1. Field of the Invention
The present invention pertains to filtering devices. More particularly, the present invention pertains to devices and methods for filtering embolic debris from a blood vessel.
2. Description of the Related Art
Occluded, stenotic, or narrowed blood vessels may be treated with a number of relatively non-invasive medical procedures. For example, occlusions of blood vessels near the heart may be treated by percutaneous transluminal angioplasty (PTA), percutaneous transluminal coronary angioplasty (PTCA), atherectomy, etc. Similarly, a number of occlusions may occur in other blood vessels located a distance away from the heart. For example, an occlusion may occur within the renal artery between the abdominal aorta and the kidney. Because this vascular region is relatively short in length, an appropriate intervention may necessitate design modifications of current intravascular devices.
When treating occluded or stenotic blood vessels, embolic debris can be separated from the wall of the blood vessel. This debris could block other vascular regions including the renal, neural, and pulmonary vasculature or cause damage to tissue and/or body organs. In order to filter this debris, a number of devices, termed distal protection devices, have been developed.
The present invention pertains to distal protection filter devices. A distal protection filter may be coupled to an elongate shaft. The filter may be generally cylindrical or disc shaped and has a diameter and a length. The length is relatively small and may be smaller than the diameter. The filter may be used to capture embolic debris generated by an intravascular intervention. Aspiration means may be included to aspirate the embolic debris from the filter.
The filter may shift between a generally collapsed configuration and a generally expanded configuration by a number of methods. For example, an outer sheath may be disposed over the shaft and filter such that movement of the sheath relative to the shaft shifts the configuration of the filter. Alternatively, an expansion member may be actuated to shift the filter.
The following description should be read with reference to the drawings wherein like reference numerals indicate like elements throughout the several views. The detailed description and drawings illustrate example embodiments of the claimed invention.
A number of diagnostic and therapeutic interventions may result in the release of intravascular embolic debris. Several filtering devices have been developed to capture and/or remove this debris. However, some procedures and intravascular locations are not readily accessible to traditional filters.
Shaft 12 may comprise a guidewire or intravascular catheter, similar to any number of those known in the art or as detailed below. A distal spring tip 16 may be disposed at a distal end 18 of shaft 12. Sheath 14 may be generally polymeric and is adapted and configured to be advanced through the vasculature to an area of interest. Once positioned, sheath 14 may be withdrawn proximally to deliver filter 11.
Filter 11 includes a filter material 20 coupled to a filter frame 22. Filter material 20 may be comprised of a polyurethane sheet and include at least one opening that may be, for example, formed by known laser techniques. The holes or openings are sized to allow blood flow therethrough but restrict flow of debris or emboli floating in the body lumen or cavity.
Filter 11 operates between a closed collapsed profile and an open radially-expanded deployed profile for collecting debris in a body lumen. Frame 22 may be self-expanding or otherwise biased to be oriented in the expanded configuration so that withdrawing sheath 14 allows filter 11 to shift to the expanded configuration. A number of methods may be used to shift filter 11 from the expanded configuration to the collapsed configuration. For example, filter 11 may include a plurality of longitudinally-extending struts 24 that extend between frame 20 to shaft 12. It can be appreciated that a number of methods for shifting filter 11 between the collapsed and expanded configuration can be used without departing from the spirit of the invention.
Filter 11 is designed to be disc shaped and/or cylindrical. The cylindrical shape of filter 11 can be understood to have a diameter D and a length L. Diameter D may generally be larger than length L such that filter 11 has a shape that differs from typical conically shaped filters. This characteristic of having a relatively short or thin length may be described as having a “short landing zone” to those in the art. Having a short landing zone can advantageously permit filter 11 to be used at intravascular locations that are relatively short and would otherwise be inaccessible to traditional filters. For example, the length of a portion of the renal artery between the abdominal aorta and the kidney is relatively short. Diagnosis or other interventions at the junction of the renal artery and the kidney would not easily be accomplished by using conically shaped filter because the filter may extend into the kidney, possibly causing damage to the kidney. Because of the shape of filter 11, this location is accessible for filtering by filter 11. A number of additional intravascular locations may similarly benefit from the shape of filter 11.
