Embodiments described herein relate generally to a disc device, a controlling device and a method.
To improve accuracy of positioning a head to a target position on the disc surface of a rotating disc, it is necessary to suppress non-repeatable run-outs (NRRO) such as disc flutters. The non-repeatable run-outs is disturbances erupting at a frequency that is asynchronous with rotation of the disc (hereinafter, referred to as suppression target frequency). As a method to suppress the non-repeatable run-outs, there is a method to add a filter for removing the non-repeatable run-outs (hereinafter, referred to as NRRO suppression filter) to a feedback system.
However, according to the method to add the NRRO suppression filter to the feedback system, the gain and phase of a sensitivity function at frequencies around the suppression target frequency do not coincide with the gain and phase of a sensitivity function without the NRRO suppression filter, whereby the accuracy of positioning the head may not be improved.
In general, according to one embodiment, a disc device is provided to include: a head for writing and reading data relative to a disc; an actuator to move the head over a disc surface of the disc; and a processor to include a comparison unit to determine a position error between a control position and a target position of the head to the disc surface; a controller to output to the actuator an operation amount for decreasing the position error; a first filter to output a first signal for canceling out a first disturbance at a predetermined frequency of the position error; a second filter to output a second signal which gain or phase of the first signal are changed; and a correction unit to correct the operation amount or the position error by using the second signal.
Exemplary embodiments of a disc device, a controlling device and a method will be explained below in detail with reference to the accompanying drawings. The present invention is not limited to the following embodiments.
The disc 1 is fixed to a spindle motor 2 and configured to rotate. The head 10 is mounted on an actuator 3 and configured to be movable in a radial direction of a disc surface of the disc 1. The actuator 3 is rotated and driven by a voice coil motor (VCM) 4 and moves the head 10 over the disc surface of the disc 1. The head 10 has a write head for writing data into the disc 1 and a read head for reading data from the disc 1.
As illustrated in
The head amplifier IC 11 flows to the head 10 a write signal (current) according to write data input from the R/W channel 12. The head amplifier IC 11 amplifies a read signal output from the head 10 (data read from the disc 1 by the head 10), and transmits the same to the R/W channel 12.
The R/W channel 12 is a signal processing circuit. In the embodiment, the R/W channel 12 encodes (code-modulates) the write data input from the HDC 13, and outputs the same to the head amplifier IC 11. The R/W channel 12 also decodes (code-demodulates) read data from the read signal transmitted from the head amplifier IC 11, and outputs the same to the HDC 13.
The HDC 13 is a communication interface that makes the disc drive be communicable with a host system not illustrated (for example, a personal computer or the like). Specifically, the HDC 13 exchanges the write data and the read data with the host system not illustrated.
The CPU 14 is a main controller of the disc drive, and executes various control processes such as a control process for reading or writing by the head 10, a servo control process for controlling the position of the head 10 over the disc surface of the disc 1, and the like. The CPU 14 executes the various control processes by reading and executing programs stored in a storage medium such as a read only memory (ROM).
As illustrated in
The comparison unit 143 determines a position error e[k] which is a difference between a control position y[k] and a target position r[k] of the head 10 over the disc surface of the disc 1. In the embodiment, the comparison unit 143 determines the position error e[k] by subtracting the control position y[k] of the head 10 from the target position r[k] according to a command input via the HDC 13 from a host system not illustrated or the like.
The controller 141 is implemented by the CPU 14 and expressed as a transfer function C[z]. The controller 141 receives input of the position error e[k] from the comparison unit 143, and outputs to the plant 142 (actuator 3) an operation amount for canceling out the input position error e[k]. The plant 142 is the actuator 3 as one example of a control target, and is expressed as a transfer function P[z]. The plant 142 is rotated and driven according to the operation amount output from the controller 141 and makes the head 10 move on the disc surface of the disc 1 (one example of a control target).
The NRRO suppression filter 144 estimates an non-repeatable run-out (NRRO) disturbance d[k] (one example of a first disturbance) which is a disturbance of a suppression target frequency ω0 (one example of a predetermined frequency) asynchronous with rotation of the disc 1 (one example of a motion cycle). Then, the NRRO suppression filter 144 outputs an estimated disturbance signal ud[k] as one example of a first signal for cancelling out the estimated NRRO disturbance d[k]. In the embodiment, the NRRO suppression filter 144 is configured to output the estimated disturbance signal ud[k] for cancelling out the NRRO disturbance d[k]. However, the NRRO suppression filter 144 is not limited to this configuration as far as it outputs the estimated disturbance signal ud[k] for cancelling out a disturbance at a predetermined frequency included in the position error e[k] determined by the comparison unit 143. For example, the NRRO suppression filter 144 may be configured to output the estimated disturbance signal ud[k] for cancelling out a disturbance at a predetermined frequency synchronous with rotation of the disc 1 included in the position error e[k] determined by the comparison unit 143, for example.
