This invention relates to a disc brake having a stationary support member with a horizontal projection having a first bore therein for receiving a first piston and a peripheral surface that is received in a second bore in a caliper to define an actuation chamber such that when pressurized fluid is presented to the actuation chamber a force is created that moves the first and second pistons into engagement with a rotor to effect a brake application.
Disc brakes having spaced apart rails that extend from a support member that is fixed to a frame of a vehicle guide to align and position first and second friction pads with respect to a rotor of which the structure in the following U.S. Pat. Nos. 4,200,173 and 6,454,056 may be considered as representative of the prior art. In such disc brakes, first and second guide pins fixed to a caliper extend through ears on the support member and are retained in corresponding first and second bores that are parallel with the first and second rails. A piston located in a bore of the caliper is connected to the first friction pad and when pressurized fluid is presented to the bore, a force is created the pushes the piston toward the caliper and pulls the caliper toward the caliper to bring the first and second friction pads into engagement with the rotor to effect a brake application. Such disc brakes function in an adequate manner except movement by the caliper to bring the second friction pad into engagement with the rotor requires the caliper to move about twice the distance of the movement of the piston and as a result retraction of the first and second friction pads away from the rotor to define a desire running clearance may not always equally achieve between each friction pad and rotor. When unequal running clearance result when a vehicle is traveling on certain terrain it is possible that a friction pad may inadvertently engage the rotor causing unwanted wear and noise to occur.
A primary advantage of the disc brake of the present invention resides in structure wherein first and second friction member are each moved into engagement with a rotor and both are equally moved a same distance away from the rotor to define a same running clearance with the rotor on the termination of a brake application.
In more particular detail, the disc brake has a support member that is fixed to a housing of a vehicle. The support member has first and second spaced apart rails that extends there from in a first direction on which a first friction member is aligned adjacent a first side of a rotor and on which a second friction member that is aligned adjacent a second side of the rotor. The support member has a horizontal projection that extends in a second direction away from the rotor with a first bore therein and a peripheral surface on the end of horizontal projection that is received into a second bore in a caliper. A first piston is located in the first bore such that an actuation chamber is defined by the first piston, horizontal projection and the second bore. The first piston is connected to the first friction member while an arm of the caliper extends over the rotor such that the engagement of the second bore with the horizontal projection aligns the caliper with the rotor to position the second friction member at a position to achieve a desired running clearance with respect to the rotor. When pressurized fluid is presented to the actuation chamber a same force is developed that acts on the first piston and a second piston defined by the housing of the caliper such that the first and second friction members are moved into engagement with the rotor to effect the brake application and are moved a same distance away from the rotor on termination of the pressurized fluid to establish a running clearance.
An advantage of this disc brake resides in the relationship defined between a horizontal projection on a support member that retains a first piston and a resulting second piston defined by a caviler to achieve perpendicular alignment between a rotor and the caliper.
A further advantage of this disc brake resides in a caliper being suspended over a rotor through the engagement of horizontal projection on the support member and a bore within the caliper.
An object of the present invention is to provide a disc brake with structure whereby running clearances between first and second friction members and a rotor are substantially equal even when such friction members have different wear characteristics.
An object of the present invention is to provide a disc brake with structure to define a running clearance between a rotor and first and second friction members that is a function of a fixed relationship between a horizontal projection on an anchor and the rotor.
The disc brake 10 shown in
In more particular detail, the anchor 12 further includes a horizontal projection 50 that extends from a flange 49 on base 35 in a direction away opposite from the rails 36 and 38, as best illustrated in
The horizontal projection 50 of anchor 12 is further characterized in that a peripheral surface 67 thereon has a first diameter 69 that is separated from a second diameter 71 by a shoulder 73 such that the second diameter 71 is equal to the first diameter 66 of bore 54.
The caliper 16 is distinguished in that the actuation section 18 has a housing 74 with bore 76 therein as illustrated in
The length of the horizontal projection 50 from face 47 to end 51 is such that when caliper housing 74 is positioned thereon as illustrated in
In a vehicle equipped with a disc brake 10, pressurized fluid is presented to actuation chamber 88 that acts on piston 64 to move the first friction member 30 toward rotor 34 and acts on the second piston defined by housing 74 to move caliper 16 away from end 51 of the horizontal projection 50 such that bridge 22 pulls the second friction member 32 toward rotor 34. The effective area defined by diameter 66 for piston 64 and the effective area defined by diameter 78 for housing 74 are equal and as a result a same actuation force moves piston 64 and housing 74 to effect a brake application.
The engagement of face 30f with rotor face 34a and face 32f with rotor face 34b causes a brake torque that is carried through backing plates 29 and 31 into rail 36 or rail 38 depending on the direction the vehicle is traveling to retard the rotation of rotor 34. Tangential slots 19,19′ in the arm 20 and similar slots (not shown) on either the clip or on the face on piston 26 allow buttons 21,21′ on the backing plates 29, 31, shown by dashed lines in
On termination of the presentation of the pressurized fluid to actuation chamber 88, a resulting actuation force ceases, however, the square face seal 62 and the square face seal 84 each have one end that is fixed to the horizontal projection 50 and as a result piston 64 and housing 74 are returned from an actuation position shown in