The dimensions of filter 11 may include diameter D being about 0.10 to 0.30 inches or less and length L may be about 0.01 to 0.15 inches or less. These dimensions are meant to be approximations and provided for illustration purposes. The dimensions may be altered for any one of multiple embodiments.
Shaft 12 may be generally tubular so as to define an aspiration lumen 26 extending therethrough. Aspiration may be important because the thin length of filter 11 may cause filter material 20 to become filled to its capacity with embolic material. Aspiration lumen 26 is connected proximally to a vacuum source and is used to aspirate embolic debris collected on filter material 20.
In use, filter 11 may be contained within sheath 14 and advanced within a blood vessel 28 to an area proximate a lesion 30. Blood vessel 28 may, for example, be the renal artery between the abdominal aorta and the kidney. Once positioned, sheath 14 may be withdrawn from filter 11, permitting filter 11 to shift to the expanded configuration. A therapeutic or diagnostic catheter may be advanced to lesion 30 (i.e., over shaft 12 or sheath 14). Embolic debris released by the intervention is captured by filter material 20. Aspiration lumen 26 may be used to aspirate the debris from filter material 20.
Expansion member 132 may include a generally straight proximal portion 134 extending to the proximal end of shaft 12, and a coiled distal portion 136. Distal portion 136 is coupled to filter 111 such that force applied to proximal portion 136 in the distal direction exerts force onto filter 111 in the distal direction and shifts filter 111 distally. Distally shifting filter 111 results in filter 111 shifting to the expanded configuration.
Proximal portion 134 may be connected to a manifold, actuating handle, etc. that permits expansion member 132 to be moved relative to shaft 12 by a clinician. According to this embodiment, expansion member 132 is slidably disposed within shaft 12 and may be moved in either a proximal or distal direction. This may permit the use of filter 111 without the need for a separate delivery or retrieval catheter, which may simplify use and/or overall profile of the device. Moreover, bi-directional motion of expansion member 132 may alloy filter 111 to be positioned in one location, expanded by distal motion of expansion member 132, filter embolic debris, collapsed by proximal motion of expansion member 132, and moved to another location for use.
To expand filter 111, distal portion 136 is generally tightly coiled within shaft 12 such that when it is allowed to advance distally out of shaft 12, distal portion 136 expands to expand filter 111 as shown in FIG. 3. It may be beneficial to construct expansion member 132 (or at least distal portion 136) of a shape-memory or superelastic alloy such as nickel-titanium alloy. According to this embodiment, the size and/or shape of distal portion 136 may be predetermined by heat setting distal portion 136 to the desired diameter and length. Multiple embodiments of the invention incorporate alternate sizes and shapes of expansion member 132. For example, expansion member 132 may be heat set to expand so filter 111 has a larger diameter for one intervention and a smaller diameter for another.
Expansion member 132 may be completely or partially comprised of a radiopaque material. A radiopaque material is understood to be capable of producing a relatively bright image on a fluoroscopy screen or another imaging technique during a medical procedure. This relatively bright image aids the user of filter 111 in determining its location. Radiopaque materials may include gold, platinum, palladium, tantalum, tungsten alloy, and plastic material loaded with a radiopaque filler. Filter 111 and/or shaft 12 may further comprise additional radiopaque markers, similar to those known in the art.
It should be understood that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of steps without exceeding the scope of the invention. The invention's scope is, of course, defined in the language in which the appended claims are expressed.
