accompanying drawings which show preferred embodiments according to the device described herein. It will be noted that the device as disclosed in the accompanying drawings is illustrated by way of example only. The various elements and combinations of elements described below and illustrated in the drawings can be arranged and organized differently to result in embodiments which are still within the spirit and scope of the device described herein.



FIG. 1: is a back view of a disarticulated compression socket having a plurality of compression actuators in one embodiment thereof.



FIG. 2: is a perspective view of a disarticulated compression socket coupled with an inner liner in one embodiment thereof.



FIG. 3: is a top view of a disarticulated compression socket having a plurality of lateral release channels in one embodiment thereof.



FIG. 4; is a side view of a disarticulated compression socket having a plurality of lateral release apertures in one embodiment thereof;



FIG. 5: is an internal view of a disarticulated compression socket having a plurality of internally positioned cords coupled with compression actuators in one embodiment thereof; and



FIG. 6: is an internal view of a disarticulated compression socket having a plurality of internally positioned cords coupled with compression actuators in one embodiment thereof.





DETAILED DESCRIPTION OF THE INVENTION

The present invention includes a variety of aspects, which may be combined in different ways. The following descriptions are provided to list elements and describe some of the embodiments of the present invention. These elements are listed with initial embodiments, however it should be understood that they may be combined in any manner and in any number to create additional embodiments. The variously described examples and preferred embodiments should not be construed to limit the present invention to only the explicitly described systems, techniques, and applications. Further, this description should be understood to support and encompass descriptions and claims of all the various embodiments, systems, techniques, methods, devices, and applications with any number of the disclosed elements, with each element alone, and also with any and all various permutations and combinations of all elements in this or any subsequent application.


Generally referring to FIGS. 1 and 2, the inventive technology may include a disarticulated compression socket (1). In one embodiment, a disarticulated compression socket (1) may include a socket frame (2). As part of the inventive technology, such a socket frame (2) may be custom-formed to accommodate the anatomical shape/musculature of a specific user's residual limb. Considerations of shape, weight distribution, volume and movement may all be taken into account in forming the socket frame's (2) overall shape, volume and configuration. A socket frame (2) may also be coupled with a joint coupler (9) that may be configured to secure additional prosthetic components such as artificial limbs, mechanical devices, as well as shock absorbers and the like.


As shown in FIGS. 1 and 2, a socket frame (2) may be a rigid form configured to accommodate a residual limb (not shown). One exemplary embodiment may include a transfemoral socket frame, or a socket frame (2) configured to accommodate a residual limb wherein the knee joint has been removed and the individual still has part of the femur or thighbone intact. Additional embodiments not specifically shown may also be contemplated, which may include, but not be limited to: a transhumeral socket frame; a transradial socket frame; a transtibial socket frame; a symes socket frame; a hip disarticulation socket frame; a knee disarticulation socket frame; and a wrist disarticulation socket frame and the like.


As noted above, in a preferred embodiment a socket frame (2) may be formed of a rigid material to accommodate and provide a support for a residual limb. In one preferred embodiment, a rigid socket frame (2) may be formed from a variety of materials, including but not limited to; plastic, composites, carbon fiber or even an acrylic laminate with a stiffening component such as carbon fiber and/or para-aremid synthetic fiber.


As shown in FIG. 2, in one embodiment the invention may include a socket frame (2) configured to be capable of securing an inner socket (2) through a socket interface (11). In a preferred embodiment an inner socket (2) may be configured to be secured over a residual limb and may be made of a soft, and/or compressible material that may provide a buffer from a rigid socket frame (2). In certain embodiments this inner socket may be made from a variety of materials, such as plastics, various thermoplastics, rubber, gel, mesh, and silicone as well as various appropriate compressible materials known in the art.


As shown in FIG. 3, the inner socket may include a residual limb interface (10) configured to conform to the specific anatomical shape of a user's residual limb, and may further have an outer surface configured to be secured within the interior of the socket frame (2) or socket interface (11). In one preferred embodiment the residual limb interface (10) may be configured to be closely mated with the user's residual limb providing support and shock adsorption, while the outer surface is configured to be mated with the socket interface (11) on the user's socket frame (2) forming a fitted coupling. While initially described as disparate components, in certain embodiments both the socket frame (2) and inner socket (3) may form an integral component. Additional embodiments not specifically shown may also include coupling devices, such as locks or quick release components on the socket frame (2) and/or inner socket (3) configured to secure the residual limb within the inner socket (3), as well as possibly the inner socket (3) within the socket frame (2) itself.


