The invention relates generally to bit-wise holographic storage. More particularly, the invention relates to a holographic disc structure with embedded tracks for real-time recording and readout.
As computing power has advanced, computing technology has entered new application areas, such as consumer video, data archiving, document storage, imaging, and movie production, among others. These applications have provided a continuing push to develop data storage techniques that have increased storage capacity. Further, increases in storage capacity have both enabled and promoted the development of technologies that have gone far beyond the initial expectations of the developers, such as gaming, among others.
The progressively higher storage capacities for optical storage systems provide a good example of the developments in data storage technologies. The compact disc, or CD, format, developed in the early 1980s, has a capacity of around 650-700 MB of data, or around 74-80 minutes of a two channel audio program. In comparison, the digital versatile disc (DVD) format, developed in the early 1990s, has a capacity of around 4.7 GB (single layer) or 8.5 GB (dual layer). The higher storage capacity of the DVD is sufficient to store full-length feature films at older video resolutions (for example, PAL at about 720 (h)×576 (v) pixels, or NTSC at about 720 (h)×480 (v) pixels).
However, as higher resolution video formats, such as high-definition television (HDTV) (at about 1920 (h)×1080 (v) pixels for 1080 p), have become popular, storage formats capable of holding full-length feature films recorded at these resolutions have become desirable. This has prompted the development of high-capacity recording formats, such as the Blu-ray Disc™ format, which is capable of holding about 25 gigabytes in a single-layer disc, or 50 gigabytes in a dual-layer disc. As resolution of video displays, and other technologies, continue to develop, storage media with ever-higher capacities will become more important. One developing storage technology that may meet the capacity requirements for some time to come is based on holographic storage.
Holographic storage is the storage of data in the form of holograms, which are images of three dimensional interference patterns created by the intersection of two beams of light in a photosensitive storage medium. Both page-based holographic techniques and bit-wise holographic techniques have been pursued. In page-based holographic data storage, a data beam which contains digitally encoded data is superposed on a reference beam within the volume of the storage medium resulting in a chemical reaction which, for example, changes or modulates the refractive index of the medium within the volume. This modulation serves to record both the intensity and phase information from the signal. Each bit is therefore generally stored as a part of the interference pattern. The hologram can later be retrieved by exposing the storage medium to the reference beam alone, which interacts with the stored holographic data to generate a reconstructed data beam proportional to the initial data beam used to store the holographic image.
In bit-wise holography or micro-holographic data storage, every bit is written as a micro-hologram, or reflection grating, typically generated by two counter propagating focused recording beams. The data is then retrieved by using a read beam to diffract off the micro-hologram to reconstruct the recording beam. Accordingly, micro-holographic data storage is more similar to current technologies than page-wise holographic storage. However, in contrast to the two layers of data storage that may be used in DVD and Blu-ray Disc™ formats, holographic discs may have 50 or 100 layers of data storage, providing data storage capacities that may be measured in terabytes (TB).
Although holographic storage systems may provide much higher storage capacities than prior optical systems, vibration and wobble of the holographic disc in an optical media player may be larger than a typical micro-hologram size. Consequently, vibration and wobble displacement of the spinning disc may cause problems in recording and readout of the optical disc.
Therefore, there is a need for improved, reliable, and economically feasible holographic data storage medium and methods through which enhanced holographic data storage capacities can be achieved.
In one embodiment, an optical article is provided. The optical article includes a first layer. The first layer includes an active holographic layer configured to store holographic data. The first layer has a first surface and a second surface. A second layer includes a low birefringence material. The second layer also has a first surface and a second surface. Guide grooves are present in any one of the first layer or the second layer.
In another embodiment, an optical article is provided. The optical article includes a first layer. The first layer includes an active holographic layer configured to store holographic data. The first layer has a first surface and a second surface. A second layer includes a low birefringence material. The second layer also has a first surface and a second surface. Guide grooves are present in any one of the first layer or the second layer. A barrier coating is disposed over the second surface of the first layer and the first surface of the second layer.
In yet another embodiment, an optical article is provided. The optical article includes a first layer. The first layer includes an active holographic layer configured to store holographic data. The first layer has a first surface and a second surface. A second layer includes a low birefringence material. The second layer also has a first surface and a second surface. Guide grooves are present on the second surface of the first layer. The second surface of the first layer is adjacent to the first surface of the second layer.
In still yet another embodiment, an optical article is provided. The optical article includes a first layer. The first layer includes a low birefringence material. The first layer has a first surface and a second surface. A second layer includes an active holographic layer configured to store holographic data. The second layer also has a first surface and a second surface. Guide grooves are present on the second surface of the first layer. The second surface of the first layer is adjacent to the first surface of the second layer.