Number | Name | Date | Kind |
---|---|---|---|
3472230 | Fogarty | Oct 1969 | A |
3952747 | Kimmell, Jr. | Apr 1976 | A |
3996938 | Clark, III | Dec 1976 | A |
4046150 | Schwartz et al. | Sep 1977 | A |
4425908 | Simon | Jan 1984 | A |
4590938 | Segura et al. | May 1986 | A |
4619246 | Molgaard-Nielsen et al. | Oct 1986 | A |
4650466 | Luther | Mar 1987 | A |
4706671 | Weinrib | Nov 1987 | A |
4723549 | Wholey et al. | Feb 1988 | A |
4790812 | Hawkins, Jr. et al. | Dec 1988 | A |
4790813 | Kensey | Dec 1988 | A |
4794928 | Kletschka | Jan 1989 | A |
4807626 | McGirr | Feb 1989 | A |
4842579 | Shiber | Jun 1989 | A |
4873978 | Ginsburg | Oct 1989 | A |
4921478 | Solano et al. | May 1990 | A |
4921484 | Hillstead | May 1990 | A |
4926858 | Gifford, III et al. | May 1990 | A |
4969891 | Gewertz | Nov 1990 | A |
4998539 | Delsanti | Mar 1991 | A |
5002560 | Machold et al. | Mar 1991 | A |
5011488 | Ginsburg | Apr 1991 | A |
5053008 | Bajaj | Oct 1991 | A |
5071407 | Termin et al. | Dec 1991 | A |
5100423 | Fearnot | Mar 1992 | A |
5102415 | Guenther et al. | Apr 1992 | A |
5133733 | Rasmussen et al. | Jul 1992 | A |
5152771 | Sabbaghian et al. | Oct 1992 | A |
5152777 | Goldberg et al. | Oct 1992 | A |
5160342 | Reger et al. | Nov 1992 | A |
5224953 | Morgentaler | Jul 1993 | A |
5329942 | Gunther et al. | Jul 1994 | A |
5330484 | Gunther | Jul 1994 | A |
5354310 | Garnie et al. | Oct 1994 | A |
5376100 | Lefebvre | Dec 1994 | A |
5421832 | Lefebvre | Jun 1995 | A |
5423742 | Theron | Jun 1995 | A |
5449372 | Schmaltz et al. | Sep 1995 | A |
5454833 | Boussignac et al. | Oct 1995 | A |
5456667 | Ham et al. | Oct 1995 | A |
5462529 | Simpson et al. | Oct 1995 | A |
5536242 | Willard et al. | Jul 1996 | A |
5549626 | Miller et al. | Aug 1996 | A |
5658296 | Bates et al. | Aug 1997 | A |
5662671 | Barbut et al. | Sep 1997 | A |
5695519 | Summers et al. | Dec 1997 | A |
5720764 | Naderlinger | Feb 1998 | A |
5728066 | Daneshvar | Mar 1998 | A |
5749848 | Jang et al. | May 1998 | A |
5769816 | Barbut et al. | Jun 1998 | A |
5779716 | Cano et al. | Jul 1998 | A |
5792157 | Mische et al. | Aug 1998 | A |
5795322 | Bouewijn | Aug 1998 | A |
5800457 | Gelbfish | Sep 1998 | A |
5800525 | Bachinski et al. | Sep 1998 | A |
5810874 | Lefebvre | Sep 1998 | A |
5814064 | Daniel et al. | Sep 1998 | A |
5827324 | Cassell et al. | Oct 1998 | A |
5833644 | Zadno-Azizi et al. | Nov 1998 | A |
5833650 | Imran | Nov 1998 | A |
5846260 | Maahs | Dec 1998 | A |
5848964 | Samuels | Dec 1998 | A |
5861003 | Latson et al. | Jan 1999 | A |
5876367 | Kaganov et al. | Mar 1999 | A |
5895399 | Barbut et al. | Apr 1999 | A |
5910154 | Tsugita et al. | Jun 1999 | A |
5911734 | Tsugita et al. | Jun 1999 | A |
5925016 | Chornenky et al. | Jul 1999 | A |
5925060 | Forber | Jul 1999 | A |
5925062 | Purdy | Jul 1999 | A |
5935139 | Bates | Aug 1999 | A |