Referring now to FIGS. 1-4, in one embodiment the disarticulated compression socket (1) may include one or more compression apertures (4). As highlighted in FIG. 3, in one preferred embodiment the disarticulated compression socket (1) may include a plurality of compression apertures (4) that may further be configured so as to be in an approximately opposing arrangement. Again, as shown in the preferred embodiment in FIGS. 1-3, the disarticulated compression socket (1) may include compression apertures (4) that include extended apertures positioned laterally, or approximately parallel with the residual limb when it is secured within the socket frame (2).


As shown in FIGS. 1-4, in one embodiment the disarticulated compression socket (1) may include one, or even a plurality of disarticulated compression inserts (5). For example, in the preferred embodiment shown in the figures, a disarticulated compression insert (5) may be positioned within a compression aperture (4). As noted above, while a preferred embodiment may include a disarticulated compression insert (5), in certain other embodiments such inserts may in fact be integral with the inner socket (3). In this embodiment, these integral compression inserts may be configured to be sufficiently flexible so as to allow expansion and compression as herein described.


Again referring to FIGS. 1-4, one, or even a plurality of disarticulated compression inserts (5) may be positioned within a compression aperture (4) and further secured in position through a compression actuator (7). In the preferred embodiment shown in FIG. 3, a disarticulated compression insert (5) may include an extended compression surface (6). In this embodiment, an extended compression surface (6) may include a surface that is configured to interface with the residual limb and/or inner socket (3). Again, in this embodiment the extended compression surface (6) may be formed from a compressible material that extends past the surface plane of the socket frame (2) and may form a cushioned interface with the residual limb and/or inner socket (3). Certain embodiments may include, but are not limited to: a plastic extended compression surface; a gel extended compression surface; an air-filled extended compression surface; a foam extended compression surface; and a composite extended compression surface. Additionally, such an extended compression surface (6) may be integral with a disarticulated compression insert (5), while in other embodiments they may be detachable and/or replaceable. Such detachable and/or replaceable embodiments may include apparatus, such as snap, and/or slide fitted locks to secure the extended compression surface's (6) disarticulated compression insert (5). Additionally, in such embodiments, the size, shape and material may be selected and customized so as to conform to the user's specific anatomical presentation as well as mechanical operation needs.


In the preferred embodiment shown in the figures, a compression actuator (7) may be coupled with a disarticulated compression insert (5) in such a manner as to secure it within the compression aperture. This compression actuator (7) may further be configured to position and/or secure the disarticulated compression insert (5) such that it may be tractable in one, or multiple directions in response to the action of the actuator. It should be understood that for purposes of this invention a compression actuator may be any apparatus that may be configured to adjust the movement of another portion of a disarticulated compression socket (1). In a preferred embodiment, a compression actuator may be any apparatus that may be configured to adjust the movement of the socket frame (2) and/or a compression actuator may be any apparatus that may be configured to adjust or modulate the movement of a disarticulated compression insert (5). Examples of such compression actuators may include a strap compression actuator; an air pressure compression actuator; an automatic compression actuator; a twist compression actuator; and a detachable compression actuator.


As highlighted in FIGS. 5-6, in this preferred embodiment, the compression actuator (7) may be coupled with the disarticulated compression insert (5) through one, or a plurality of, cords (13). In this embodiment, innervation of the compression actuator (7) may cause the retraction of the cords (13) which may in-turn, cause the coupled disarticulated compression inserts (5) to proximally contract generating an inward compressive force. This compressive force may work to secure a residual limb within the socket, frame (2). In this preferred embodiment, one or more cords (13) may be configured to be positioned within a cord channel (not shown) within the socket frame (2). Such a cord channel may include a hollow aperture where a cord may be positioned such that it may be extended and/or retracted. In this embodiment, one or more portions of the cord (13) may be anchored or represent an anchor cord (13)—such components being in some cases the same. In the preferred embodiment shown in FIGS. 1-2, and 5-6, a cord (13) may be coupled with a compression actuator (7) and further positioned within a cord channel that traverses the socket frame (3) as well as at least one disarticulated compression insert (5). The placement of such a cord (13) may couple the disarticulated compression insert (5) to the socket frame (2) while also being responsive to the action of the compression actuator (7).


Again, as shown in the FIG. 2, a portion of the cord, or anchor cord (8) may be secured to a portion of the socket frame (2). In this embodiment one or more cords (13) may be coupled with a compression actuator (7) and further positioned within a cord channel that traverses the socket frame (3) as well as at least one disarticulated compression insert (5) and then be secured in a position above the disarticulated compression insert (5). In this embodiment, innervation of the compression actuator (7) may cause retraction of the cord (13), which in this embodiment has sufficiently elastic properties to allow it to be stretched in response to the compression actuator (7). The anchor cord (8) being secured, in this embodiment by the socket frame (2) may not retract, thus acting as an opposing force to the compression actuator (7) which may effectuate the cords (13) stretching and in turn, the movement of the disarticulated compression insert (5).


