The present disclosure relates to multi-function surgical instruments and, more particularly, to disassembly tools and methods facilitating reprocessing of multi-function surgical instruments.
Multi-function surgical instruments are beneficial in that they allow multiple surgical tasks to be performed with a single instrument, obviating the need to alternatingly remove and insert different instruments for performing different surgical tasks. However, in order to provide additional functionality, additional components are added that must fit within the spatial and functional constraints of the instrument. As a result, multi-function surgical instruments tend to be relatively complex in their design and manufacture.
Surgical instrument can generally be categorized as reusable instruments (e.g., instruments that are cleaned and/or sterilized), disposable instruments (e.g., instruments that are entirely discarded after a single use), and reposable instruments (e.g., instruments wherein portions are disposable and other portions are reusable after cleaning and/or sterilization). A new class of so called reprocessed instruments has recently been introduced by manufacturers. Typically, these reprocessed instruments are disposable instruments (or reposable instruments) that are collected after a surgical use and returned to a manufacturer where the instruments are disassembled, cleaned/disinfected, refurbished, re-assembled, sterilized and sold as reprocessed instruments. In many cases, most of the original parts of an instrument are re-used to provide the necessary parts for reassembly of the same instrument. Parts that wear during use, are broken during disassembly, and/or are otherwise unable to be reprocessed as-is may be refurbished, modified, and/or alternatively replaced with replacement components.
With respect to reprocessing of certain surgical instruments, such as multi-function surgical instruments, efficient and effective disassembly, cleaning/disinfection, component replacement, component refurbishment, reassembly, and sterilization can be challenging. There is therefore a need for systems and methods facilitating reprocessing of surgical instruments.
As used herein, the term “distal” refers to the portion that is being described that is further from a user, while the term “proximal” refers to the portion that is being described that is closer to a user. Further, to the extent consistent, any of the aspects described herein may be used in conjunction with any of the other aspects described herein.
Provided in accordance with aspects of the present disclosure is a method of disassembling a surgical instrument. The method includes obtaining a surgical instrument including a housing, an input shaft defining an axis and extending from the housing, and a paddle engaged with the input shaft and configured to pivot about the axis. The method further includes disengaging a cover plate of the paddle from a body of the paddle by providing a force to the cover plate substantially in a direction parallel to the axis and disengaging the body from the input shaft by providing a force to the body substantially in a direction parallel to the axis.
In an aspect of the present disclosure, disengaging the cover plate includes engaging a set screw with the cover plate and manipulating the set screw to provide the force to the cover plate. In such aspects, the set screw may be engaged with the cover plate in alignment with the axis. Additionally or alternatively, engaging the set screw includes drilling a pilot hole through the cover plate and threading the set screw into the pilot hole.
In another aspect of the present disclosure, disengaging the cover plate includes creating a notch in the body adjacent the cover plate, inserting a pry tool into the notch, and providing the force to the cover plate using the pry tool to disengage the cover plate from the body. In such aspects, the notch may be created adjacent the axis.
In still another aspect of the present disclosure, disengaging the body from the input shaft includes inserting a pry tool between the housing and the body adjacent the axis and manipulating the pry tool to provide the force to the body. In such aspects, manipulating the pry tool to provide the force to the body may include rotating the pry tool. Additionally or alternatively, a protective sheet is positioned between the housing and the pry tool to protect the housing during manipulation of the pry tool.
In yet another aspect of the present disclosure, disengaging the body from the input shaft includes inserting a separator tool between the housing and the body adjacent the axis and actuating the separator tool to provide the force to the body.
In still yet another aspect of the present disclosure, disengaging the body from the input shaft includes inserting a lasso loop between the housing and the body adjacent the axis and pulling the lasso loop to provide the force to the body.
In another aspect of the present disclosure, disengaging the body from the input shaft further includes urging arms of the input shaft inwardly prior to providing the force to the body. The arms may be urged inwardly using an insert or a pliers, for example.
