The present disclosure relates to a disc stack of frustoconical separation discs configured to be mounted in a separation chamber of a centrifugal separator, such as a crankcase gas separator. The present disclosure further relates to a rotor unit for a centrifugal separator, a centrifugal separator comprising a rotor unit, a method of providing a disc stack of frustoconical separation discs configured to be mounted in a separation chamber of a centrifugal separator, and a method of providing a rotor unit for a centrifugal separator.
A mixture of fluids having different densities may be separated from one another through use of a centrifugal separator. A centrifugal separator comprises a rotor unit rotating at high rotational speeds to generate centrifugal forces separating the fluids having different densities. The rotor unit may comprise a disc stack of frustoconical separation discs arranged adjacent to each other with narrow separation spaces between adjacent discs.
Centrifugal separators are used for various purposes. One specific use of a centrifugal separator is to separate a liquid phase from crankcase gases of an internal combustion engine. Crankcase gases of an internal combustion engine derive from gas leaking past piston rings from combustion chambers of the internal combustion engine to the crankcase of the engine. This continuous leaking of gas into the crankcase can lead to an undesirable increase of pressure within the crankcase and, as a consequence, to a need to vent gas from the casing. Crankcase gases typically carries a quantity of engine oil, as droplets or a fine mist, as well as other liquid hydrocarbons, soot, and other solid combustion residues. These substances may be environmentally harmful substances. Therefore, for certain types of combustion engines, legislation requires crankcase gases to be disposed of in an environmentally friendly manner.
In some internal combustion engines, the crankcase gases are led to an inlet of the combustion engine. In this way, the crankcase gases will not directly be vented out to the surrounding air. However, functionality of the internal combustion engine may be adversely affected by the presence of oil in the inlet air, particularly for engines comprising a turbocharging system wherein the efficiency of a compressor of the turbocharging system can be adversely affected, as well as the durability thereof. Therefore, it is an advantage if the crankcase gas is cleaned to remove oil particles carried by the gas prior to the gas being introduced into the inlet system. This cleaning process may be undertaken by a centrifugal separator, which is mounted on or adjacent the crankcase and which directs cleaned gas to the inlet system and directs separated oil back to the crankcase. An example of such a separator is disclosed e.g. in the document U.S. Pat. No. 8,657,908.
The rotor of a centrifugal separator can for example be driven by a hydraulic drive arrangement or an electric drive arrangement. Some hydraulic drive arrangements utilize impact force, e.g. where a liquid jet strikes a turbine wheel to create the rotational force. However, other drive arrangements are also contemplated, in particular a reaction drive where a liquid jet is discharged from a rotor in a tangential direction, at a position offset from the rotational axis of the rotor, thereby providing the rotational force of the rotor. An example of such a drive arrangement can be found in the document US 2005/0198932 A1.
In many cases, centrifugal separators operate in demanding environments where the centrifugal separator is subjected to a considerable amount of vibration. Moreover, the high rotational velocity of the rotor unit put strain on the centrifugal separator. In rare cases, displacement of the discs of the disc stack of the rotor unit can occur, which can be detrimental to the function of the centrifugal separator. Therefore, when producing components for a centrifugal separator, it is an advantage if it is ensured that the components are durable enough to last the lifetime of the engine.
Furthermore, generally, on today's consumer market, it is an advantage if products, such as centrifugal separator and associated components, have conditions and/or characteristics suitable for being manufactured and assembled in a cost-efficient manner.
It is an object of the present invention to overcome, or at least alleviate, at least some of the above-mentioned problems and drawbacks.
According to a first aspect of the invention, the object is achieved by a disc stack of frustoconical separation discs configured to be mounted in a separation chamber of a centrifugal separator, preferably a crankcase gas separator. The discs are stacked upon each other in a manner forming narrow separation spaces between adjacent discs, and wherein the discs are welded to each other at radially outer portions of the discs.
Since the discs are welded to each other at radially outer portions of the discs, a rigid and durable disc stack is provided. Moreover, subsequent displacement of the discs of the disc stack can be avoided. Furthermore, since the discs are welded to each other at radially outer portions of the discs, a disc stack is provided having conditions and characteristics suitable for being manufactured and assembled in a quick and cost-efficient manner. This is because the process of welding the discs to each other significantly facilitates the manufacturing and assembling of the disc stack.
Accordingly, a disc stack is provided overcoming, or at least alleviating, at least some of the above-mentioned problems and drawbacks. As a result, the above-mentioned object is achieved.
