A first preferred embodiment of the present is described by reference to
A potential technique for marketing these alert warning devices is to provide the unit's use location in the form to a computer chip that is to be inserted into a slot in a radio unit that is sold at commercial retail stores such as Home Depot and Radio Shack. At the time of sale the radio unit, the computer chip that will be programmed with the unit's use location could be ordered by the purchaser or a sales person at the retail store via the Internet. The chip would then be programmed by a computer at a dispensing location with latitude and longitude corresponding to the mailing address of the use location. A device label would also printed by the computer. The preprogrammed chip and label would then be mailed from the dispensing location to the use location and inserted by the user into a slot in the radio unit, and the label would be attached to the unit. Assuming millions of these are to be distributed, this process of programming and mailing the chip could be completely automated.
Warnings of disasters are broadcasts from one or more central stations. In the United States, central stations are preferably operated by, or under contract with, the Homeland Security Administration. Each such central station shown as 20 in
Transmissions from the central station are directed to alert warning devices in specific at-risk regions. These specific at-risk regions are preferably identified by personnel such as fire officials, weather personnel, police, military, and homeland security personnel. A description of an at-risk region is conveyed to the central station. Personnel at the central station convert the description of the at-risk region into at-risk latitude and longitude zones. The at-risk zones in most cases will preferably envelop the at-risk region as closely as feasible. A preferred technique for doing this is to utilize digital maps which may be displayed on computer monitors such as the satellite maps available at Google Earth. As explained above, these maps may be overlaid with latitude and longitude lines with resolution of 0.1 second of arc (corresponding to about 10 feet) or 0.01 second of arc (roughly 1 foot). Computers at the central station are preferably programmed to permit operators to use a computer mouse to draw on the monitor face up to ten approximately rectangular zones enveloping the at-risk region, with the borders of the rectangular zones being co-aligned with latitude and longitude 0.1 second lines.
Preferably, a computer processor at the central station is programmed with software that converts the latitude and longitude information of the two at-risk zones described above to digital data that is formulated into a digital message header. A warning and instruction message is preferably prepared by central office personnel and combined by the processor with the header (which contains disaster alert device wake-up information for potential at-risk regions). Central office personnel preferably are trained to respond quickly in the case of an alert like this from fire officials. Applicants estimate that these personnel should be able to prepare the message for transmission within five minutes of receipt of a legitimate alert such as the one described here.
As explained above, preferred embodiments eliminate the need for any programming by the actual owner/user of the alert warning devices of the present invention. These devices will be rarely called upon to operate, but when they are called upon to operate their proper operation may very well be a matter of life or death. For this reason people very familiar with the device should program it and once programmed it should not be tampered with except to replace its battery when appropriate. Proper operation should be confirmed by periodic tests where test warnings with advanced notification are transmitted from the central office.
In preferred embodiments, many, probably most, alert warning devices are battery operated like most smoke detectors. This allows the devices to be independent of utility power which could be rendered unavailable by the same disaster that is the subject of the warning to be communicated. Also, a battery powered unit is likely to be less costly to manufacture and less expensive to the user than a utility-wall powered unit. Digital clocks and watches can operate on less than 0.007 amp-hours per week but radio receivers require about 3 amp-hours per week if operated continuously. A typical long life battery of the type used in a smoke detector can provide about 0.5 amp-hours of electric energy, so the battery could not sustain continuous operation of a typical radio receiver for more than a few days. Applicants desire that their alert warning devices routinely operate for at least one year between battery changes. To conserve battery power, Applicants preferred battery-powered devices spend the great majority of their lives in a sleep mode, operating like a lazy clock, and consuming only about 0.007 amp hours per week. They wake up periodically to check on things and if there is no emergency they quickly go back to sleep.
To accomplish this, battery powered devices are programmed at the factory to operate normally in sleep mode for 4:59 out of each 5:00 minutes, and to switch to radio receive mode for only about one second out of each five minutes. Preferably, a very short message will be transmitted to each alert warning device during the one second awake period of radio mode operation. The device will record the message and analyze it. The message will include the header created by the central station that will indicate whether or not an active warning message, for the device's general location, follows and if so will direct the unit to “remain awake” and check more of the message details. If no “remain awake” command is detected, the device immediately resumes the sleep mode. Each device knows its own latitude and longitude (global position) and is programmed to compare its global position to any potential “at-risk” regions by the approximately rectangular latitude and longitude zones identified in the headers of messages transmitted by the central station. Typically, the message from the central station coming each five minutes will not include any directed warnings, and when it does include a directed warning, the warning will be directed to only a very small portion of the devices within the audience of the central station. When there is no warning, and for those devices that are not within the at-risk zones to which a warning is directed, the header will in effect be saying, “No problem for you and your family,” so the device then switches immediately back to sleep mode. If the device does not receive a message or if the message is other than “no problem”, the device remains awake.