Referring specifically to FIGS. 1 and 2, in one preferred embodiment a compression actuator (7) may be laterally coupled with the disarticulated compression insert (5) through one or more laterally positioned cords (13). In this embodiment, innervation of the compression actuator (7) may cause the retraction of the cords (13) which may in-turn cause the coupled disarticulated compression inserts (5) to proximally contract generating an inward lateral compressive force, where “lateral” in this instance may mean “approximately parallel” with the residual limb thereby generating a large surface area connection when it is secured within the socket frame (2). Lateral may also include the swivel action of the distal ends of a disarticulated compression insert (5). Such swivel action may allow the disarticulated compression insert (5) to conform to the surface of a sloping residual limb, thereby generating a large surface area connection.


In another embodiment, a compression actuator (7) may be coupled with the disarticulated compression insert (5) through one or a plurality of straps (not shown). In this embodiment, innervation of the compression actuator (7) may cause the retraction of the straps which may in-turn, cause the coupled disarticulated compression inserts (5) to proximally contract generating an inward compressive force. This compressive force may work to secure a residual limb within the socket frame (2).


In another embodiment, a twist compression actuator (7) may be coupled with the disarticulated compression insert (5) through one or a plurality of cords (13) and/or straps (not shown). In this embodiment, twisting of the twist compression actuator (7) may cause a winding-up of the cord(s) (13 and/or straps or other components causing the coupled disarticulated compression inserts (5) to proximally contract generating an inward compressive force. This compressive force may work to secure a residual limb within the socket frame (2).


In another embodiment, an air pressure compression actuator (7) may be coupled with the disarticulated compression insert (5) through one or a plurality of pressurized and/or hydraulic absorbers. In this embodiment, innervation of the compression actuator (7) may cause the expansion of the pressurized and/or hydraulic absorbers which may in-turn cause the coupled disarticulated compression inserts (5) to proximally contract generating an inward compressive force. This compressive force may work to secure a residual limb within the socket frame (2).


Additional embodiments may include a compression actuator (7) that may be detached from the disarticulated compression socket (1) and perhaps separately stored when not in use. In additional embodiments, a compression actuator (7) may be coupled with one or more disarticulated compression inserts (5) through one or more cords (13). In one such embodiment, a compression actuator (7) may be coupled with a plurality of disarticulated compression insert (5) through one or more cords (13). In this embodiment, innervation of the compression actuator (7) may cause the retraction of the cords (13) which may in-turn cause the coupled disarticulated compression inserts (5) to proximally contract in unison, generating an inward compressive force. This compressive force may work to secure a residual limb within the socket frame (2). In certain embodiments, multiple compression actuators (7) may be employed allowing varying levels of inward compressive force to be generated from the action of the disarticulated compression inserts (5). Such embodiments may be particularly useful in forming a customized fitted interface between the socket frame (2) and the residual limb and/or inner socket (3) that may conform to the user's specific anatomical presentation as well as mechanical operation needs. Naturally, any such compression actuator (7) may also be de-innervated, or released alleviating the inward compressive force of any coupled disarticulated compression insert (5). In this manner, a user may select the optimal compressive force he or she wishes to apply to the residual limb by each of the disarticulated compression inserts (5) through modulation of the various compression actuators (7).


As shown in FIGS. 1-4, one embodiment of the inventive technology may include lateral release channel (12) to accommodate the expansion of soft tissue as compressive force is applied to the residual limb. In one preferred embodiment, a socket frame (2) may be configured to include a plurality of lateral release channels (12) configured to accommodate soft tissue expansion of the residual limb when disarticulated compression inserts (5) are compressed to secure the residual limb within the socket frame (2). In certain preferred embodiments, such lateral release channels (12) may include expanded channels that extend laterally along the socket frame (2), while in other embodiments, such lateral release channels (12) may include apertures in the socket frame (2), such as those described in FIG. 4. These apertures may also extend laterally along the socket frame (2). In some embodiments such lateral release channels may be customized to conform to the anatomical presentation of the residual limb, including major muscle groupings as well as considerations of high, and low pressure points along the residual limb interface (10) and/or socket interface (11). Additional embodiments may also include an inner socket (3) having one or more lateral release channels (12). Such lateral release channels (12) may correspond to lateral release channels (12) on the socket frame (2) or may be positioned independently based on the anatomical presentation of the residual limb, including major muscle groupings as well as considerations of high and low pressure points along the residual limb interface (10) and/or socket interface (11).