Optionally, the discs are made of a non-metallic material, preferably a polymeric material. Thereby, a light-weight disc stack can be provided, and a disc stack is provided having conditions for a further facilitated manufacturing thereof. This is because the process of welding the discs to each other can be significantly facilitated.
Optionally, the discs comprise welding sections at radially outer portions of the discs, and wherein the discs are welded to each other via the welding sections. Thereby, a further rigid and durable disc stack is provided. Moreover, since the discs are welded to each other via the welding sections, a disc stack is provided having conditions and characteristics suitable for being manufactured and assembled in a yet quicker and more cost-efficient manner. This is because the process of welding the discs to each other is significantly facilitated.
Optionally, the welding sections protrude from a frustoconical surface of the respective disc. Since the welding sections protrude from the frustoconical surface of the respective disc, conditions are provided for obtaining a continuous and coherent weld of welding sections. Thereby, a further rigid and durable disc stack can be provided. Moreover, a disc stack is provided having conditions and characteristics suitable for being manufactured and assembled in a further quicker and more cost-efficient manner. This is because the process of welding the discs to each other can be significantly facilitated.
Optionally, the welding sections separate the discs in a manner forming at least portions of the narrow separation spaces between adjacent discs. Thereby, a disc stack is provided in which the welding sections facilitate the process of welding and acts as spacers for separating the discs in a manner forming at least portions of the narrow separation spaces between adjacent discs. As a result thereof, a disc stack is provided having conditions and characteristics suitable for being manufactured and assembled in a further quicker and more cost-efficient manner. This is because the disc stack can be compressed in an axial direction thereof, before, and/or during, the welding of the welding sections. In this manner, uniform narrow separation spaces between adjacent discs can be provided in a quick, simple, and reliable manner, and the compression force may ensure a rigid and durable disc stack. Furthermore, the need for a compression spring compressing the disc stack in the axial direction during assembly and use thereof is circumvented. This is because when welded, the welding sections may ensure that a compression force is obtained between the discs of the disc stack. Accordingly, due to these features, a lighter, more rigid, and more durable disc stack can be provided in a cost efficient manner.
Optionally, the welding sections protrude radially from the discs. Thereby, the process of welding the discs to each other is significantly facilitated. Moreover, the welding sections can be aligned relative to each other in a simpler manner before welding the discs to each other. Accordingly, due to these features, a disc stack is provided having conditions and characteristics suitable for being manufactured and assembled in a further quicker and more cost-efficient manner.
Optionally, each disc comprises at least three welding sections, preferably circumferentially distributed. Thereby, a rigid and durable disc stack can be provided.
Optionally, the discs are welded to each other along aligned welding sections. Thereby, the process of welding the discs to each other is significantly facilitated. Moreover, a more rigid and durable disc stack is provided. Accordingly, due to these features, a disc stack is provided having conditions and characteristics suitable for being manufactured and assembled in a further quicker and more cost-efficient manner.
According to a second aspect of the invention, the object is achieved by a rotor unit for a centrifugal separator, preferably a crankcase gas separator, wherein the rotor unit comprises a disc stack according to some embodiments of the present disclosure, and a first end disc at a first axial end of the disc stack and a second end disc at a second axial end of the disc stack.
Since the discs of the disc stack are welded to each other at radially outer portions of the discs, a rigid and durable rotor unit is provided. Moreover, subsequent displacement of the discs of the disc stack can be avoided. Furthermore, since the discs of the disc stack are welded to each other at radially outer portions of the discs, a rotor unit is provided having conditions and characteristics suitable for being manufactured and assembled in a quick and cost-efficient manner. This is because the process of welding the discs of the disc stack to each other significantly facilitates the manufacturing and assembling of the disc stack.
Accordingly, a rotor unit is provided overcoming, or at least alleviating, at least some of the above-mentioned problems and drawbacks. As a result, the above-mentioned object is achieved.
Optionally, each of the first and second end discs is welded to the disc stack at radially outer portions of the end disc and radially outer portions of a disc of the disc stack being adjacent to the end disc. Thereby, a rotor unit is provided having conditions and characteristics suitable for being manufactured and assembled in a further quicker and more cost-efficient manner. This is because the first and second end discs are attached to the disc stack with the same manufacturing method as the discs of the disc stacks. As a further result of these features, the first and second end discs and the discs of the disc stack can be attached to each other using one welding step, which further facilitates assembling and manufacturing of the rotor unit.
Optionally, the rotor unit comprises a drive shaft interface for connection of a drive shaft to at least one of the first and second end discs, or the rotor unit comprises a drive shaft connected to or integrated with at least one of the first and second end discs. Thereby, the rotor unit can be brought into rotation in a separation chamber of a centrifugal separator in a simple, efficient, and reliable manner.