If no message is received, this could mean that somehow the clock of the device and the clock at the central office transmitter are out of synchronization or that there is a problem at the central office; therefore, the device is programmed to stay awake and listen for a clock synchronization signal from the central office. Such a synchronization signal should be received within 5 minutes, at the next routine transmission from the central office. If it receives a synchronization signal, it synchronizes itself. If it does not receive a synchronization signal, it activates an indicator (such as a low power consuming LED) to alert the user that there is a ‘loss of signal’ problem and that the alert warning device is not in communication with the central office. The device preferably is programmed to beep periodically if more than eight hours pass without synchronization. The device preferably also beeps if battery voltage drops low enough to indicate its useful life is nearing its end. Specific estimates of power consumption are described below.
Operation of the alarm receiver for one second out of every five minutes (a duty cycle of about 0.33 percent) is sufficient to provide for a greater than one-year battery life. A standard 9-Volt battery (Duracell MN1604) provides more than 500 mA-hours (milliamp-hours) of current (4.5 watts-hours). Devices incorporated in the alarm receiver may vary, but will have approximately the following current drain from the battery:
RF Receiver (similar to Micrel MICRF007): 3 milliamps (mA) during operation
Microcontroller (similar to Microchip PIC18F8722): 10 mA during operation
Total current draw during operation of receiver and controller: 13 milliamps (mA)
Wake-Up Receiver (similar to Atmel ATA5282): 4 microamps during operation
Duty cycle timer: 10 microamps during operation
A duty cycle of about 0.33% means that the receiver and controller will only draw the 13 mA of current from the battery during the 0.33% of the time that it is checking for a signal from the central office. The fraction 0.33% of 13mA is about 0.043mA. In addition, the wake up receiver or a timer will draw about 0.004 to 0.010 mA continuously so that the total draw will normally be in the range of about 0.05 mA. If a 500 mA-hours battery is employed to power the receiver unit, then the battery will last approximately 500 mA-hours/0.05 mA=10,000 hours, or approximately 13.9 months, a little more than one year.
Only a very small percentage of the disaster alert warning devices of the present invention are expected to ever receive a real disaster alert warning. If they do however, it is very important that they respond properly. As indicated above, during each of the regular periodic one-second radio mode intervals, each battery operated device wakes up and records and analyzes the message sent to it by the central station. If the message is other than, “No problem for you and your family”, the device stays awake. If a warning is to be sent, the initial message will so indicate, and the message prepared by the central office will be transmitted digitally. The processor is preferably programmed to sound an alarm with alarm unit 12 as shown in
An important improvement of the present invention over prior art warning devices is that detailed messages may be transmitted as to the particular nature of the impending disaster. Also, detailed instructions as to proper responses may be provided.
In preferred embodiments of the invention, messages from the central office are encrypted using public-key cryptography techniques. These techniques utilize a private key and a public key. The private key is used at the central station to automatically encrypt headings and messages. The private key is kept secret. Each alarm device is pre-programmed with a public key that is used to decrypt the data sent out by the central station. The public key resides in each and every warning receiver that is installed in home and business. The public key will only decrypt messages that are encrypted using the corresponding private key at the central station. In this manner, the public key is used to validate the identity of the sender (the central station) and to decrypt the message. Implementations of this type of cryptography are sometimes termed a digital signature due to the identity validation nature of the operation. Useful encryption techniques are described in detail in many available prior art sources. For example, a good description of available encryption techniques is provided on the Internet at www.wikipedia.org.
Each separate central station could have its own private key and the alarm devices in its audience would all be programmed with a corresponding public key. Devices could be programmed so that if a private key at a central station is compromised a new one could be provided and devices in the station's audience could be provided with a revised public key via an appropriate message transmitted from the central station.
Encryption prevents unauthorized personnel from producing improper alarms by the disaster alarm devices. Also, the radio frequencies chosen for use with the present invention should be frequencies reserved for emergency radio systems so that anyone attempting to transmit improper or false warnings should be subject to criminal prosecution.