In still yet another embodiment, an optical article is provided. The optical article includes a first layer. The first layer includes a low birefringence material. A second layer includes an active holographic layer configured to store holographic data. A third layer includes a low birefringence material. The first layer, the second layer, and the third layer have a first surface and a second surface. Guide grooves are present on the first surface of the first layer. The first surface of the first layer is adjacent to the second surface of the second layer.
In still yet another embodiment, an optical article is provided. The optical article includes a first layer. The first layer includes a low birefringence material. A second layer includes an active holographic layer configured to store holographic data, which is disposed over the first layer. A third layer includes a low birefringence material, which is disposed over the second layer. A fourth layer includes an active holographic layer configured to store holographic data, which is disposed over the third layer. A fifth layer includes a low birefringence material is disposed over the second layer, which is disposed over the fourth layer. The first layer, the second layer, the third layer, the fourth layer, and the fifth layer have a first surface and a second surface. Guide grooves are present on the first surface of the first layer. The first surface of the first layer is adjacent to the second surface of the second layer.
In still yet another embodiment, a method is provided. The method includes the steps of providing a first layer, providing a second layer, disposing guide grooves on the first layer or the second layer, and binding the first layer and the second layer. The first layer includes an active holographic layer. The second layer includes a low birefringence material.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
Approximating language, as used herein throughout the specification and claims, may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term such as “about” is not to be limited to the precise value specified. In some instances, the approximating language may correspond to the precision of an instrument for measuring the value. Similarly, “free” may be used in combination with a term, and may include an insubstantial number, or trace amounts, while still being considered free of the modified term.
As used herein, the terms “may” and “may be” indicate a possibility of an occurrence within a set of circumstances; a possession of a specified property, characteristic or function. These terms may also qualify another verb by expressing one or more of an ability, capability, or possibility associated with the qualified verb. Accordingly, usage of “may” and “may be” indicates that a modified term is apparently appropriate, capable, or suitable for an indicated capacity, function, or usage, while taking into account that in some circumstances the modified term may sometimes not be appropriate, capable, or suitable. For example, in some circumstances, an event or capacity can be expected, while in other circumstances the event or capacity cannot occur—this distinction is captured by the terms “may” and “may be”.
One or more specific embodiments of the present invention will be described below. In an effort to provide a concise description of these embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
When introducing elements of various embodiments of the present invention, the articles “a,” “an,” and “the,” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive, and mean that there may be additional elements other than the listed elements. Furthermore, the terms “first,” “second,” and the like, herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another.
Embodiments of the invention described herein address the noted shortcomings of the state of the art. These embodiments advantageously provide an improved optical article. The optical article disclosed herein includes at least a first layer and a second layer. The first layer includes an active holographic layer configured to store holographic data. The first layer has a first surface and a second surface. The second layer includes a low birefringence material. The second layer also has a first surface and a second surface. Guide grooves are present in at least the first layer or the second layer. The first layer and the second layer are bound together by using a binding material. In one embodiment, the optical article disc structure described herein may be functional as a pre-formatted disc or a blank read/write disc for bit-wise micro-holograms. Again, in a micro-holographic system, the bit size is typically less than a micron. However, during real-time recording or readout, the disc has significant vibration and wobble, typically up to 100 micrometers. As the disc vibrates/wobbles by such a distance, the beam condition in the disc changes significantly and thus can't perform proper record and readout. With the guide grooves present in the optical article combined with an appropriate optical system, focusing and tracking can be performed and multi-layer micro-hologram record/read may be achieved in real-time. The disc structure disclosed herein may thereby allow for read-write of multiple layers of bit-wise micro-holograms at low and high numerical apertures for pre-formatted and/or blank discs. In certain embodiments, the optical article disc structure described herein will dramatically increase storage capacity from current Blu-ray formats of 25-50 gigabytes to about 500 to 1000 terabytes (TB) of information.