Optionally, at least a proportion of the discs are rotationally locked to the drive shaft only via welds at radially outer portions of the discs. Thereby, a lightweight rotor unit can be provided. Moreover, a rotor unit is provided having conditions for an improved fluid flow characteristics. This is because conditions are provided for more space radially inside the discs of the disc stack and the need for separate holding structures is circumvented for rotationally locking the discs to the drive shaft.
Optionally, the rotor unit is configured to rotate around a rotation axis during operation in a separation chamber of a centrifugal separator, preferably a crankcase gas separator, wherein the rotor unit comprises a hollow space radially inside the discs of the disc stack, and wherein the hollow space extends through the rotation axis. Thereby, a lightweight rotor unit can be provided. Moreover, a rotor unit is provided having conditions for an improved fluid flow characteristics. This is because the hollow space provides conditions for having a large space available radially inside the discs of the disc stack.
According to a third aspect of the invention, the object is achieved by a centrifugal separator for gas separation, preferably a crankcase gas separator, wherein the centrifugal separator comprises a rotor unit according to some embodiments of the present disclosure.
Since the centrifugal separator comprises a rotor unit according to some embodiments, a centrifugal separator is provided having conditions and characteristics suitable for being manufactured and assembled in a quick and cost-efficient manner. Moreover, a centrifugal separator is provided having a robust and durable rotor unit.
Accordingly, a centrifugal separator is provided overcoming, or at least alleviating, at least some of the above-mentioned problems and drawbacks. As a result, the above-mentioned object is achieved.
According to a fourth aspect of the invention, the object is achieved by a method of providing a disc stack of frustoconical separation discs configured to be mounted in a separation chamber of a centrifugal separator, preferably a crankcase gas separator, wherein the method comprises:
Since the method comprises the step of welding the discs to each other at radially outer portions of the discs, a quick and cost-efficient method is provided for manufacturing a rigid and durable disc stack.
Accordingly, a method is provided overcoming, or at least alleviating, at least some of the above-mentioned problems and drawbacks. As a result, the above-mentioned object is achieved.
Optionally, each disc comprises at least one welding section, and wherein the step of welding the discs to each other comprises the step of:
Thereby, a quicker and more cost-efficient method is provided for manufacturing disc stack. Moreover, a more rigid and durable disc stack can be provided when using the method.
Optionally, the method comprises the step of:
Thereby, a quicker and more cost-efficient method is provided for manufacturing the disc stack. This is because the subsequent step of welding the discs to each other is significantly facilitated. Moreover, a more rigid and durable disc stack can be provided when using the method.
Optionally, the step of aligning the welding sections of the discs comprises the step of:
Thereby, a quicker and more cost-efficient method is provided for manufacturing disc stack. This is because the subsequent step of welding the discs to each other is significantly facilitated. Moreover, an even more rigid and durable disc stack can be provided when using the method.
Optionally, the discs comprise spacers forming the narrow separation spaces between adjacent discs, and wherein the method comprises the step of:
Thereby, a more rigid and durable disc stack is provided when using the method. This is because the compression of the disc stack in the axial direction thereof ensures uniform narrow separation spaces between adjacent discs which can be provided in a quick, simple, and reliable manner when using the method. Moreover, the compression force may ensure a rigid and durable disc stack in a quick manner. Furthermore, the need for a compression spring compressing the disc stack in the axial direction thereof is circumvented. This is because the welded portions of the discs may ensure that a compression force is obtained between the discs of the disc stack. Accordingly, due to these features, a lighter, more rigid, and durable disc stack can be provided in a cost efficient manner when using the method.
According to a fifth aspect of the invention, the object is achieved by a method of providing a rotor unit for a centrifugal separator, preferably a crankcase gas separator, wherein the rotor unit comprises frustoconical separation discs and a first and a second end disc, wherein the method comprises:
Since the method comprises the step of welding the discs to each other at radially outer portions of the discs, a quick and cost-efficient method is provided for manufacturing a rigid and durable rotor unit for a centrifugal separator.
Accordingly, a method is provided overcoming, or at least alleviating, at least some of the above-mentioned problems and drawbacks. As a result, the above-mentioned object is achieved.
Optionally, the discs comprise spacers forming the narrow separation spaces between adjacent discs, and wherein the method comprises the step of:
Thereby, a more rigid and durable rotor unit is provided when using the method. This is because the compression of the rotor unit in the axial direction thereof ensures uniform narrow separation spaces between adjacent discs which can be provided in a quick, simple, and reliable manner when using the method. Moreover, the compression force may ensure a rigid and durable rotor unit in a quick manner. Furthermore, the need for a compression spring compressing the disc stack in the axial direction thereof is circumvented. This is because welded portions of the discs may ensure that a compression force is obtained between the discs of the rotor unit. Accordingly, due to these features, a lighter, more rigid, and durable rotor unit can be provided in a cost efficient manner when using the method.