5941869 | Patterson et al. | Aug 1999 | A |
5941896 | Kerr | Aug 1999 | A |
5947995 | Samuels | Sep 1999 | A |
5951589 | Epstein et al. | Sep 1999 | A |
5954745 | Gertler et al. | Sep 1999 | A |
5957952 | Gershony et al. | Sep 1999 | A |
5980555 | Barbut et al. | Nov 1999 | A |
5989281 | Barbut et al. | Nov 1999 | A |
5993469 | McKenzie et al. | Nov 1999 | A |
5997557 | Barbut et al. | Dec 1999 | A |
6001118 | Daniel et al. | Dec 1999 | A |
6007557 | Ambrisco et al. | Dec 1999 | A |
6010522 | Barbut et al. | Jan 2000 | A |
6013085 | Howard | Jan 2000 | A |
6027520 | Tsugita et al. | Feb 2000 | A |
6042598 | Tsugita et al. | Mar 2000 | A |
6051014 | Jang | Apr 2000 | A |
6051015 | Maahs | Apr 2000 | A |
6053932 | Daniel et al. | Apr 2000 | A |
6059814 | Ladd | May 2000 | A |
6066149 | Samson et al. | May 2000 | A |
6066158 | Engelson et al. | May 2000 | A |
6068645 | Tu | May 2000 | A |
6086605 | Barbut et al. | Jul 2000 | A |
6117154 | Barbut et al. | Sep 2000 | A |
6129739 | Khosravi | Oct 2000 | A |
6136016 | Barbut et al. | Oct 2000 | A |
6142987 | Tsugita | Nov 2000 | A |
6152946 | Broome et al. | Nov 2000 | A |
6165200 | Tsugita et al. | Dec 2000 | A |
6168579 | Tsugita | Jan 2001 | B1 |
6171327 | Daniel et al. | Jan 2001 | B1 |
6171328 | Addis | Jan 2001 | B1 |
6179851 | Barbut et al. | Jan 2001 | B1 |
6179859 | Bates et al. | Jan 2001 | B1 |
6179861 | Khosravi et al. | Jan 2001 | B1 |
6203561 | Ramee et al. | Mar 2001 | B1 |
6206868 | Parodi | Mar 2001 | B1 |
6214026 | Lepak et al. | Apr 2001 | B1 |
6221006 | Dubrul et al. | Apr 2001 | B1 |
6224620 | Maahs | May 2001 | B1 |
6231544 | Tsugita et al. | May 2001 | B1 |
6235044 | Root et al. | May 2001 | B1 |
6235045 | Barbut et al. | May 2001 | B1 |
6238412 | Dubrul et al. | May 2001 | B1 |
6245087 | Addis | Jun 2001 | B1 |
6245088 | Lowery | Jun 2001 | B1 |
6245089 | Daniel et al. | Jun 2001 | B1 |
6258115 | Dubrul | Jul 2001 | B1 |
6264663 | Cano | Jul 2001 | B1 |
6264672 | Fisher | Jul 2001 | B1 |
6270513 | Tsugita et al. | Aug 2001 | B1 |
6277138 | Levinson et al. | Aug 2001 | B1 |
6277139 | Levinson et al. | Aug 2001 | B1 |
6280413 | Clark et al. | Aug 2001 | B1 |
6287321 | Jang | Sep 2001 | B1 |
6290710 | Cryer et al. | Sep 2001 | B1 |
6309399 | Barbut et al. | Oct 2001 | B1 |
6319268 | Ambrisco et al. | Nov 2001 | B1 |
6344049 | Levinson et al. | Feb 2002 | B1 |
6425909 | Dieck et al. | Jul 2002 | B1 |
6485501 | Green | Nov 2002 | B1 |
6582448 | Boyle et al. | Jun 2003 | B1 |
20010044634 | Michael et al. | Nov 2001 | A1 |
Number | Date | Country |
---|---|---|
28 21 048 | Jul 1980 | DE |
34 17 738 | Nov 1985 | DE |
40 30 998 | Oct 1990 | DE |
199 16 162 | Oct 2000 | DE |
0 200 688 | Nov 1986 | EP |
0 293 605 | Dec 1988 | EP |
0 411 118 | Feb 1991 | EP |
0 427 429 | May 1991 | EP |
0 437 121 | Jul 1991 | EP |
0 472 334 | Feb 1992 | EP |