In the embodiment, the NRRO suppression filter 144 is expressed as a transfer function A′[z] that does not take into account a gain α and a phase φ at the suppression target frequency ω0 in a transfer function Tud (hereinafter, referred to as first transfer function) from an NRRO suppression signal u[k] described later to addition of the NRRO disturbance d[k], as indicated in the following equation (1). In other words, the NRRO suppression filter 144 is expressed as the transfer function A′[z] in which the gain α and the phase φ are eliminated from the transfer function A[z] taking into account the gain α and the phase φ at the suppression target frequency ω0 in the first transfer function Tud[z], as indicated in the following equation (2). That is, the NRRO suppression filter 144 is expressed as the transfer function A′[z] in which the gain α in the transfer function A[z] is 1 and the phase φ in the transfer function A[z] is 0 as follows:
where μ0 and η denote arbitrary constants, and T denotes a sampling period.
The matching filter 145 outputs the NRRO suppression signal u[k] that is one example of a second signal in which the gain and phase of the estimated disturbance signal ud[k] are changed. In the embodiment, the matching filter 145 is expressed as a transfer function (hereinafter, referred to as second transfer function) in which the gain and phase of the estimated disturbance signal ud[k] are changed by the gain and phase of inverse characteristics of the first transfer function Tud[z]. That is, the matching filter 145 cancels changes in the gain and phase of the NRRO suppression signal u[k] by the gain α and the phase φ in the first transfer function Tud[z] before addition of the NRRO disturbance d[k].
In the embodiment, the matching filter 145 is connected in series with the NRRO suppression filter 144. The matching filter 145 is expressed as the second transfer function F[z] which has inverse characteristics of the first transfer function Tud[z], as indicated in the following equation (3):
According to circumstances, there is a case where the matching filter 145 is not expressible as the second transfer function F[z] indicated in the equation (3). In such cases, the matching filter 145 outputs the NRRO suppression signal u[k] in which the gain and phase of the estimated disturbance signal ud[k] at a frequency within a predetermined range from the suppression target frequency ω0 are changed to coincide with the gain and phase in the second transfer function F[z]. The predetermined range here is a range of frequencies at which fluctuations in a sensitivity function are to be reduced with reference to the suppression target frequency ω0. In the embodiment, the predetermined range is frequencies near the suppression target frequency ω0.
For example, assuming that the predetermined range is ω1≦ω≦ω2, the matching filter 145 is expressed as a second transfer function F[ejωT] with inverse characteristics of the first transfer function Tud[z] in the predetermined range, as indicated in the following equation (4):
The subtraction unit 146 is one example of a correction unit that corrects the operation amount output from the controller 141, based on the NRRO suppression signal u[k] output from the matching filter 145. In the embodiment, the subtraction unit 146 subtracts the NRRO suppression signal u[k] output from the matching filter 145, from the operation amount output from the controller 141. Accordingly, even if the NRRO disturbance d[k] is included in the control position y[k] of the head 10 at the addition unit 147, it is possible to suppress the NRRO disturbance d[k] included in the control position y[k]. This allows improvement in the positioning accuracy of the head 10 at execution of the servo control process.
Next, descriptions will be given as to influence on the sensitivity function in the feedback system by occurrence of an error between the gain or phase of the matching filter 145 and the gain α or phase φ (for example, the gain α is 1 and the phase φ is 0) of inverse characteristics of the first transfer function Tud[z] (hereinafter, referred to as matching error).
First, a sensitivity function S[z] in a feedback system (hereinafter, referred to as first reference feedback system) in which the matching filter 145 is eliminated from the feedback system 140 illustrated in
where A[z] is formed by including the matching effect only with the suppression target frequency ω0 in the transfer function A′[z] of the NRRO suppression filter 144 as described above.