In another aspect of the present disclosure, disengaging the body from the input shaft includes engaging a removal tool with the body and actuating a lever of the removal tool to provide the force to the body. Engaging the removal tool with the body may include engaging an inner shaft of the removal tool with the body and/or actuating the lever of the removal tool may including sliding an outer shaft of the removal tool relative to the inner shaft and into contact with the housing to provide the force to the body. Further, the lever of the removal tool may be pivotably coupled to the inner shaft and coupled to the outer shaft via a rack and pinion such that actuating the lever includes pivoting the lever relative to the inner shaft.
In yet another aspect of the present disclosure, the removal tool further includes an insert disposed therein and configured to urge arms of the input shaft inwardly prior to providing the force to the body to facilitate removal of the body from the input shaft.
Various aspects of the present disclosure are described herein with reference to the drawings wherein like reference numerals identify similar or identical elements and:
Referring to
With reference to
Elongated shaft assembly 80 extends distally from housing 20 and supports end effector assembly 100 at a distal end thereof. End effector assembly 100 includes opposing jaw members 110, 120 pivotably coupled to one another. Each of the jaw members 110, 120 includes an electrically-conductive surface 112, 122 adapted to connect to the source of energy and defines a bipolar configuration in use wherein surface 112 is charged to a first electrical potential and surface 122 is charged to a second, different electrical potential such that an electrical potential gradient is created for conducting energy between surfaces 112, 122 and through tissue grasped therebetween for treating tissue. Bipolar activation switch 172 of bipolar activation assembly 170 (
Handle assembly 30 includes a movable handle 40 and a fixed handle 50. Movable handle 40 is movable relative to fixed handle 50 between an initial position, wherein movable handle 40 is spaced-apart from fixed handle 50, and a compressed position, wherein movable handle 40 is compressed towards fixed handle 50. Drive assembly 140 is operably coupled between handle assembly 30 and end effector assembly 100 to enable pivoting of jaw member 110 relative to jaw member 120 between the spaced-apart position and the approximated position in response to actuation of movable handle 40 between the initial position and the compressed position.
Continuing with reference to
Rotation of rotation wheel 72 of rotation assembly 70 relative to housing 20 effects corresponding rotation of at least a portion of elongated shaft assembly 80, end effector assembly 100, drive assembly 140, the knife assembly, and monopolar assembly 200 relative to housing 20.
Monopolar assembly 200 includes an insulative sheath 210 and an energizable member 220. Insulative sheath 210 is movable relative to end effector assembly 100 between a storage position, wherein insulative sheath 210 is disposed proximally of end effector assembly 100, and a use position, wherein insulative sheath 210 is substantially disposed about end effector assembly 100. Energizable member 220 is coupled to the source of energy (not shown) and monopolar activation assembly 180 (
With additional reference to
Referring to
With reference to
Cover plate 350 of paddle 340 includes an outwardly-facing surface 351 and an inwardly-facing surface 352 and includes a hub end portion 353 at one end thereof and a second end portion 354 at a second, opposite end thereof. Hub end portion 353 of cover plate 350 includes a pair of spaced-apart arms 355 extending from inwardly-facing surface 352 of cover plate 350. Each arm 355 includes a finger 356 disposed at the free end thereof. Fingers 356 extend outwardly in opposite directions in generally perpendicular orientation relative to arms 352. The outer surfaces of fingers 356 may be angled to facilitate assembly of cover plate 350 onto body 342 of paddle 340 while arms 355 are resiliently flexible to enable snap-fit engagement of cover plate 350 about body 342 of paddle 340. Thus, assembly is facilitated while disassembly is not easily achieved. Hub end portion 353 of cover plate 350 further includes a boss 357 extending from inwardly-facing surface 352 of cover plate 350 and disposed between spaced-apart arms 355. Boss 357, in the assembled condition, extends into slot 334 to inhibit disengagement of fingers 336 from shelves 346. Cover plate 350 also includes a tab 358 extending from second end portion 354 thereof.