Preferably, typical message packets from the central office, transmitted at exactly 5-minute intervals, will be comprised of a message header, at-risk zone definitions, and a message body. Exactly every 5:00 minutes (synchronized to a standard time such as 12:00, noon, 12:05 PM, 12:10 PM etc), each battery operated alert warning device activates its radio receiver and processor controller and receives and checks for a message header from the central station, which takes less than one second. Most of the time, the message header will carry no warning and the alert warning device will resume its sleep mode. Occasionally however, the message header may include a potential risk to a nominal at-risk zone identified by minimum and maximum latitude and minimum and maximum longitude designations, preferably only to the nearest minute of arc, corresponding to about 6,000 feet. Initial nominal identification of at-risk regions are used to minimize the amount of information that needs to be analyzed initially by the disaster alert devices. This usually will permit most of the devices within the audience of the central station to go back to sleep without receiving and analyzing the bulk of the transmitted warnings. When warnings are transmitted, all alert warning units within the audience of the central station compare the latitude and longitude values defining the nominal at-risk region against its own latitude and longitude stored in the memory of alert warning device. If the processor determines that the device is in the nominal at-risk region, the processor extends the devices wake-up period long enough to receive the next segment of the message. The next segment of the message includes precise at-risk zone definitions, which contain latitude and longitude boundaries of up to ten approximately rectangular zones, to the nearest tenth of a second of arc corresponding. Each alert warning device in the nominal at-risk region will next use the precise at-risk zone definition information to determine whether it is inside a precise at-risk zone. If the alert warning device determines that it is inside a precise at-risk zone, then the unit will remain awake to receive, record, decode, and act on a message body that follows. If it determined that it is not in a precise at-risk zone, it goes back to sleep.
In this preferred embodiment the message header transmitting the nominal at-risk zone latitude and longitude information is comprised of 64 bytes of information, and takes less than one second to receive and interpret at each alert warning device. The precise at-risk zone definitions are comprised of 256 bytes of data, for up to ten precise at-risk zones, and may take about four seconds to receive and interpret. The actual time will depend on data rates chosen. These estimates are based on a data rate of 64 bytes per second. The message body preferably is comprised of up to 18,880 bytes of information, and takes less than 295 seconds to be transmitted and received at the alert warning devices. The complete message would be comprised of:
Message Header (64 bytes total):
Precise At-Risk Zone Definitions, to the nearest 0.1 second of arc (512 bytes total):
Message Text/Audio (18,880 bytes total):
In preferred embodiments, the system operates at a frequency of approximately 106.5 MHz. Operation of the system at a frequency of 108.0 MHz allows for non-line-of-sight operation, and for some penetration through building structures. This 108.0 MHz frequency is at the edge of the standard FM radio band and a wide variety of inexpensive components are available in the this frequency range. Other frequencies of operation could be used, and the choice is not that important, except for the desire to cover a large area with relatively few transmitting stations. Data can be modulated onto the carrier frequency using several techniques, but standard frequency shift keying is commonly used. A data rate of 512 bits per second is assumed in this embodiment and provides a suitable rate for transmission of the data within a 300 second window. A higher data rate could be used to allow more complex messages to be sent. The one-second awake time of the alert warning devices should be ample, and in fact could probably be shortened to extend battery life.
As described above,
The central station would be notified by a fire department person that persons living on Long Boat Way should be evacuated immediately since the fire in the reserve is approaching the street rapidly and could ignite the houses at the eastern end of the cul-de-sac trapping all of the residents of the street. A computer operator at the central station would locate Long Boat Way on a satellite map (such as the Google Earth map) displayed on a computer monitor as shown in
This voice message is digitized and compressed by the central station computer using mp3 (or other) techniques and combined with the portion of the message prepared by the computer operator. The operator then clicks a logo to transmit the combined message. The computer processor then transmits the message at the next one second awake window at a 5-minute interval as described above. Disaster alert devices powered by wall power are awake continuously so a message to these devices could be sent as soon as it is ready. The message to the battery powered units could be delayed up to 5 minutes.
As indicated above, the header portion of the message will designate the nominal at risk zone with the following latitude and longitude information:
This corresponds to a region which is more than one mile square and includes much of the city of Del Mar and portions of the city of San Diego. All of the alert warning devices in the nominal at-risk region will remain awake and analyze the next portion of the message. The first part of the rest of the message more precisely defines the at risk region with the two at-risk zones shown in
All of the alert warning devices in the homes on Long Boat Way respond to the central station transmission by initiating an alarm of the type shown at 12 in
Since this is a major fire the fire department may want a general warning to be transmitted by the central station to a larger region without an immediate evacuation order. In this case the fire department should give the central station guidance as to the size of the larger region to be warned and a second message should be sent to people in the larger region via their alert warning devices. This message would not require evacuation but would explain that the people living on Long Boat Way have been ordered to evacuate.