Further features of, and advantages with, the present invention will become apparent when studying the appended claims and the following detailed description.
Various aspects of the invention, including its particular features and advantages, will be readily understood from the example embodiments discussed in the following detailed description and the accompanying drawings, in which:
Aspects of the present invention will now be described more fully. Like numbers refer to like elements throughout. Well-known functions or constructions will not necessarily be described in detail for brevity and/or clarity.
The rotor unit 10 comprises a disc stack 1 of frustoconical separation discs 3. For the reason of brevity and clarity, the separation discs 3 are in some places herein referred to as “the discs 3”. As can be seen in
According to the illustrated embodiments, the rotor unit 10 comprises a first end disc 11 at a first axial end 21 of the disc stack 1, and a second end disc 12 at a second axial end 22 of the disc stack 1. The discs 3 of the disc stack 1 may be made of a polymeric material, i.e. a non-metallic material. Likewise, the first and second end discs 11, 12 may also be made of a polymeric material. Purely as an example, the discs 3, 11, 12 may be made of a fibre-reinforced polymer, such as fibreglass. Moreover, the discs 3, 11, 12 may be made of polyamide or nylon, such as PA66, with or without a fibre-reinforced polymer, such as fibreglass. According to some embodiments, the discs 3 of the disc stack 1 and the first and second end discs 11, 12 are made of the same material. In this manner, welding of the discs 3, 11, 12 to each other is facilitated and a continuous, coherent, and strong weld can be provided, as is further explained herein. The first and second end discs 11, 12 are more structurally rigid than the discs 3 of the disc stack 1.
Moreover, according to the illustrated embodiments, each of the first and second end discs 11, 12 is welded to the disc stack 1 at radially outer portions 25, 25′ of the end disc 11, 12 and radially outer portions 5 of adjacent discs 3 of the disc stack 1, which provides several advantages, as is further explained herein.
According to the illustrated embodiments, each disc 3 comprises twelve welding sections 6 positioned at equal distances from each other around a circumference of the respective disc 3. According to further embodiments, each disc 3 may comprises at least three welding sections 6, or at least six welding sections 6, which may be positioned at equal distances from each other around the circumference of the respective disc 3.
The discs 3 of the disc stack 1 comprise spacers 8 protruding from a frustoconical surface 7 of the respective disc 3. Spacers 8 protruding from a frustoconical surface 7 of one of the discs 3 is also seen and indicated in
Moreover, as can be seen in
Furthermore, as can be seen in
It should also be noted that the radially protruding welding sections 6 may be arranged to not protrude radially beyond the radius of the discs 3 after welding, i.e. in the assembled state when the welding sections 6 have been welded to each other.
According to embodiments, the welding sections 6 may be aligned before welding the discs 3 to each other using a fixture, or the like.
In
According to further embodiments, the welding sections 6, 6′, 6″ of the discs 3, 11, 12 may be aligned to positions in which the welding sections 6, 6′, 6″ extend along curved lines. As an example, the welding sections 6, 6′, 6″ of the discs 3, 11, 12 may be aligned to positions in which the welding sections 6, 6′, 6″ form a partial helix shaped pattern of welding sections 6, 6′, 6″.
In the following, an assembling process of the rotor unit 10 will be explained. The assembling process may be performed by an assembler or by an assembling machine. In the assembling process, the separation discs 3 may be stacked, i.e. placed, upon each other onto the first end disc 11 to form a disc stack 1 of separation discs 3 having a first axial end 21 facing the first end disc 11 and narrow separation spaces 4 between adjacent discs 3, 11. Moreover, the second end disc 12 may be placed at a second axial end 22 of the disc stack 1.