Referring to
Referring to
In one embodiment, the active holographic layer may comprise a polymeric matrix and a threshold material that is optically-enabled. In one embodiment, the polymer matrix comprises a thermoplastic resin. Suitable thermoplastic resins include polycarbonate, a phenylene oxide based resin, a polyester resin, and a polyetherimide resin. In one embodiment, the optically-enabled material is a dye. In one embodiment, the dye includes a thermo-chromic material, an electro-chromic material, an energy transfer material, or any combination thereof. In one embodiment, the dye includes a reverse saturable (RSA) dye. Examples of such platinum class of dyes include, but are not limited to the following trans-platinum compounds: Bis(tributylphosphine)bis(4-ethynylbiphenyl)platinum (PPE), and Bis(tributylphosphine)bis(4-ethynyl-1-(2-phenylethynyl)benzene)platinum (PE2), Bis(1-ethynyl-4-(4-n-butylphenylethynyl)benzene)bis(tri-n-butyl)phosphine)Pt (II). (n-butyl PE2), bis(1-ethynyl-4-(4-fluorophenylethynyl)benzene)bis(tri-n-butyl)phosphine)Pt (II) (F-PE2), Bis(1-ethynyl-4-(4-methoxy-phenylethynyl)benzene)bis(tri-n-butyl)phosphine)Pt (II) (4-MeO-PE2), Bis(1-ethynyl-4-(4-methylphenylethynyl)benzene)bis(tri-n-butyl)phosphine)Pt(II)(Me-PE2), Bis(1-ethynyl-4(3,5-dimethoxyphenylethynyl)benzene)bis(tri-nbutylphosphine)Pt(II) (3,5-diMeO-PE2), Bis(1-ethynyl-4(4-N,N-dimethylaminophenylethynyl)benzene)bis(tri-n-butyl-phosphine)Pt(II) (diMeamino-PE2). Examples of suitable subphthalocyanines dye class include, but are not limited to, chloro[2,9,16-tribromosubphthalocyanato]boron(III), chloro[2,9,16-triiodosubphthalocyanato]-boron(III), chloro[trinitrosubphthalocyanato]boron(III), chloro[2,9,16-tri-tert-butyl- and chloro[2,9,17-tri-tert-butylsubphthalocyanato]boron(III), phenoxy-[subphthalocynato]boron(III), 3-bromophenoxy[subphthalocyanato]boron(III) 4-bromophenoxy[subphthalo-cyninato]boron(III), 3,5-dibromophenoxysubphthalo-cyaninato]boron(III), 3-iodophenoxysubphthalocyaninato]boron(III), 4-iodophenoxy[subphthalo-cyninato]boron(III), phenoxy[2,9,16-triiodosubphthalo-cyaninato]-boron(III), 3-iodophenoxy[2,9,16-triiodosubphthalocyaninato]-boron(III), and 4-iodophenoxy[2,9,16-triiodosubphthalocyaninato]boron(III). In general, threshold response is desirable from the materials for multi-layer micro-holographic storage. For a discussion of threshold materials of bit-wise holographic data storage, see U.S. Pat. No. 7,388,695, and US Patent Application 20080158627, incorporated herein by reference in their entirety.
In one embodiment, the active holographic layer has a thickness in a range from about 50 micrometers to about 1200 micrometers. In another embodiment, the active holographic layer has a thickness in a range from about 60 micrometers to about 1100 micrometers. In yet another embodiment, the active holographic layer has a thickness in a range from about 70 micrometers to about 1000 micrometers. In certain embodiments, where required a thinner disc may be formed since a thinner can be spun faster, when stabilized. On the other hand, in certain embodiments, a thicker disc may be formed. A thick disc is easier to handle and has better rigidity. Further, it may be relatively easy to form the spiral tracking pattern in a thicker layer.
In one embodiment, the low birefringence layer may function as the substrate layer in the optical article. Optical pick-up relies on correct detection of light polarization. Materials having high BR materials may scramble the polarization and undermine both detection and recording. In one embodiment, the low birefringence layer comprises a material having a transparency of greater than about 99 percent at wavelength of about 400 nanometers to about 420 nanometers. In one embodiment, the low birefringence layer comprises glass or a thermoplastic resin. The layer may be produced using methods known to one skilled in the art. Suitable methods of forming the second layer comprising a thermoplastic resin include solvent casting, spin coating, injection molding, and film/sheet extrusion.
In one embodiment, the low birefringence layer has a thickness in a range from about 2 micrometers to about 1200 micrometers. In another embodiment, the low birefringence layer has a thickness in a range from about 5 micrometers to about 1100 micrometers. In yet another embodiment, the low birefringence layer has a thickness in a range from about 10 micrometers to about 1000 micrometers. The variation in thickness may have the same advantages as discussed above for the thin and thick active holographic layers.