As shown in FIG. 1, one embodiment of the invention may include an automatically adjusting compression prosthetic. In this preferred embodiment, one or more sensors (14), such as a position and/or pressure sensor, may be positioned on the prosthetic and further configured to sense the position or volume of the residual limb. In the embodiment shown in FIG. 1, a sensor (14) may be secured to the socket frame (2). In some embodiments a sensor (14) may be integrally connected to the socket frame (2) or may be attachable and detachable. Additional embodiments may include a sensor that may be coupled with one or more disarticulated compression inserts (5), cords (13) or even compression actuators (7).


In one preferred embodiment one or more sensors (14) may be configured to detect the position of the residual limb within the socket frame (2) and send a signal, such as a wired or wireless signal, to a compression actuator (7) causing its innervation. As a result of this innervation, a compression actuator (7) may adjust the position of any coupled disarticulated compression inserts (5) in response to a signal from said sensor. For example, in response to a signal that the residual limb interface (10) and socket interface (11) are in a sub-optimal position, the sensor may send a signal to a compression actuator (7) causing it to modulate the position of any coupled disarticulated compression inserts (5) through decreasing compression through expansion of any coupled disarticulated compression inserts (5), or increasing compression on the residual limb.


In certain embodiments a plurality of sensors may be used to innervate a plurality of individual compression actuators (7). In this preferred embodiment, a plurality of disarticulated compression inserts (5) may each be independently modulated in response to an external stimuli, such as position or volume of the residual limb within a socket frame (2) and the like. Additional embodiments may include one or more pre-set sensors (14) and/or compression actuators (7). In this preferred embodiment, one or more compression actuators (7) may be pre-set to adjust the compressive force of the disarticulated compression insert (5), for example in response to a signal from a sensor (14). An individual user may pre-set one or more compression actuators (7) to automatically conform to the user's specific anatomical presentation as well as mechanical operation needs. Such pre-settings may be further configured to modulate in response to environmental stimuli, such as the position or volume of the residual limb within a socket frame (2), or on a timer-based system.


As noted above, in certain embodiments, the inventive technology may accommodate and secure a residual limb within a disarticulated compression socket (1). In a preferred embodiment compression, lateral or otherwise, may result in the reduction of the volume of the residual interface (10) as shown in FIG. 3. As part of the invention, compression, including lateral compression of the coupled disarticulated compression inserts (5) may include, but not be limited to: compression of the coupled disarticulated compression inserts (5) resulting in at least a 5% reduction in the volume of the residual limb interface (10); compression of the coupled disarticulated compression inserts (5) resulting in at least a 10% reduction in the volume of the residual limb interface (10); compression of the coupled disarticulated compression inserts (5) resulting in at least a 15% reduction in the volume of the residual limb interface (10); compression of the coupled disarticulated compression inserts (5) resulting in at least a 20% reduction in the volume of the residual limb interface (10); compression of the coupled disarticulated compression inserts (5) resulting in at least a 25% reduction in the volume of the residual limb interface (10); and compression of the coupled disarticulated compression inserts (5) resulting in at least a 30% reduction in the volume of the residual limb interface (10).


In addition, the inventive technology may accommodate a residual limb within a disarticulated compression socket (1). In a preferred embodiment, expansion, lateral or otherwise, may result in the increase of the volume of the residual limb interface (10) as shown in FIG. 3. As part of the invention, expansion, including lateral expansion of the coupled disarticulated compression inserts (5) may include, but not be limited to: expansion of the coupled disarticulated compression inserts (5) resulting in at least a 5% increase in the volume of the residual limb interface (10); expansion of the coupled disarticulated compression inserts (5) resulting in at least a 10% increase in the volume of the residual limb interface (10); expansion of the coupled disarticulated compression inserts (5) resulting in at least a 15% increase in the volume of the residual limb interface (10); expansion of the coupled disarticulated compression inserts (5) resulting in at least a 20% increase in the volume of the residual limb interface (10); expansion of the coupled disarticulated compression inserts (5) resulting in at least a 25% increase in the volume of the residual limb interface (10); and expansion of the coupled disarticulated compression inserts (5) resulting in at least a 30% increase in the volume of the residual limb interface (10).


As shown in FIG. 4, in one embodiment a one or more disarticulated compression inserts (5) may be sufficiently flexible so as to accommodate and/or more efficiently conform to the specific anatomical shape of a user's residual limb. In one preferred embodiment, a disarticulated compression insert (5) may include a hinge or joint (15). In other embodiments, such hinge action may be formed by coupling separate components of a disarticulated compression insert (5) in such a manner as to form a flexing or hinge movement.


In this embodiment, a hinged disarticulated compression insert (5) may be configured to be hinged laterally which may allow the disarticulated compression insert (5) to better conform to laterally extended and sloping surfaces such as those often found on residual limbs. In another embodiment, a hinged disarticulated compression insert (5) may be configured to be hinged horizontally which may allow the disarticulated compression insert (5) to better conform to extended protuberances or irregular surfaces and the like on a residual limb. In still other embodiments, disarticulated compression insert (5) mat be hinged both laterally and horizontally.