Before welding the discs 3, 11, 12 to each other, the welding sections 6, 6′, 6″ of the discs 3, 11, 12 may be aligned to positions allowing a continuous and coherent weld of the welding sections 6, 6′, 6″. The process of aligning the welding sections 6, 6′, 6″ may be performed during or after the process of stacking the discs 3, 11, 12 onto each other. After the stacking of the discs 3, 11, 12 and the alignment of the welding sections 6, 6′, 6″, a rotor unit 10 is provided as illustrated in
Before, and/or during, the welding of the welding sections 6, 6′, 6″, the rotor unit 10 may be compressed in an axial direction ad thereof. The compression of the rotor unit 10 may be obtained by applying opposing forces onto the first and second end discs 11, 12 in the axial direction ad of the rotor unit 10. According to some embodiments, the rotor unit 10 is compressed in the axial direction ad thereof during welding of the discs 3, 11, 12 to each other by welding the welding sections 6 of adjacent discs 3, 11, 12 to each other. In this manner, uniform narrow separation spaces 4 between adjacent discs 3, 11, 12 can be provided in a quick, simple, and reliable manner. Moreover, the compression force may ensure a rigid and durable rotor unit 10. Furthermore, the need for a compression spring compressing the rotor unit 10 in the axial direction ad thereof is circumvented. This is because when welded, the welding sections 6, 6′, 6″ may ensure that a compression force is obtained between the discs 3, 11, 12 of the rotor unit 10.
During the welding, at least parts of the welding sections 6, 6′, 6″ are melted and are joined together when cooling, which causes fusion between the welding sections 6, 6′, 6″. When welded, a rotor unit 10 is provided as illustrated in
According to the illustrated embodiments, drive shaft 31 of the rotor unit 10 is connected to the first end disc 11. As an alternative, or in addition, the drive shaft 31 of the rotor unit 10 may be connected to the second end disc 12. Furthermore, according to some embodiments, the drive shaft 31 may be integrated with one or both of the first and second end discs 11, 12. According to the illustrated embodiments, the discs 3 of the disc stack 1 are rotationally locked to the drive shaft 31 only via welds at radially outer portions 5 of the discs 3. In this manner, a rotor unit 10 is provided having conditions for an improved fluid flow characteristics, as is further explained herein. Moreover, a rotor unit 10 is provided having conditions for having low weight.
According to the illustrated embodiments, the rotor unit 10 comprises a hollow space 33 radially inside the discs 3 of the disc stack 1. The hollow space 33 extends through the rotation axis ax. That is, according to the illustrated embodiments, the shafts 31, 32 of the rotor unit, i.e. the drive shaft 31 and the supporting shaft 32 do not extend into the hollow space 33 radially inside the discs 3 of the disc stack 1. Accordingly, a shaft-less hollow space 33 is provided radially inside the discs 3 of the disc stack 1. In this manner, improved flow characteristics is provided of fluid flowing through the rotor unit 10 during operation of the rotor unit 10, i.e. fluid flowing through the hollow space 33 from inlet apertures 37 in the second end disc 12 to the narrow separation spaces 4 between adjacent discs 3, 11, 12. The inlet apertures 37 in the second end disc 12 are also indicated in
The centrifugal separator 50 illustrated in
The centrifugal separator 50 illustrated in
It should be noted that the orientation of the inlet and the outlets, as well as the conical discs, may be varied without departing from the scope of the invention. Gas to be cleaned is led into the centre of the disc stack and rotor, travels radially outward within the disc stack, and leaves the disc stack at the periphery thereof as separated gas and particles. This can be accomplished through a gas inlet from above or below, with an outlet for cleaned gas being positioned above or below the disc stack, with the inner surface of the discs facing upward or downward.
According to some embodiments, each disc 3 comprises at least one welding section 6, and wherein the step of welding 120 the discs 3 to each other comprises the step of:
As illustrated in
Moreover, as illustrated in
As illustrated in
Moreover, as illustrated in
According to some embodiments, the discs 3 comprise spacers 8, 6 forming the narrow separation spaces 4 between adjacent discs 3, and wherein the method 100 comprises the step of:
The method 200 illustrated in
According to some embodiments, each disc 3, 11, 12 comprises at least one welding section 6, 6′, 6″, and wherein the step of welding 220 the discs 3, 11, 12 to each other comprises the step of:
As illustrated in
Moreover, as illustrated in
According to some embodiments, the discs 3, 11, 12 comprise spacers 8, 6 forming the narrow separation spaces 4 between adjacent discs 3, 11, 12, and wherein the method 200 comprises the step of:
It is to be understood that the foregoing is illustrative of various example embodiments and that the invention is defined only by the appended claims. A person skilled in the art will realize that the example embodiments may be modified, and that different features of the example embodiments may be combined to create embodiments other than those described herein, without departing from the scope of the present invention, as defined by the appended claims.
As used herein, the term “comprising” or “comprises” is open-ended, and includes one or more stated features, elements, steps, components, or functions but does not preclude the presence or addition of one or more other features, elements, steps, components, functions, or groups thereof.
Number | Date | Country | Kind |
---|---|---|---|
19209240.1 | Nov 2019 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2020/081286 | 11/6/2020 | WO |