In certain embodiments, the optical article further comprises a reflective layer. In one embodiment, the reflective layer may be disposed over the guide grooves formed over the first layer or the second layer. Referring to
Referring to
The reflective layer 324, 424 may help to enhance the reflection of a servo beam i.e., a tracking and focusing beam, from the grooves to provide an enhanced servo signals i.e., tracking and focusing signals. The reflective layer 324, 424 is configured generally to have reduced or no impact of the grooves on the record and readout beams, which may be at a different wavelength than the tracking beam. The reflective layer 324, 424 may even enhance transmission of the record and readout beams. The reflective layer 324, 424 may include layers of inorganic material. In one embodiment, metal oxides and metal nitrides may be employed as the reflective layer. Suitable inorganic materials that may be used as the reflective layer 324, 424 include titanium dioxide, silica, and silicon nitride. In various embodiments, the reflective layer 324, 424, may be deposited on the guide grooves 322, 422 by using methods known to one skilled in the art. Suitable deposition methods include vapor deposition, evaporation, sputtering, and the like.
In certain embodiments, the optical article further comprises an anti-reflective layer. In one embodiment, the anti-reflective layer may be disposed on the outside of the first layer and the second layer of the disc structure on surfaces opposite to the surface that comprises the guide grooves. The anti-reflective layer may help in reducing losses at the air interface when the laser beam is impinged on the optical article. Referring to
Referring to
In certain embodiments, the optical article may comprise a barrier layer. The barrier layer is typically disposed on the outer surface of any one or both the first layer and the second layer. The barrier layer typically functions as a moisture barrier, oxygen barrier or as a mechanical protection. In one embodiment, the barrier layer may comprise an organic material, an inorganic material, or a combination of inorganic and organic material. In one embodiment, the barrier layer may comprise alternating organic and inorganic materials. Suitable organic materials include polymers having a carbon linked backbone, such as for example parylene, acrylic polymer, and a styrene; polymers having silicon linked backbone, such as for example organosilane, organosilazane, and organosilicone; a styrene; a xylene; an alkene; and combinations thereof. Suitable inorganic materials include metal oxides, metal nitrides, and metal oxynitrides, such as for example alumina, zirconia, hafnia, silica, titanium nitride, aluminum nitride, silicon nitride, silicon oxynitride, and combinations thereof. In certain embodiments, the antireflective layer may function as the barrier layer. In certain embodiments, an additional barrier layer may be disposed over the anti-reflective layer on one or both sides of the device. As shown in
In one embodiment, the optical article further comprises a bonding material disposed between the first layer and the second layer. Suitable bonding materials may include pressure sensitive adhesives, such as for example optically clear adhesive 8171 obtained from 3M; thermal adhesive, such as for example 302-2FL from epoxy technologies; and Ultraviolet (UV) curable adhesive, such as for example Norland products #72.
In one embodiment, the guide grooves 122, 222, 322, 422, 522, and 622, may be molded as part of the first layer 210, 410, and 610, or the second layer 116, 316, and 616. In one embodiment, the guide grooves may be stamped over the first layer or the second layer. The guide grooves may be disposed in various shapes. Suitable shapes include spiral tracks, wobble structures, synchronization marks, and any combination thereof.
In still yet another embodiment, referring to
In still yet another embodiment, referring to
In one embodiment, referring to
An optical drive system may be employed to read/write data from the optical article 100. Referring to
The location of some of the optical elements 1014 over the optical article 100 is controlled by a tracking servo 1018 through a mechanical actuator 1020 which is configured to move the optical elements back and forth over the surface of the optical article 100. The optical drive electronics 1016 and the tracking servo 1018 are controlled by a processor 1022. In some embodiments, the tracking servo 1018 or the optical drive electronics 1016 may be capable of determining the position of the optical elements 1014 based on sampling information received by the optical elements 1014.
The processor 1022 also controls a motor controller 1024 which provides the power 1026 to a spindle motor 1028. The spindle motor 1028 is coupled to a spindle 1030 that controls the rotational speed of the optical article 100. As the optical elements 1014 are moved from the outside edge of the optical article 100 closer to the spindle 1030, the rotational speed of the optical data disc may be increased by the processor 1022. This may be performed to keep the data rate of the data from the optical article 100 essentially the same when the optical elements 1014 are at the outer edge as when the optical elements are at the inner edge. The maximum rotational speed of the disc may be about 500 revolutions per minute (rpm), 1000 rpm, 1500 rpm, 3000 rpm, 5000 rpm, 10,000 rpm, or higher.
The processor 1022 is connected to random access memory or RAM 1032 and read only memory or ROM 1034. The ROM 1034 contains the programs that allow the processor 1022 to control the tracking servo 1018, optical drive electronics 1016, and motor controller 1024. Further, the ROM 1034 also contains programs that allow the processor 1022 to analyze data from the optical drive electronics 1016, which has been stored in the RAM 1032, among others. As discussed in further detail herein, such analysis of the data stored in the RAM 1032 may include, for example, demodulation, decoding or other functions necessary to convert the information from the optical article 100 into a data stream that may be used by other units.
