The present disclosure relates to disassembly of components, and more particularly, to disassembly of components for vehicles assembled with a sealing material therebetween.
Various methods are known in the vehicular arts for retaining a fluid in a cavity defined by separable components. For example, in the art of vehicle internal combustion engines, an oil pan assembly is required to hold oil in a cavity defined by a lower oil pan assembled to an upper oil pan which is in turn attached to an engine cylinder block. The lower and upper oil pans are joined and sealed together in an assembled state with a seal therebetween. This seal is commonly a preformed gasket or an applied material such as a room-temperature vulcanizing (RTV) silicone rubber (hereinafter referred to as “RTV”).
When RTV is used to seal two components, RTV is applied in a fluid form to at least one of the two components. The two components are then assembled together before the RTV sets up. After a period of time, the RTV forms a fluid tight seal that creates an adhesive bond between the two assembled components.
In order to separate the two assembled components for service, this fluid tight seal must be broken, which proves to be difficult as a result of the adhesive bond adhering the two components together. This fluid-tight seal is often difficult to break even when prying the two assembled components apart with a leveraging tool, such as a screwdriver.
For example, disassembly of the two components sealed together with RTV may be done by prying the two assembled components apart with a screwdriver in a joint interface between the mating components after bolts maintaining the two components together are removed. Separation in this manner typically requires forcibly prying against both mating surfaces defining the joint interface. Prying at this joint interface may chip, scratch or destroy one or both of the mating surfaces, thus deteriorating the integrity of the mating surfaces for resealing. Moreover, the currently practiced disassembly method of prying with a flat bladed screwdriver necessitates caution, because the sharpness of the edges defining the flat bladed portion during such wedging and prying in the joint interface is variable and unpredictable. As such, to effect disassembly and reattachment of the two components, extra care and inspection are typically required at the prying interface to maintain the integrity of the mating surfaces in order to reseal the same.
Alternatively, it is common practice to add at least one tapped hole to one of the two components for use with a complementary threaded jack screw or bolt during disassembly of the two RTV sealed components to break the fluid tight seal. As a leading end of the bolt is threaded into an exposed opening defining the tapped hole, the leading end extends to an opposite end of the tapped hole when turned. When the leading end mates with a surface of the other component abutting the opposite end of the tapped hole, further turning of the bolt forces the two components apart as in a jack screw arrangement. However, this arrangement requires additional holes to be formed and tapped for utilization only during disassembly of the two components. Moreover, these extra holes limit the mating surface area between the two components upon which the RTV can adhere to.
Therefore, there exists a need in the art for a method and apparatus for RTV sealed components adhered to one another to be easily separated during disassembly. Further, there exists a need for a disassembly aid for RTV sealed components that eliminates a potential for harm to the integrity of the mating surfaces upon disassembly of the components, while eliminating a need to form extra holes in one of the components for use only during disassembly.
Disclosed herein is a sealed assembly defining a fluid-containing cavity, the sealed assembly comprising: a first component cooperating with a second component to define the fluid containing cavity, the first and second components having cooperating sealing surfaces; and a mounting opening in the first component, the mounting opening including a threaded jack hole and a clearance hole, the threaded jack hole and clearance hole configured for use in assembly of the first and second components, the threaded jack hole configured for use during disassembly of the first component from the second component, the mounting opening configured to allow a mechanical fastener to extend therethrough for securing the first component to the second component, the fastener when engaged providing a compression force between the first and second components.
Also disclosed is an engine cover assembly defining a fluid-containing cavity, the assembly comprising: an engine component including a sealing surface defining an edge of the cavity; a cover including a fluid-containing wall surrounded by a peripheral edge and having a sealing surface opposing the sealing surface of the engine component, and a plurality of mounting openings in the wall, at least one mounting opening of the plurality of mounting openings integrating a threaded jack hole with a clearance hole used for assembly, the threaded jack hole configured for use during disassembly of the cover from the engine component; and mechanical fasteners extending through the openings for securing the cover to a mating edge of the engine component, the fasteners when engaged providing a compression force on the sealing surfaces of the cover and engine component for engagement with a compliant sealing material disposed between the sealing surfaces defining a gap therebetween.
In yet another embodiment, a method for a disassembly aid in a first component cooperating with a second component defining a fluid containing cavity, the first and second components having cooperating sealing surfaces is disclosed. The method includes: configuring a mounting opening in the first component, the mounting opening configured to allow a mechanical fastener to extend therethrough for securing the first component to the second component, the fastener when engaged providing a compression force between the first and second components; and configuring a threaded jack hole and a clearance hole in the mounting opening for use in assembly of the first and second components, wherein the threaded jack hole is configured for use during disassembly of the first component from the second component.