Naturally, all embodiments discussed herein are merely illustrative and should not be construed to limit the scope of the inventive technology consistent with the broader inventive principles disclosed. As may be easily understood from the foregoing, the basic concepts of the present inventive technology may be embodied in a variety of ways. It generally involves systems, methods, techniques as well as devices to accomplish a disarticulated compression socket and the like. In this application, the methods and apparatus for the aforementioned systems are disclosed as part of the results shown to be achieved by the various devices described and as steps which are inherent to utilization. They are simply the natural result of utilizing the devices as intended and described. In addition, while some devices are disclosed, it should be understood that these not only accomplish certain methods but also can be varied in a number of ways. Importantly, as to all of the foregoing, all of these facets should be understood to be encompassed by this disclosure.


While the invention has been described in connection with a preferred embodiment, it is not intended to limit the scope of the invention to the particular form set forth, but on the contrary, it is intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the statements of invention. As can be easily understood from the foregoing, the basic concepts of the present invention may be embodied in a variety of ways. It involves both techniques as well as devices to accomplish the appropriate system. In this application, the techniques are disclosed as part of the results shown to be achieved by the various devices described and as steps which are inherent to utilization. They are simply the natural result of utilizing the devices as intended and described. In addition, while some devices are disclosed, it should be understood that these not only accomplish certain methods but also can be varied in a number of ways. Importantly, as to all of the foregoing, all of these facets should be understood to be encompassed by this disclosure.


The discussion included in this application is intended to serve as a basic description. The reader should be aware that the specific discussion may not explicitly describe all embodiments possible; many alternatives are implicit. It also may not fully explain the generic nature of the invention and may not explicitly show how each feature or element can actually be representative of a broader function or of a great variety of alternative or equivalent elements. Again, these are implicitly included in this disclosure. Where the invention may be described in some instances in method-oriented terminology, each element of the claims corresponds to a device and vice versa. Apparatus claims may not only be included for the device described, but also method or process claims may be included to address the functions the invention and each element performs. Neither the description nor the terminology is intended to limit the scope of the claims that will be included in any subsequent patent application.


It should also be understood that a variety of changes may be made without departing from the essence of the invention. Such changes are also implicitly included in the description. They still fall within the scope of this invention. A broad disclosure encompassing both the explicit embodiment(s) shown, the great variety of implicit alternative embodiments, and the broad methods or processes and the like are encompassed by this disclosure and may be relied upon when drafting any claims. It should be understood that such language changes and broader or more detailed claiming may be accomplished at a later date (such as by any required deadline) or in the event the applicant subsequently seeks a patent filing based on this filing. With this understanding, the reader should be aware that this disclosure is to be understood to support any subsequently filed patent application that may seek examination of as broad a base of claims as deemed within the applicant's right and may be designed to yield a patent covering numerous aspects of the invention both independently and as an overall system.


Further, each of the various elements of the invention and claims may also be achieved in a variety of manners. Additionally, when used or implied, an element is to be understood as encompassing individual as well as plural structures that may or may not be physically connected. This disclosure should be understood to encompass each such variation, be it a variation of an embodiment of any apparatus embodiment, a method or process embodiment, or even merely a variation of any element of these. Particularly, it should be understood that as the disclosure relates to elements of the invention, the words for each element may be expressed by equivalent apparatus terms or method terms—even if only the function or result is the same. Such equivalent, broader, or even more generic terms should be considered to be encompassed in the description of each element or action. Such terms can be substituted where desired to make explicit the implicitly broad coverage to which this invention is entitled. As but one example, it should be understood that all actions may be expressed as a means for taking that action or as an element which causes that action. Similarly, each physical element disclosed should be understood to encompass a disclosure of the action which that physical element facilitates. Regarding this last aspect, as but one example, the disclosure of a “support” should be understood to encompass disclosure of the act of “supporting”—whether explicitly discussed or not—and, conversely, were there effectively disclosure of the act of “supporting”, such a disclosure should be understood to encompass disclosure of a “supporting method and/or technique, and/or device” and even a “means for supporting.” Such changes and alternative terms are to be understood to be explicitly included in the description.