As indicated in the above disaster example, the central station could be delayed up to five minutes in issuing the warning since the battery operated alert warning devices could be in their sleep modes for that period of time. To avoid this, the battery operated disaster alert devices could be provided with software that would permit the central station to put them in a high alert mode or a very high alert mode. In a preferred embodiment the high alert mode would cause the devices to wakeup at one-minute intervals (instead of five) for one second and in the very high alert mode the devices would be caused to remain awake continuously for a specified period of time, such as ten minutes or another appropriate time to prepare a specific message to be transmitted. The change of mode could be transmitted to all of the units within the audience of the central station or to any portion of its audience based on latitude and longitude designations as described above. Preferably, the central station would appropriately limit the periods of high alert or very high alert since operation in these modes greatly increases the battery drain. As explained above units powered by wall-utility power preferably are programmed to stay awake in radio receive mode continuously since the power drain is small compared to typical overall house electric power usage; however, these devices too could be programmed to take advantage of the same sleep-awake strategy proposed for the battery powered units.
The present invention can be applied by the central office to activate emergency crews. To do so the central office would program its computers with the latitude and longitude of the residences of members of various types of crews such as special police units, and special fire fighting units. These lists could be kept on a shift-by-shift basis and updated continuously so that the central station personnel would know which groups of personnel are off duty at any time. By directing a message to the disaster alert device of each crew member (by specifying their precise latitude and longitude) the central station personnel could immediately issue a request to these personnel to report to duty in case of a severe emergency.
Applicants have constructed a rough prototype device having some of the features of the present invention using parts from a remote controlled toy truck and radio receiver, both purchased off-the-shelf from Radio Shack. The toy truck transmitter and the radio receiver operated at 75 MHz. A digital voice recorder to provide prerecorded warnings activated by the transmitter was also purchased from Radio Shack. The device was incorporate with a smoke alarm that was purchased from Target.
The system could be set up to transmit voice messages through a variety of alternatives. These include digital transmission of voice data that would be broadcast by the alert warning devices via a voice synthesizer. This approach is probably the most efficient in terms of bytes of data needed to transmit a specific voice message. Voice can also be transmitted digitally and converted to voice with much higher quality using well-known mp-3 techniques. Other digital audio techniques are available that could be adapted to transmit and deliver the voice message. Another approach is to have the central station transmit a signal to the alert warning devices to switch to a receive configuration that would receive an analog radio message. The alert warning devices could be preprogrammed with recorded a variety of recorded texts and warnings each of which could be activated and broadcast based on instructions for the central station.
There are alternate techniques for identifying at-risk regions that could be utilized to direct a warning from the central station to the alert warning devices. Preferably these would use indicia that are associated with the location of the alert warning devices. These include address information such as Post Office ZIP codes, city and state names, and telephone area codes. Preferably this information is in addition to the latitude and longitude information. This information could be programmed into the alert warning devices and the devices could be programmed to examine headers for any of these indicia for warnings directed to warning devices within the indicated regions.
Preferred embodiments may provide for periodic tests to assure users that their devices are operating properly without creating disturbances for those people who do not wish to be disturbed. A preferred technique would be the transmission from the central station of a 3-second pleasing bird call at a regular periodic time such as exactly noon on every Sunday. Users could listen for the timed transmission to gain some assurance that the warning system is in operation and that their government is watching out for them. Another approach would be to program the alert warning devices to turn on a low -power LED during the one-second wake-up periods. This would also give some assurance that the device is in working order. The system operators could also schedule test transmissions of test warnings with proper notice in advance. The voice message would also explain that “This is a test” so as to avoid any unnecessary alarm by the device users.
As an alternative to the battery powered approach described in detail above, alert warning devices of the type described above could utilize other available electric power sources. For example, the units could be powered with wall (utility) power at 120 Volt (AC) with or without a backup battery supply. The alert warning could incorporate a night light. It could also be incorporated into an alarm clock. The alert warning device could be incorporated into a smoke detector and utilize its power source, whether battery, wall or wall with battery backup. A good solution for business facilities is to incorporate the disaster warning devices with emergency building lighting which typically utilizes relatively large back-up battery power sources. With plenty of electric power and no need to worry about replacing batteries, the devices could be programmed to stay in the radio receive mode continuously.