Referring to
With general reference to
Referring to
With reference to
In embodiments, an adhesive or other suitable material may be applied on and/or around set screw 510 on the outwardly-facing surface 351 of cover plate 350. In embodiments where the components of input shaft 330 and paddle 340 are undamaged, rather than further threading set screw 510 into cover plate 350, set screw 510 may be removed and the vacant hole 500 (
Referring to
Turning to
The removal of cover plate 350 may be facilitated by and or alternatively performed in other manners such as, for example, temporarily attaching an tool (not shown) to cover plate 350 using an adhesive, bonding agent, adhesive tape, etc., to facilitate removal of cover plate 350. Once cover plate 350 is removed, the tool can be detached therefrom. In another embodiment, a vacuum cup tool (not shown) can be attached to cover plate 350 to facilitate removal. In still another embodiment, a self-drilling screw (not shown) can be used to grasp cover plate 350 to facilitate removal. In yet other embodiments, a thin pry-tool (not shown) can be inserted into the existing gap (without creating a notch) between cover plate 350 and body 342 of paddle 240 to pry cover plate 350 loose. In still yet another embodiment, a sharp tool (not shown) can be used to cut through cover plate 350 or body 342 of paddle 340 to gain grip and then use a prying action to disengage cover plate 350.
With reference to
Instead of utilizing a pry tool 710 (
Referring to
Turning to
In use, with initial reference to
With body 342 of paddle 340 removed from input shaft 330, housing 20 may be separated into housing halves and opened, thus allowing the internal components thereof to be removed for cleaning/disinfection, modification, refurbishment, and/or replacement before re-assembly and sterilization. Once housing 20 is reassembled, body 342 of paddle 340 may be reassembled onto input shaft 330. The re-assembly of body 342 of paddle 340 onto input shaft 330 is similar to the assembly thereof, detailed above, with the exception that an adhesive or other suitable material, or structural component such as a set screw, may be utilized to secure body 342 of paddle 340 on input shaft 330 and/or cover plate 350 onto body 342, if portions thereof are damaged during disassembly.
From the foregoing and with reference to the various drawing figures, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
4005714 | Hiltebrandt | Feb 1977 | A |
D249549 | Pike | Sep 1978 | S |
D263020 | Rau, III | Feb 1982 | S |
D295893 | Sharkany et al. | May 1988 | S |
D295894 | Sharkany et al. | May 1988 | S |
D298353 | Manno | Nov 1988 | S |
D299413 | DeCarolis | Jan 1989 | S |
5026379 | Yoon | Jun 1991 | A |
D343453 | Noda | Jan 1994 | S |
5312391 | Wilk | May 1994 | A |