Any patents, publications, or other references mentioned in this application for patent, such as in the specification or an IDS are hereby incorporated herein by reference in their entirety. Any priority case(s) claimed by this application is hereby appended and hereby incorporated herein by reference in their entirety. In addition, as to each term used it should be understood that unless its utilization in this application is inconsistent with a broadly supporting interpretation, common dictionary definitions should be understood as incorporated for each term and all definitions, alternative terms, and synonyms such as contained in the Random House Webster's Unabridged Dictionary, second edition are hereby incorporated herein by reference in their entirety. Finally, all references listed in the list of References To Be Incorporated By Reference In Accordance With The Patent Application or other information disclosure statement and the like filed with the application are hereby appended and hereby incorporated herein by reference in their entirety, however, as to each of the above, to the extent that such information or statements incorporated by reference might be considered inconsistent with the patenting of this/these invention(s) such statements are expressly not to be considered as made by the applicant(s).


Thus, the applicant(s) should be understood to have support to claim and make a statement of invention to at least: i) each of the methods and/or apparatus for providing a disarticulated compression socket as herein disclosed and described, ii) the related methods disclosed and described, iii) similar, equivalent, and even implicit variations of each of these devices and methods, iv) those alternative designs which accomplish each of the functions shown as are disclosed and described, v) those alternative designs and methods which accomplish each of the functions shown as are implicit to accomplish that which is disclosed and described, vi) each feature, component, and step shown as separate and independent inventions, vii) the applications enhanced by the various systems or components disclosed, viii) the resulting products produced by such systems or components, ix) each system, method, and element shown or described as now applied to any specific field or devices mentioned, x) methods and apparatuses substantially as described hereinbefore and with reference to any of the accompanying examples, xi) the various combinations and permutations of each of the elements disclosed, xii) each potentially dependent claim or concept as a dependency on each and every one of the independent claims or concepts presented, and xiii) all inventions described herein.


With regard to claims whether now or later presented for examination, it should be understood that for practical reasons and so as to avoid great expansion of the examination burden, the applicant may at any time present only initial claims or perhaps only initial claims with only initial dependencies. The office and any third persons interested in potential scope of this or subsequent applications should understand that broader claims may be presented at a later date in this case, in a case claiming the benefit of this case, or in any continuation in spite of any preliminary amendments, other amendments, claim language, or arguments presented, thus throughout the pendency of any case there is no intention to disclaim or surrender any potential subject matter. It should be understood that if or when broader claims are presented, such may require that any relevant prior art that may have been considered at any prior time may need to be re-visited since it is possible that to the extent any amendments, claim language, or arguments presented in this or any subsequent application are considered as made to avoid such prior art, such reasons may be eliminated by later presented claims or the like. Both the examiner and any person otherwise interested in existing or later potential coverage, or considering if there has at any time been any possibility of an indication of disclaimer or surrender of potential coverage, should be aware that no such surrender or disclaimer is ever intended or ever exists in this or any subsequent application. Limitations such as arose in Hakim v. Cannon Avent Group, PLC, 479 F.3d 1313 (Fed. Cir 2007), or the like are expressly not intended in this or any subsequent related matter. In addition, support should be understood to exist to the degree required under new matter laws—including but not limited to European Patent Convention Article 123(2) and United States Patent Law 35 USC 132 or other such laws—to permit the addition of any of the various dependencies or other elements presented under one independent claim or concept as dependencies or elements under any other independent claim or concept. In drafting any claims at any time whether in this application or in any subsequent application, it should also be understood that the applicant has intended to capture as full and broad a scope of coverage as legally available. To the extent that insubstantial substitutes are made, to the extent that the applicant did not in fact draft any claim so as to literally encompass any particular embodiment, and to the extent otherwise applicable, the applicant should not be understood to have in any way intended to or actually relinquished such coverage as the applicant simply may not have been able to anticipate all eventualities; one skilled in the art, should not be reasonably expected to have drafted a claim that would have literally encompassed such alternative embodiments.


Further, if or when used, the use of the transitional phrase “comprising” is used to maintain the “open-end” claims herein, according to traditional claim interpretation. Thus, unless the context requires otherwise, it should be understood that the term “comprise” or variations such as “comprises” or “comprising”, are intended to imply the inclusion of a stated element or step or group of elements or steps but not the exclusion of any other element or step or group of elements or steps. Such terms should be interpreted in their most expansive form so as to afford the applicant the broadest coverage legally permissible. It should be understood that this application also provides support for any combination of elements in the claims and even incorporates any desired proper antecedent basis for certain claim combinations such as with combinations of method, apparatus, process, and the like claims.


Any claims set forth at any time are hereby incorporated by reference as part of this description of the invention, and the applicant expressly reserves the right to use all of or a portion of such incorporated content of such claims as additional description to support any of or all of the claims or any element or component thereof, and the applicant further expressly reserves the right to move any portion of or all of the incorporated content of such claims or any element or component thereof from the description into the claims or vice-versa as necessary to define the matter for which protection is sought by this application or by any subsequent continuation, division, or continuation-in-part application thereof, or to obtain any benefit of, reduction in fees pursuant to, or to comply with the patent laws, rules, or regulations of any country or treaty, and such content incorporated by reference shall survive during the entire pendency of this application including any subsequent continuation, division, or continuation-in-part application thereof or any reissue or extension thereon. The inventive subject matter is to include, but certainly not be limited as, a system substantially as herein described with reference to any one or more of the Figures and Description (including the following: for example, the process according to any claims and further comprising any of the steps as shown in any Figures, separately, in any combination or permutation).