The above-described and other features are exemplified by the following figures and detailed description.
Referring now to the figures, which are meant to be exemplary embodiments, and wherein like elements are numbered alike:
The present disclosure provides a disassembly aid for components bolted together having a sealing material on complementary mating sealing surfaces that creates a seal and an adhesive bond between the components. The disassembly aid integrates a threaded jack hole with a clearance hole for use with a bolt for mating the components together. The threaded jack hole is used with a jack screw during disassembly, thus the jack screw used for disassembly is configured with a larger diameter than a diameter of the bolt used for assembly. This integration reduces a machining requirement to add one or more separately tapped holes in one of the components for the sole purpose of being used with a jack screw during disassembly to break the bond created by the cured sealing material. Furthermore, such a reduction in separately tapped holes increases a surface area of the interfacing sealing surfaces available for sealably mating the components together.
Referring to the drawings in detail, a portion of an engine assembly 10 is illustrated including an engine cylinder block 12 having at least one engine cylinder 14 (four cylinders 14 shown). Block 12 includes an oil pan assembly 16 bolted to block 12 via bolts 18. Oil pan assembly 16 includes an upper oil pan 20 having a sealed cover assembly 22 covering a cavity 24 defined by upper oil pan assembly 20, as best seen in
The sealed cover assembly 22 includes a cover or lower oil pan 30 having a fluid-containing wall 32 surrounded by a peripheral edge 34 with an inwardly facing sealing surface 36 aligned with an outwardly facing sealing surface 38 of the upper oil pan 20. A suitable sealing material, such as a RTV sealing material 40, is applied on at least one of sealing surfaces 36 and 38 in fluid form and cures at room temperature after installation of the cover 30 (see
The cover assembly 22 includes a plurality of mounting openings 42, in each of which is retained a mounting fastener 46 including a bolt 46, for example, extending through the opening 42 and threadably received in a corresponding threaded opening 48 in upper oil pan 20. It is envisioned that threaded opening 48 may alternatively be a through hole in which bolt 46 extends therethrough to threadably receive a nut (shown in
Referring to
For mounting of the cover assembly 22 to upper oil pan 20, with reference to
An interface between upper and lower oil pans 20 and 30, respectively, is filled by the fluid RTV sealing material 40, which becomes self-vulcanized or cured at room temperature in a short period of time after assembly. At least one of the sealing surfaces 36, 38 of the cover 30 and upper oil pan 20 optionally includes a groove 59 (see
The sealing provided by the RTV sealing material 40 is able to fill in variations in a gap between the sealing surfaces 36 and 38, as well as surface irregularities and thus provides a dependable fluid containing seal between the cover 30 and upper oil pan 20. In addition, the sealing provided by the RTV sealing material 40 creates an adhesive bond therebetween that is difficult to break during disassembly.
In accordance with the present disclosure, at least one of the openings 42 includes a threaded jack hole 60 integrated with opening 42 used as a clearance hole during assembly. In an exemplary embodiment, a plurality of thread jack holes 60 are integrated with a corresponding opening 42 located at strategic locations in any given bolt pattern. For example, the strategic locations include opposing corners of the bolt pattern corresponding to corners defining the cover 30. In
Referring now to
Referring now to
Referring now to
While the exemplary cover assembly design illustrated involves a number of specific design considerations, the integrated jack hole and clearance hole concept can be utilized with other cover designs to assemble a cover of any type using a sealing material with an associated mating component on which it is mounted, while aiding disassembly thereof using a jack screw in a threaded clearance hole that is also used for assembly. If desired, the jack screw may be an assembly bolt that is removed from the cover at a different hole location having a threaded diameter larger than a threaded diameter of a smaller diameter bolt threaded into the mating component. However, using a same size threaded hole in the mating component for each mounting location is preferred for ease of manufacture, assembly and parts retention. If necessary, the mating component may include a clearance hole in which a bolt slidably extends therethrough to threadably engage with a nut in place of a threaded hole in the mating component to receive the bolt. In either case, the other component or cover integrates a tapped hole as a clearance hole for mating the two components, while using the tapped hole with a larger diameter bolt as a threaded jack hole for disassembly. In both cases, machining requirements are reduced because separately tapped holes for use only with the jack screws are not required in remote or separate locations.
While the invention has been described with reference to an exemplary embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to a particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.