5318589 | Lichtman | Jun 1994 | A |
5324254 | Phillips | Jun 1994 | A |
D348930 | Olson | Jul 1994 | S |
D349341 | Lichtman et al. | Aug 1994 | S |
5342359 | Rydell | Aug 1994 | A |
5368600 | Failla et al. | Nov 1994 | A |
D354564 | Medema | Jan 1995 | S |
5401274 | Kusunoki | Mar 1995 | A |
D358887 | Feinberg | May 1995 | S |
5411519 | Tovey et al. | May 1995 | A |
5445638 | Rydell et al. | Aug 1995 | A |
5458598 | Feinberg et al. | Oct 1995 | A |
5527313 | Scott et al. | Jun 1996 | A |
5556397 | Long et al. | Sep 1996 | A |
5611813 | Lichtman | Mar 1997 | A |
D384413 | Zlock et al. | Sep 1997 | S |
5735873 | MacLean | Apr 1998 | A |
H1745 | Paraschac | Aug 1998 | H |
5792164 | Lakatos et al. | Aug 1998 | A |
5807393 | Williamson, IV et al. | Sep 1998 | A |
D402028 | Grimm et al. | Dec 1998 | S |
D408018 | McNaughton | Apr 1999 | S |
5893863 | Yoon | Apr 1999 | A |
5919202 | Yoon | Jul 1999 | A |
D416089 | Barton et al. | Nov 1999 | S |
6004319 | Goble et al. | Dec 1999 | A |
D424694 | Tetzlaff et al. | May 2000 | S |
D425201 | Tetzlaff et al. | May 2000 | S |
6113596 | Hooven et al. | Sep 2000 | A |
H1904 | Yates et al. | Oct 2000 | H |
6156009 | Grabek | Dec 2000 | A |
6190386 | Rydell | Feb 2001 | B1 |
6270497 | Sekino et al. | Aug 2001 | B1 |
D449886 | Tetzlaff et al. | Oct 2001 | S |
6299625 | Bacher | Oct 2001 | B1 |
D453923 | Olson | Feb 2002 | S |
D454951 | Bon | Mar 2002 | S |
D457958 | Dycus et al. | May 2002 | S |
D457959 | Tetzlaff et al. | May 2002 | S |
6387094 | Eitenmuller | May 2002 | B1 |
H2037 | Yates et al. | Jul 2002 | H |
D465281 | Lang | Nov 2002 | S |
D466209 | Bon | Nov 2002 | S |
6551313 | Levin | Apr 2003 | B1 |
6558385 | McClurken et al. | May 2003 | B1 |
6679882 | Komerup | Jan 2004 | B1 |
D493888 | Reschke | Aug 2004 | S |
D496997 | Dycus et al. | Oct 2004 | S |
6808525 | Latterell et al. | Oct 2004 | B2 |
D499181 | Dycus et al. | Nov 2004 | S |
6837888 | Ciarrocca et al. | Jan 2005 | B2 |
D502994 | Blake, III | Mar 2005 | S |
D509297 | Wells | Sep 2005 | S |
6942662 | Goble et al. | Sep 2005 | B2 |
7033356 | Latterell et al. | Apr 2006 | B2 |
7063699 | Hess et al. | Jun 2006 | B2 |
D525361 | Hushka | Jul 2006 | S |
D531311 | Guerra et al. | Oct 2006 | S |
7128254 | Shelton, IV et al. | Oct 2006 | B2 |
D533274 | Visconti et al. | Dec 2006 | S |
D533942 | Kerr et al. | Dec 2006 | S |
D535027 | James et al. | Jan 2007 | S |
D538932 | Malik | Mar 2007 | S |
D541418 | Schechter et al. | Apr 2007 | S |
7208005 | Frecker et al. | Apr 2007 | B2 |
D541611 | Aglassinger | May 2007 | S |
D541938 | Kerr et al. | May 2007 | S |
D545432 | Watanabe | Jun 2007 | S |
7232440 | Dumbauld et al. | Jun 2007 | B2 |
D547154 | Lee | Jul 2007 | S |
D564662 | Moses et al. | Mar 2008 | S |
D567943 | Moses et al. | Apr 2008 | S |
7367976 | Lawes et al. | May 2008 | B2 |