Finally, Applicant reserves the right to seek additional design patent protection over the claimed invention, such that the drawings are fully enabled so as to allow one of ordinary skill in the art to know that the claimed design was in Applicant's possession at the time of filing. As such, it should be noted that any broken lines are to be included for the purpose of illustrating environmental matter and form no part of the claimed design should such become necessary.

Claims
  • 1. A disarticulated compression socket comprising: a socket frame configured to secure a residual limb;at least four compression apertures on said socket frame wherein said compression apertures are configured to oppose each other on said socket frame;at least one disarticulated compression insert positioned within each of said opposing compression apertures;at least one extended compression surface coupled with each of said disarticulated compression inserts;at least two compression actuators wherein each of said compression actuators is coupled with at least two said disarticulated compression inserts adjacent to one another through one or more cords secured lengthwise relative to the socket frame through said compression inserts wherein said compression actuators are configured to retract said lengthwise secured cords so as to compress said coupled disarticulated compression inserts securing said residual limb within said socket frame;a plurality of release channels configured to accommodate soft tissue expansion of said residual limb when said disarticulated compression inserts are compressed to secure said residual limb within said socket frame; andwherein said disarticulated compression socket as configured above allows a 5-10% reduction in the volume of said residual limb interface.
  • 2. A disarticulated compression socket as described in claim 1 wherein said plurality of release channels comprises a plurality of lateral release apertures.
  • 3. A disarticulated compression socket as described in claim 1 wherein said socket frame configured to secure a residual limb comprises a socket selected from the group consisting of: transfemoral socket frame; a transhumeral socket frame; a transradial socket frame; a transtibial socket frame; a symes socket frame; a hip disarticulation socket frame; a knee disarticulation socket frame; and a wrist disarticulation socket frame.
  • 4. A disarticulated compression socket as described in claim 1 wherein said one or more cords are internally positioned within a cord channel.
  • 5. A disarticulated compression socket as described in claim 4 wherein said one or more cords further are internally anchored by one or more cord anchors.
  • 6. A compression prosthetic comprising: a socket frame configured to secure a residual limb;at least four opposing compression apertures on said socket frame;at least one disarticulated compression insert positioned within each of said opposing compression apertures;at least two compression actuators coupled lengthwise relative to the socket through the one or more disarticulated compression inserts, wherein each of said compression actuators is coupled with at least two of said disarticulated compression inserts located adjacent to one another and wherein each of said compression actuators are configured to provide lengthwise compression through said coupled adjacent disarticulated compression inserts securing said residual limb within said socket frame; andat least one release channel configured to accommodate soft tissue expansion of said residual limb when said disarticulated compression inserts are laterally compressed to secure said residual limb within said socket frame andwherein said compression prosthetic as configured above allows a 5-10% reduction in the volume of said residual limb interface.
  • 7. A compression prosthetic as described in claim 6 wherein said compression actuators comprise one or more compression actuators coupled with at least two of said disarticulated compression inserts located adjacent to one another through a lengthwise secured cord that is internally positioned within a cord channel.
  • 8. A compression prosthetic as described in claim 7 wherein said one or more compression actuators further are internally anchored by one or more cord anchors.
  • 9. A compression prosthetic as described in claim 6 wherein said release channels comprise release apertures.
  • 10. A compression prosthetic as described in claim 6 wherein said socket frame configured to secure a residual limb comprises a socket selected from the group consisting of: transfemoral socket frame; a transhumeral socket frame; a transradial socket frame; a transtibial socket frame; a symes socket frame; a hip disarticulation socket frame; a knee disarticulation socket frame; and a wrist disarticulation socket frame.
  • 11. A compression prosthetic comprising: a socket frame configured to secure a residual limb;at least four compression apertures on said socket frame;at least one disarticulated compression insert positioned within each of said compression apertures;at least one compression actuator coupled lengthwise relative to the socket through one or more disarticulated compression inserts wherein said compression actuator is configured to provide lengthwise compression through said coupled disarticulated compression inserts securing said residual limb within said socket frame; anda plurality of release channels configured to accommodate soft tissue expansion of said residual limb when said disarticulated compression inserts are lengthwise compressed to secure said residual limb within said socket frame; andwherein said compression prosthetic allows a 5-10% reduction in the volume of said residual limb interface.
  • 12. A compression prosthetic as described in claim 11 wherein said socket frame configured to secure a residual limb comprises a socket selected from the group consisting of: transfemoral socket frame; a transhumeral socket frame; a transradial socket frame; a transtibial socket frame; a symes socket frame; a hip disarticulation socket frame; a knee disarticulation socket frame; and a wrist disarticulation socket frame.
  • 13. A compression prosthetic as described in claim 11 wherein said disarticulated compression inserts comprise hinged disarticulated compression inserts.
  • 14. A compression prosthetic as described in claim 11 wherein said at least one compression actuator is coupled with at least one disarticulated compression inserts through a cord secured lengthwise relative to the socket.
  • 15. A compression prosthetic as described in claim 14 wherein the cord is internally positioned within a cord channel.
  • 16. A compression prosthetic as described in claim 15 wherein the cord further is internally anchored by one or more cord anchors.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation application, and claims the benefit of and priority to U.S. patent application Ser. No. 15/341,228, filed on Nov. 2, 2016, the disclosure of which is incorporated herein by reference.