0 472 368 | Feb 1992 | EP |
0 533 511 | Mar 1993 | EP |
0 655 228 | Nov 1994 | EP |
0 686 379 | Jun 1995 | EP |
0 696 447 | Feb 1996 | EP |
0 737 450 | Oct 1996 | EP |
0 743 046 | Nov 1996 | EP |
0 759 287 | Feb 1997 | EP |
0 771 549 | May 1997 | EP |
0 784 988 | Jul 1997 | EP |
0 852 132 | Jul 1998 | EP |
1 127 556 | Aug 2001 | EP |
2 580 504 | Oct 1986 | FR |
2 643 250 | Aug 1990 | FR |
2 666 980 | Mar 1992 | FR |
2 694 687 | Aug 1992 | FR |
2 768 326 | Mar 1999 | FR |
2 020 557 | Jan 1983 | GB |
8-187294 | Jul 1996 | JP |
764684 | Sep 1980 | SU |
WO 8809683 | Dec 1988 | WO |
WO 9203097 | Mar 1992 | WO |
WO 9414389 | Jul 1994 | WO |
WO 9424946 | Nov 1994 | WO |
WO 9601591 | Jan 1996 | WO |
WO 9610375 | Apr 1996 | WO |
WO 9619941 | Jul 1996 | WO |
WO 9623441 | Aug 1996 | WO |
WO 9633677 | Oct 1996 | WO |
WO 9717100 | May 1997 | WO |
WO 9727808 | Aug 1997 | WO |
WO 9742879 | Nov 1997 | WO |
WO 9802084 | Jan 1998 | WO |
WO 9802112 | Jan 1998 | WO |
WO 9823322 | Jun 1998 | WO |
WO 9833443 | Aug 1998 | WO |
WO 9834673 | Aug 1998 | WO |
WO 9836786 | Aug 1998 | WO |
WO 9838920 | Sep 1998 | WO |
WO 9838929 | Sep 1998 | WO |
WO 9839046 | Sep 1998 | WO |
WO 9839053 | Sep 1998 | WO |
WO 9846297 | Oct 1998 | WO |
WO 9847447 | Oct 1998 | WO |
WO 9849952 | Nov 1998 | WO |
WO 9850103 | Nov 1998 | WO |
WO 9851237 | Nov 1998 | WO |
WO 9855175 | Dec 1998 | WO |
WO 9909895 | Mar 1999 | WO |
WO 9922673 | May 1999 | WO |
WO 9923976 | May 1999 | WO |
WO 9925252 | May 1999 | WO |
WO 9930766 | Jun 1999 | WO |
0 934 729 | Aug 1999 | WO |
WO 9940964 | Aug 1999 | WO |
WO 9942059 | Aug 1999 | WO |
WO 9944510 | Sep 1999 | WO |
WO 9944542 | Sep 1999 | WO |
WO 9955236 | Nov 1999 | WO |
WO 9958068 | Nov 1999 | WO |
WO 0007521 | Feb 2000 | WO |
WO 0007655 | Feb 2000 | WO |
WO 0009054 | Feb 2000 | WO |
WO 0016705 | Mar 2000 | WO |
WO 0049970 | Aug 2000 | WO |
WO 0053120 | Sep 2000 | WO |
WO 0067664 | Nov 2000 | WO |
WO 0067665 | Nov 2000 | WO |
WO 0067666 | Nov 2000 | WO |
WO 0067668 | Nov 2000 | WO |
WO 0067669 | Nov 2000 | WO |
WO 0105462 | Jan 2001 | WO |
WO 0108595 | Feb 2001 | WO |
WO 0108596 | Feb 2001 | WO |
WO 0108742 | Feb 2001 | WO |
WO 0108743 | Feb 2001 | WO |
WO 0110320 | Feb 2001 | WO |
WO 0115629 | Mar 2001 | WO |
WO 0121077 | Mar 2001 | WO |
WO 0121100 | Mar 2001 | WO |
WO 0126726 | Apr 2001 | WO |
WO 0135857 | May 2001 | WO |
WO 0143662 | Jun 2001 | WO |
WO 0147579 | Jul 2001 | WO |
WO 0149208 | Jul 2001 | WO |
WO 0149209 | Jul 2001 | WO |
WO 0149215 | Jul 2001 | WO |
WO 0149355 | Jul 2001 | WO |
WO 0152768 | Jul 2001 | WO |
WO 0158382 | Aug 2001 | WO |
WO 0160442 | Aug 2001 | WO |
WO 0167989 | Sep 2001 | WO |
WO 0170326 | Sep 2001 | WO |
WO 0172205 | Oct 2001 | WO |
WO 0187183 | Nov 2001 | WO |
WO 0189413 | Nov 2001 | WO |
WO 0191824 | Dec 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20030130681 A1 | Jul 2003 | US |