7402162 | Ouchi | Jul 2008 | B2 |
D575395 | Hushka | Aug 2008 | S |
D575401 | Hixson et al. | Aug 2008 | S |
7442194 | Dumbauld et al. | Oct 2008 | B2 |
7445621 | Dumbauld et al. | Nov 2008 | B2 |
D582038 | Swoyer et al. | Dec 2008 | S |
7481810 | Dumbauld et al. | Jan 2009 | B2 |
7510562 | Lindsay | Mar 2009 | B2 |
7588570 | Wakikaido et al. | Sep 2009 | B2 |
7658311 | Boudreaux | Feb 2010 | B2 |
D617900 | Kingsley et al. | Jun 2010 | S |
D617901 | Unger et al. | Jun 2010 | S |
D617902 | Twomey et al. | Jun 2010 | S |
D617903 | Unger et al. | Jun 2010 | S |
D618798 | Olson et al. | Jun 2010 | S |
7758577 | Nobis et al. | Jul 2010 | B2 |
D621503 | Often et al. | Aug 2010 | S |
7789878 | Dumbauld et al. | Sep 2010 | B2 |
7815636 | Ortiz | Oct 2010 | B2 |
7819299 | Shelton, IV et al. | Oct 2010 | B2 |
7819872 | Johnson et al. | Oct 2010 | B2 |
D627462 | Kingsley | Nov 2010 | S |
D628289 | Romero | Nov 2010 | S |
D628290 | Romero | Nov 2010 | S |
D630324 | Reschke | Jan 2011 | S |
7879035 | Garrison et al. | Feb 2011 | B2 |
D649249 | Guerra | Nov 2011 | S |
D649643 | Allen, IV et al. | Nov 2011 | S |
D661394 | Romero et al. | Jun 2012 | S |
8257352 | Lawes et al. | Sep 2012 | B2 |
8333765 | Johnson et al. | Dec 2012 | B2 |
8353437 | Boudreaux | Jan 2013 | B2 |
8454602 | Kerr et al. | Jun 2013 | B2 |
8523898 | Bucciaglia et al. | Sep 2013 | B2 |
8529566 | Kappus et al. | Sep 2013 | B2 |
8568408 | Townsend et al. | Oct 2013 | B2 |
8591510 | Allen, IV et al. | Nov 2013 | B2 |
8628557 | Collings et al. | Jan 2014 | B2 |
8679098 | Hart | Mar 2014 | B2 |
8679140 | Butcher | Mar 2014 | B2 |
RE44834 | Dumbauld et al. | Apr 2014 | E |
8685009 | Chernov et al. | Apr 2014 | B2 |
8685056 | Evans et al. | Apr 2014 | B2 |
8696667 | Guerra et al. | Apr 2014 | B2 |
8702737 | Chojin et al. | Apr 2014 | B2 |
8702749 | Twomey | Apr 2014 | B2 |
8745840 | Hempstead et al. | Jun 2014 | B2 |
8747413 | Dycus | Jun 2014 | B2 |
8747434 | Larson et al. | Jun 2014 | B2 |
8752264 | Ackley et al. | Jun 2014 | B2 |
8756785 | Allen, IV et al. | Jun 2014 | B2 |
8845636 | Allen, IV et al. | Sep 2014 | B2 |
8852185 | Twomey | Oct 2014 | B2 |
8864753 | Nau, Jr. et al. | Oct 2014 | B2 |
8864795 | Kerr et al. | Oct 2014 | B2 |
8887373 | Brandt et al. | Nov 2014 | B2 |
8888771 | Twomey | Nov 2014 | B2 |
8900232 | Ourada | Dec 2014 | B2 |
8920461 | Unger et al. | Dec 2014 | B2 |
8939972 | Twomey | Jan 2015 | B2 |
8961513 | Allen, IV et al. | Feb 2015 | B2 |
8961514 | Garrison | Feb 2015 | B2 |
8961515 | Twomey et al. | Feb 2015 | B2 |
8968283 | Kharin | Mar 2015 | B2 |
8968298 | Twomey | Mar 2015 | B2 |
8968305 | Dumbauld et al. | Mar 2015 | B2 |
8968306 | Unger | Mar 2015 | B2 |
8968307 | Evans et al. | Mar 2015 | B2 |
8968308 | Horner et al. | Mar 2015 | B2 |
8968309 | Roy et al. | Mar 2015 | B2 |