US Referenced Citations (62)
Number Name Date Kind
1144681 Apgar Jun 1915 A
1272179 Anderson et al. Jul 1918 A
1893853 Tullis Jan 1933 A
3520002 Wellington Jul 1970 A
4128903 Marsh et al. Dec 1978 A
4268922 Marsh et al. May 1981 A
4459709 Leal et al. Jul 1984 A
4670998 Pasternak Jun 1987 A
4782827 Paratte Nov 1988 A
4811500 Maccano Mar 1989 A
4926569 Bunch May 1990 A
5052130 Barry et al. Oct 1991 A
5269078 Cochrane Dec 1993 A
5288286 Davis et al. Feb 1994 A
5323549 Segel et al. Jun 1994 A
5405405 Love Apr 1995 A
5408761 Gazzano Apr 1995 A
5480455 Norvell Jan 1996 A
5678329 Griffin et al. Oct 1997 A
5724714 Love Mar 1998 A
6077300 Sabolich et al. Jun 2000 A
6362387 Carlson et al. Mar 2002 B1
6393733 London et al. May 2002 B1
6601321 Kendall Aug 2003 B1
6622401 Carroll, III Sep 2003 B2
6925734 Schaeffer Aug 2005 B1
6991657 Price, Jr. Jan 2006 B1
7013581 Greene et al. Mar 2006 B2
7089689 Meschan Aug 2006 B2
7217247 Dariush et al. May 2007 B2
7243444 Selner Jul 2007 B2
7415782 Carroll, III Aug 2008 B2
7441346 Hardy et al. Oct 2008 B2
7500323 Rasmussen Mar 2009 B2
7509756 Lebo Mar 2009 B2
7536809 Meschan May 2009 B2
7555847 Kendall Jul 2009 B2
7596888 Meschan et al. Oct 2009 B2
7624517 Smith Dec 2009 B2
7650204 Dariush Jan 2010 B2
7774177 Dariush Aug 2010 B2
7918811 Lussier et al. Apr 2011 B2
8079159 Rosa Dec 2011 B1
8082062 Dariush Dec 2011 B2
8128587 Stevenson et al. Mar 2012 B2
8230618 Bruce et al. Jul 2012 B2
8323353 Alley et al. Dec 2012 B1
8656918 Alley et al. Feb 2014 B1
8795385 Bache Aug 2014 B2
8858482 Ingimundarson et al. Oct 2014 B2
8945237 Cornell Feb 2015 B2
8978224 Hurley et al. Mar 2015 B2
9044349 Hurley et al. Jun 2015 B2
9050202 Bache et al. Jun 2015 B2
9248033 Bache Feb 2016 B2
9283093 Alley Mar 2016 B2
20040158332 Carstens Aug 2004 A1
20090287128 Ingimundarson et al. Nov 2009 A1
20100042227 Schmidt Feb 2010 A1
20100082116 Johnson et al. Apr 2010 A1
20110046528 Stevenson et al. Feb 2011 A1
20110071647 Mahon Mar 2011 A1
Non-Patent Literature Citations (3)
Entry
Search Results “adjustable stump socket” Duck Duck Go, Jul. 15, 2016, 5 pages.
Click Medical/Revo Welcome, “Better Together”, http://www.clickmedical.co/revo-welcome, Obtained Jul. 20, 2016, 4 pages.
“Orthotics & Prosthetics/Boa Closure System”, http://www.boatechnology.com/products/orthotics-prosthetics, obtained Nov. 2, 2016, 2 pages.
Related Publications (1)
Number Date Country
20180296372 A1 Oct 2018 US
Continuations (1)
Number Date Country
Parent 15341228 Nov 2016 US
Child 16014792 US