If the optical drive system 1000 is a commercial unit, such as a consumer electronic device, it may have controls to allow the processor 1022 to be accessed and controlled by a user. Such controls may take the form of panel controls 1036, such as keyboards, program selection switches and the like. Further, control of the processor 1022 may be performed by a remote receiver 1038. The remote receiver 1038 may be configured to receive a control signal 1040 from a remote control 1042. The control signal 1040 may take the form of an infrared beam, an acoustic signal, or a radio signal, among others.
After the processor 1022 has analyzed the data stored in the RAM 1032 to generate a data stream, the data stream may be provided by the processor 1022 to other units. For example, the data may be provided as a digital data stream through a network interface 1044 to external digital units, such as computers or other devices located on an external network. Alternatively, the processor 1022 may provide the digital data stream to a consumer electronics digital interface 1046, such as a high-definition multi-media interface (HDMI), or other high-speed interfaces, such as a USB port, among others. The processor 1022 may also have other connected interface units such as a digital-to-analog signal processor 1048. The digital-to-analog signal processor 1048 may allow the processor 1022 to provide an analog signal for output to other types of devices, such as to an analog input signal on a television or to an audio signal input to an amplification system.
The drive 1000 may be used to read an optical article 100 containing data as shown in the top view 1050 of optical article 100. The optical article 100 is a flat, round disc with one or more data storage material layers embedded in a transparent protective coating. The protective coating may be a transparent plastic, such as polycarbonate, polyacrylate, and the like. Each of the data storage material layers may include any number of data layers that may reflect light. In micro-holographic data storage, a data layer includes micro-holograms. A spindle hole 1052 couples to the spindle (e.g., the spindle 1030 of
Referring to
In various embodiments the optical articles discussed herein may be employed as a pre-formatted disc or as a blank read/write disc for bit-wise micro-holograms. In certain embodiments, the optical articles discussed herein allow for read-write of multiple-layers of bit-wise micro-holograms at low and high numerical apertures for both pre-formatted disc or as a blank read/write disc. In various embodiments, the optical articles provided in
In summary, the present technique may be directed to an optical disc for micro-holographic data storage. The disc may include optically-enabled material configured to store holographic data and guide grooves. The disc may include a first coating disposed on the guide grooves and configured to reflect a tracking beam and to transmit a read or record beam, and a second coating disposed to cover the guide grooves and disposed on the first coating. The optically-enabled material may have data layers of micro-holograms. The optically-enabled material may include a threshold material (e.g., a phase-change material, a energy transfer material, a thermo-chromic material, etc.) that is optically-enabled. The guide grooves may be molded as part of the optically-enabled material, and may include spiral tracks, wobble structures, or synchronization marks, or any combination thereof.
The disc may be manufacture as a holographic data storage disc. The disc may be molded (e.g., injection-molded) of holographic-enabled material in a disc shape with guide grooves. A first coating may be applied to the guide grooves, wherein the first coating is configured to reflect a tracking beam and to transmit a read or record beam. Applying the first coating may include depositing, evaporating, or sputtering a coating (e.g., dichroic coating) on the guide grooves, or any combination thereof. A second coating may be disposed (e.g., spin-coated) on the first coating to cover the guide grooves, wherein the second coating is dispose on the first coating.
In another example, a multi-layer optical disc for micro-holographic data storage, includes a substrate layer, at least one layer of optically-enabled material (e.g., thickness of about 0.1 millimeters to about 1.2 millimeters thick), and guide grooves. A coating disposed on the guide grooves and configured to reflect a tracking beam and to transmit a read or record beam. Further the disc may have an intermediate layer (e.g., not active) disposed between other layers of the disc, such as between two layers of optically-enabled material. Lastly, the guide groves may be disposed at different locations. For example, the guide grooves may disposed adjacent the substrate layer, the cover layer, or between layers of optically-enabled material, and so on.
A technique of recording, reading, and tracking a holographic data storage disc, includes: impinging a record beam on the holographic data storage disc to store or read a micro-hologram in a data region of the holographic data storage disc, wherein a width of the data region is at least 50 micrometers; impinging and reflecting a tracking beam on a guide groove of the holographic data storage disc, wherein the tracking beam comprises a different wavelength than the record beam and read beam; and detecting and analyzing the reflected tracking beam to control a position of the record beam or read beam on the holographic data storage disc.
While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
This application claims priority to non-provisional application Ser. No. 12/346,378 filed on Dec. 30, 2008, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 12346378 | Dec 2008 | US |
Child | 12966144 | US |