8968310 | Twomey et al. | Mar 2015 | B2 |
8968311 | Allen, IV et al. | Mar 2015 | B2 |
8968317 | Evans et al. | Mar 2015 | B2 |
8968360 | Garrison et al. | Mar 2015 | B2 |
9011435 | Brandt et al. | Apr 2015 | B2 |
9023035 | Allen, IV et al. | May 2015 | B2 |
9028492 | Kerr et al. | May 2015 | B2 |
9033981 | Olson et al. | May 2015 | B2 |
9034009 | Twomey et al. | May 2015 | B2 |
9039691 | Moua et al. | May 2015 | B2 |
9039704 | Joseph | May 2015 | B2 |
9039732 | Sims et al. | May 2015 | B2 |
9060780 | Twomey et al. | Jun 2015 | B2 |
9113882 | Twomey et al. | Aug 2015 | B2 |
9113899 | Garrison et al. | Aug 2015 | B2 |
9113901 | Allen, IV et al. | Aug 2015 | B2 |
9113909 | Twomey et al. | Aug 2015 | B2 |
9113933 | Chernova et al. | Aug 2015 | B2 |
9113934 | Chernov et al. | Aug 2015 | B2 |
9113938 | Kerr | Aug 2015 | B2 |
9161807 | Garrison | Oct 2015 | B2 |
20020049442 | Roberts et al. | Apr 2002 | A1 |
20040236326 | Schulze et al. | Nov 2004 | A1 |
20050187547 | Sugi | Aug 2005 | A1 |
20060129146 | Dycus et al. | Jun 2006 | A1 |
20070078458 | Dumbauld et al. | Apr 2007 | A1 |
20070106295 | Garrison et al. | May 2007 | A1 |
20070213707 | Dumbauld et al. | Sep 2007 | A1 |
20070278277 | Wixey et al. | Dec 2007 | A1 |
20080083813 | Zemlok et al. | Apr 2008 | A1 |
20080110958 | McKenna et al. | May 2008 | A1 |
20080215050 | Bakos | Sep 2008 | A1 |
20080243120 | Lawes et al. | Oct 2008 | A1 |
20080314954 | Boudreaux | Dec 2008 | A1 |
20090012556 | Boudreaux et al. | Jan 2009 | A1 |
20090112206 | Dumbauld et al. | Apr 2009 | A1 |
20090125026 | Rioux et al. | May 2009 | A1 |
20090125027 | Fischer | May 2009 | A1 |
20090131974 | Pedersen et al. | May 2009 | A1 |
20090171350 | Dycus et al. | Jul 2009 | A1 |
20090182327 | Unger | Jul 2009 | A1 |
20090254084 | Naito | Oct 2009 | A1 |
20100185196 | Sakao et al. | Jul 2010 | A1 |
20100185197 | Sakao et al. | Jul 2010 | A1 |
20100292690 | Livneh | Nov 2010 | A1 |
20110004209 | Lawes et al. | Jan 2011 | A1 |
20110071525 | Dumbauld et al. | Mar 2011 | A1 |
20110087218 | Boudreaux et al. | Apr 2011 | A1 |
20110130757 | Horne et al. | Jun 2011 | A1 |
20110264093 | Schall | Oct 2011 | A1 |
20110276049 | Gerhardt | Nov 2011 | A1 |
20110319886 | Chojin et al. | Dec 2011 | A1 |
20120083827 | Artale et al. | Apr 2012 | A1 |
20120184988 | Twomey et al. | Jul 2012 | A1 |
20120209263 | Sharp et al. | Aug 2012 | A1 |
20120239034 | Horner et al. | Sep 2012 | A1 |
20120259331 | Garrison | Oct 2012 | A1 |
20120265241 | Hart et al. | Oct 2012 | A1 |
20120296205 | Chernov et al. | Nov 2012 | A1 |
20120296238 | Chernov et al. | Nov 2012 | A1 |
20120296239 | Chernov et al. | Nov 2012 | A1 |
20120296323 | Chernov et al. | Nov 2012 | A1 |
20120296371 | Kappus et al. | Nov 2012 | A1 |
20120303026 | Dycus et al. | Nov 2012 | A1 |
20120323238 | Tyrrell et al. | Dec 2012 | A1 |