As indicated in the equation (5), the sensitivity function S[z] in the first reference feedback system is formed by multiplying the sensitivity function (1/(1+P[z]C[z])) in a feedback system (hereinafter, referred to as second reference feedback system) without the NRRO suppression filter 144 and the matching filter 145 by the influence term (1/(1+(P[z]/(1+P[z]C[z]))A[z]) as a term in the NRRO suppression filter 144. The influence term here is a term that takes into account the influence of the NRRO suppression filter 144 on the sensitivity function S[z] at the suppression target frequency ω0 and frequencies around the suppression target frequency ω0. The influence term includes B[z] as (P[z]/(1+P[z]C[z]))A[z] that is expressed by the following equation (6):
where β[z] denotes the ratio (hereinafter, referred to as matching error ratio) of a matching error of gain of the matching filter 145 with reference to the gain α=1 of inverse characteristic of the first transfer function Tud[z], and ψ[z] denotes a matching error of phase of the matching filter 145 with reference to the phase φ=0 of inverse characteristic of the first transfer function Tud[z].
Meanwhile, according to the feedback system 140 illustrated in
Accordingly, it is possible to prevent that fluctuations in the sensitivity function at frequencies around the suppression target frequency ω0 of the feedback system 140 using the NRRO suppression filter 144 and the matching filter 145 increase with reference to the sensitivity function of the feedback system not using the NRRO suppression filter 144 and the matching filter 145. This further improves the positioning accuracy of the head 10 at execution of the servo control process. The fluctuations in the sensitivity function here refer to the situation in which the gain and phase of the sensitivity function in the feedback system 140 using the NRRO suppression filter 144 and the matching filter 145 do not coincide with the gain and phase of the sensitivity function in the feedback system not using the NRRO suppression filter 144 and the matching filter 145.
As compared to this, the sensitivity function in the feedback system 140 has fluctuations decreased at frequencies around the suppression target frequency ω0 relative to the sensitivity function in the second reference feedback system, as illustrated in
According to the first embodiment, the gain and phase of the estimated disturbance signal ud[k] are changed by the gain and phase of inverse characteristics of the first transfer function Tud[z]. As a result, it is possible to obtain the advantage of further improving the positioning accuracy of the head 10 at execution of the servo control process.
A second embodiment is an example of correcting the position error e[k] by using the NRRO suppression signal u[k] output from the matching filter 145. Hereinafter, descriptions of the similar configurations as those in the first embodiment will be omitted.
In the embodiment, the subtractor 601 subtracts the NRRO suppression signal u[k] output from the matching filter 145, from the position error e[k] output from the comparison unit 143. Accordingly, even if the NRRO disturbance d[k] is included in the control position y[k] of the head 10, it is possible to suppress the NRRO disturbance d[k] included in the control position y[k]. This improves the accuracy of servo control of the head 10.
The matching filter 145 also changes the gain and phase of the estimated disturbance signal ud[k] by the gain and phase of inverse characteristics of the first transfer function Tud[z]. Accordingly, a matching error becomes smaller, which makes it possible to prevent that fluctuations in the sensitivity function at frequencies around the suppression target frequency ω0 in the case of using the NRRO suppression filter 144 and the matching filter 145 become larger with reference to the sensitivity function in the second reference feedback system. This further improves the positioning accuracy of the head 10 at execution of the servo control process.
In the second embodiment, the matching filter 145 is also expressed as the second transfer function F[z] with inverse characteristics of the first transfer function Tud[z], as indicated in the following equation (7):
According to the second embodiment, the position error e[k] can be corrected by using the NRRO suppression signal u[k] output from the matching filter 145. As a result, the same advantage as that in the first embodiment can be obtained.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
This application is based upon and claims the benefit of priority from U.S. Provisional Application No. 62/043,191, filed on Aug. 28, 2014; the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6636376 | Ho | Oct 2003 | B1 |
6710965 | Ding | Mar 2004 | B2 |
6768607 | Ottesen | Jul 2004 | B2 |
6831804 | Ooi | Dec 2004 | B2 |
7031096 | Kisaka | Apr 2006 | B2 |
7035037 | Tao | Apr 2006 | B2 |
7280304 | Wu | Oct 2007 | B2 |
7317591 | Kisaka | Jan 2008 | B2 |
7394609 | Atsumi | Jul 2008 | B2 |
7564644 | Kim | Jul 2009 | B2 |
7719787 | Harmer | May 2010 | B2 |
7859787 | Kisaka | Dec 2010 | B2 |
7933091 | Uchida | Apr 2011 | B2 |
8412360 | Jia | Apr 2013 | B2 |
8488268 | Atsumi | Jul 2013 | B2 |
8537485 | DeRosa | Sep 2013 | B2 |
8773808 | Iwashiro | Jul 2014 | B2 |
20060176604 | Atsumi et al. | Aug 2006 | A1 |
20100321819 | Atsumi | Dec 2010 | A1 |
20110141617 | Sudo | Jun 2011 | A1 |
20130194691 | Hara | Aug 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20160064021 A1 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
62043191 | Aug 2014 | US |