Alert warning devices of the type described above (programmed with latitude and longitude) could be incorporated into radio or television sets, with each warning device programmed to turn the set on if it is not already on or to cause an interruption of the radio or television set if it is already on upon receipt of an emergency broadcast directed to it from the central station. The radio or television would then broadcast the warning as directed by the central station. Warning devices in television sets should be programmed to replace the monitor picture with an appropriate still picture indicating that an emergency warning is being transmitted.
The alert warning device could be a part of a new radio system that continuously broadcast music or other desired programming from a central station. A radio spectral region could be set aside for this new warning system. That spectral region, if it is broad enough, could be used for perhaps several commercial free soft music channels for which users may be willing to pay a monthly fee. Only on very rare occasions (when an emergency warning is to be broadcast to the particular user, based on his latitude and longitude) would the music be interrupted.
Another approach would be for existing radio and television systems (including cable systems) to incorporate disaster warning messages (directed to particular at risk regions designated by latitude and longitude as described above) into their regular radio and television transmissions. Disaster warning devices installed in radio and television sets could in be programmed with the latitude and longitude of the use locations and also programmed to scan the incoming radio or television signals for headers with latitude and longitude designation directed at the use location. When the device detects a warning directed at the use location, it would turn on the set if not on or interrupt the programming if it is on and would then cause the set to broadcast the warning. Where the user has cable television, it may be preferable for the disaster alert device to be separate from the television set but programmed to monitor the cable signal for latitude and longitude warnings directed to an at-risk region in which it is located. The radio, television and cable systems would normally receive disaster-type information from public sources such as Homeland Security or fire and police organizations.
In a preferred embodiment, mobile disaster alert devices incorporating a GPS device would be made available for vehicles such as automobiles, trucks and boats. These devices compare their actual latitude and longitude with the latitude and longitude information included in the header broadcast by the central station to determine if the device is in an at-risk region. These mobile alert warning systems can also be incorporated in electronic devices that people typically carry around such as laptop computers and cell phones. These devices can get their GPS position from an incorporated GPS device or other sources.
While the present invention has been described in terms of specific preferred embodiments and the prototype, the reader should understand that many changes and modifications can be made within the scope of the invention. For example many encryption techniques can be utilized to assure the system is not improperly manipulated to produce false alarms. Central stations may also designate regions to which alerts are transmitted by using designations other than latitude and longitude, such as street addresses or area codes. Also, the central station could also broadcast the location of a hazard and a warning radius, and the alert devices could be programmed to decide whether or not an alert should be provided. Preferred embodiments will operate with wall power at 110 Volts AC rectified down to 9 volts with a 9 volt NiCad battery backup. The alarm could be set up to respond selectively (and differently) to independent alarms from the following organizations:
The SAME system described in the Background Section has developed 62 code for that many emergency situations and these codes could be incorporated into the system of the present invention. The present invention could be incorporated into the SAME system or it could be operated independent of it. Each originating agency or system would have its own private key for encryption of the activation signal (which is kept secret by that organization). Each warning receiver in every home or business would have the same set of decryption keys for the organizations (the public keys). Each central station may have at least one private key. More than one private key could be available to each central station and alert warning devices could be programmed with more than one public key and instructed via transmissions from the central stations at which one or ones to respond to. The receiver could only decrypt an alarm signal (using the public key) if it were encrypted using a secret private key. Devices could be initially programmed to permit reprogramming of decryption keys via an open channel, in they event of a compromise of one of the private encryption keys. Installation of the system may include (automatically over-the-air) initialization of the public decryption keys. Upon the occurrence of a public emergency or hazard, the central office would switch its transmission to the encrypted signal from the originating agency, which would then be decrypted at the warning receiver units in people's homes and the appropriate alarm siren, text, or voice message generated. In cities with tall buildings alert warning devices could be programmed with altitude and/or floor level so that separate warnings could be directed devices located on specific floors of the buildings at specific locations. In a 911 situation people in the top floors of all tall buildings within appropriate regions could be evacuated as soon as Homeland Security learns that a airline plane has been hijacked. In this situation each floor could be evacuated starting at the top of the tall buildings with the lower floors having their evacuation notice delivered successively at five-minute intervals. Additional features can be added to the disaster warning devices such as those shown in
This Application claims the benefit of Provisional Applications Ser. Nos. 60/795,922 filed Apr. 29, 2006 and 60/812,421 filed Jun. 10, 2006. This invention relates to disaster alert systems and in particular to such systems for providing alerts for actual or imminent disasters such as fires, tornados, tsunamis, floods, and terrorist attacks.
Number | Date | Country | |
---|---|---|---|
60795922 | Apr 2006 | US | |
60812421 | Jun 2006 | US |