20120330308 | Joseph | Dec 2012 | A1 |
20120330351 | Friedman et al. | Dec 2012 | A1 |
20130018364 | Chernov et al. | Jan 2013 | A1 |
20130022495 | Allen, IV et al. | Jan 2013 | A1 |
20130071282 | Fry | Mar 2013 | A1 |
20130072927 | Allen, IV et al. | Mar 2013 | A1 |
20130079760 | Twomey et al. | Mar 2013 | A1 |
20130079774 | Whitney et al. | Mar 2013 | A1 |
20130085496 | Unger et al. | Apr 2013 | A1 |
20130103030 | Garrison | Apr 2013 | A1 |
20130103031 | Garrison | Apr 2013 | A1 |
20130138101 | Kerr | May 2013 | A1 |
20130144284 | Behnke, II et al. | Jun 2013 | A1 |
20130165907 | Attar et al. | Jun 2013 | A1 |
20130197503 | Orszulak | Aug 2013 | A1 |
20130218198 | Larson et al. | Aug 2013 | A1 |
20130245623 | Twomey | Sep 2013 | A1 |
20130247343 | Horner et al. | Sep 2013 | A1 |
20130253489 | Nau, Jr. et al. | Sep 2013 | A1 |
20130255063 | Hart et al. | Oct 2013 | A1 |
20130267948 | Kerr et al. | Oct 2013 | A1 |
20130267949 | Kerr | Oct 2013 | A1 |
20130274736 | Garrison | Oct 2013 | A1 |
20130282010 | McKenna et al. | Oct 2013 | A1 |
20130289561 | Waaler et al. | Oct 2013 | A1 |
20130296854 | Mueller | Nov 2013 | A1 |
20130296922 | Allen, IV et al. | Nov 2013 | A1 |
20130296923 | Twomey et al. | Nov 2013 | A1 |
20130304058 | Kendrick | Nov 2013 | A1 |
20130304059 | Allen, IV et al. | Nov 2013 | A1 |
20130304066 | Kerr et al. | Nov 2013 | A1 |
20130310832 | Kerr et al. | Nov 2013 | A1 |
20130325057 | Larson et al. | Dec 2013 | A1 |
20130331837 | Larson | Dec 2013 | A1 |
20130338666 | Bucciaglia et al. | Dec 2013 | A1 |
20130338693 | Kerr et al. | Dec 2013 | A1 |
20130345701 | Allen, IV et al. | Dec 2013 | A1 |
20130345706 | Garrison | Dec 2013 | A1 |
20130345735 | Mueller | Dec 2013 | A1 |
20140005663 | Heard et al. | Jan 2014 | A1 |
20140005666 | Moua et al. | Jan 2014 | A1 |
20140025052 | Nau, Jr. et al. | Jan 2014 | A1 |
20140025053 | Nau, Jr. et al. | Jan 2014 | A1 |
20140025059 | Kerr | Jan 2014 | A1 |
20140025060 | Kerr | Jan 2014 | A1 |
20140025066 | Kerr | Jan 2014 | A1 |
20140025067 | Kerr et al. | Jan 2014 | A1 |
20140025070 | Kerr et al. | Jan 2014 | A1 |
20140025073 | Twomey et al. | Jan 2014 | A1 |
20140031821 | Garrison | Jan 2014 | A1 |
20140031860 | Stoddard et al. | Jan 2014 | A1 |
20140046323 | Payne et al. | Feb 2014 | A1 |
20140066910 | Nau, Jr. | Mar 2014 | A1 |
20140066911 | Nau, Jr. | Mar 2014 | A1 |
20140074091 | Arya et al. | Mar 2014 | A1 |
20140100564 | Garrison | Apr 2014 | A1 |
20140100568 | Garrison | Apr 2014 | A1 |
20140135763 | Kappus et al. | May 2014 | A1 |
20140276797 | Batchelor et al. | Sep 2014 | A1 |
20160074101 | Anglese | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
2011253698 | Dec 2011 | AU |
2013205789 | Jan 2014 | AU |
201299462 | Sep 2009 | CN |
205181468 | Apr 2016 | CN |
2415263 | Oct 1975 | DE |
02514501 | Oct 1976 | DE |
2627679 | Jan 1977 | DE |
03423356 | Jun 1986 | DE |
03612646 | Apr 1987 | DE |
8712328 | Feb 1988 | DE |
4242143 | Jun 1994 | DE |
04303882 | Feb 1995 | DE |
04403252 | Aug 1995 | DE |
19515914 | Jul 1996 | DE |
19506363 | Aug 1996 | DE |
29616210 | Nov 1996 | DE |
19608716 | Apr 1997 | DE |
19751106 | May 1998 | DE |
19738457 | Mar 1999 | DE |
19751108 | May 1999 | DE |
19946527 | Jul 2001 | DE |
20121161 | Apr 2002 | DE |
10045375 | Oct 2002 | DE |
202007009165 | Aug 2007 | DE |
202007009318 | Aug 2007 | DE |
202007009317 | Oct 2007 | DE |
10031773 | Nov 2007 | DE |
202007016233 | Jan 2008 | DE |
102004026179 | Jan 2009 | DE |
102008018406 | Jul 2009 | DE |
1281878 | Feb 2003 | EP |
1159926 | Mar 2003 | EP |
1530952 | May 2005 | EP |
2679176 | Jan 2014 | EP |
61501068 | Sep 1984 | JP |
1147150 | Jun 1989 | JP |
6502328 | Mar 1992 | JP |
55106 | Jan 1993 | JP |
0540112 | Feb 1993 | JP |
0006030945 | Feb 1994 | JP |
6121797 | May 1994 | JP |
6285078 | Oct 1994 | JP |
06343644 | Dec 1994 | JP |
6511401 | Dec 1994 | JP |
07265328 | Oct 1995 | JP |
H0856955 | May 1996 | JP |
08252263 | Oct 1996 | JP |
8289895 | Nov 1996 | JP |
8317934 | Dec 1996 | JP |
8317936 | Dec 1996 | JP |
09000538 | Jan 1997 | JP |
H0910223 | Jan 1997 | JP |
9122138 | May 1997 | JP |
0010000195 | Jan 1998 | JP |
10019884 | Jan 1998 | JP |
H1024051 | Jan 1998 | JP |
10155798 | Jun 1998 | JP |
1147149 | Feb 1999 | JP |
11070124 | Mar 1999 | JP |
11169381 | Jun 1999 | JP |
11192238 | Jul 1999 | JP |
11244298 | Sep 1999 | JP |
2000102545 | Apr 2000 | JP |
2000135222 | May 2000 | JP |
2000342599 | Dec 2000 | JP |
2000350732 | Dec 2000 | JP |
2001008944 | Jan 2001 | JP |
2001029355 | Feb 2001 | JP |
2001029356 | Feb 2001 | JP |
2001003400 | Apr 2001 | JP |
2001128990 | May 2001 | JP |
2001190564 | Jul 2001 | JP |
2001520543 | Oct 2001 | JP |
2002136525 | May 2002 | JP |
2002528166 | Sep 2002 | JP |
2003116871 | Apr 2003 | JP |
2003175052 | Jun 2003 | JP |
2003245285 | Sep 2003 | JP |
2004517668 | Jun 2004 | JP |
2004528869 | Sep 2004 | JP |
2005144195 | Jun 2005 | JP |
2005152663 | Jun 2005 | JP |
2005253789 | Sep 2005 | JP |
2006015078 | Jan 2006 | JP |
2006501939 | Jan 2006 | JP |
2006095316 | Apr 2006 | JP |
2011125195 | Jun 2011 | JP |
401367 | Oct 1973 | SU |
9846150 | Oct 1998 | WO |
0036986 | Jun 2000 | WO |
0059392 | Oct 2000 | WO |
0115614 | Mar 2001 | WO |
0154604 | Aug 2001 | WO |
0245589 | Jun 2002 | WO |
2006021269 | Mar 2006 | WO |
2005110264 | Apr 2006 | WO |
2007118608 | Oct 2007 | WO |
2008040483 | Apr 2008 | WO |
2011018154 | Feb 2011 | WO |
Entry |
---|
“How I Do It” KD Tool # 435 Tool for Window Crank and Door Handle http://chrysler300club.com/how/crank/crank1.html (Year: 2011). |
Number | Date | Country | |
---|---|---|---|
20190321950 A1 | Oct 2019 | US |