In the appended drawings where like elements are referenced by like reference numerals and in which:
It should be noted that the general functioning of a disc valve system is disclosed in U.S. Pat. No. 5,988,133, which is incorporated herein by reference. The present application is based on the following priority documents: U.S. Provisional patent application Ser. No. 10/783,137 filed on Feb. 19, 2004 and titled “Disc Valve Intermediate Ring Seal” and U.S. Provisional patent application Ser. No. 10/783,110 filed on Feb. 19, 2004 and titled “Timing Gear Flexible Coupling” which are incorporated herein by reference. The present application also requests priority on the U.S. Provisional patent application filed on 18 Jan. 2005 and titled “Disc Valve System”, which is incorporated herein by reference.
With reference to the appended drawings, embodiments of the invention will be herein described so as to exemplify the invention and not limit its scope.
Disc valve system 10 is to be mounted on an engine E (as shown in
The disc valve systems of the present invention can be mounted to a variety of piston-driven engines. The engines of the invention, can be for any type of transport vehicle such as an automobile or a motorcycle for example; these can be used for equipment such as gardening equipment and the like; these engines can be two stroke or four-stroke piston engines. Hence, the disc valve systems of the present invention can be used for engines having a variety of sizes and power capabilities. These engines can be fuel engines of any kind such as gasoline or diesel engines or any other type of fossil fuel as understood by the skilled artisan. The engines of the invention can be fuel cell engines powered by methanol, ethanol, natural gas, gasoline, compressed hydrogen to give but only a few non-limiting examples. Of course, the engine s of the invention can be electrically powered as is understood by the skilled artisan.
As shown in
As will be detailed herein, the rotating disc 12 rotates synergistically with the translational movement T of the piston 20 or piston head 21.
As will be exemplified herein, the disc 12 is in operative communication with a disc-rotator so as to cause this disc 12 to rotate in accordance with the present invention.
In the example shown here, the piston connecting rod 22 is mounted to a crankshaft 24.
In an embodiment, the disc rotator of the present invention is a transmission assembly configured to be put in operative communication with the crankshaft 24 and with rotating disc 12 such that the disc 12 rotates in relation to the revolution of the crankshaft 24.
In this embodiment, the second sprocket gear 30 is communication with the disc 12 via a disc-gear 33, which is in operative communication with disc gear elements 34 on the disc 12. In this example, the disc gear elements are bevel teeth and the disc-gear 33 is a pinion gear having bevel teeth 36 meshed with the disc gear teeth 34.
In this way, the first sprocket gear 28, which is fixedly mounted to the crankshaft 24, is caused to rotate in bearings 25 (see
With reference to
Turning back to
As shown in
Turning back to
In the embodiment, shown in
With reference to
In this case, gears 54 and 68 are the first and second gears, and the rotating rod 62 is the movement transmission assembly.
In this way, the movement of crankshaft 24 is transferred to disc 12 via rod 62 being acted upon by pinion gear 54, which acts on double pinion disc-gear 56, which in turn acts on disc 12.
Of course a variety of methods can be contemplated for transferring the movement of the crankshaft 24 to the disc 12 can be contemplated by the ordinarily skilled artisan such as using a plurality of operatively communicating gears to give but one example. Of course it should be noted that the disc 12 is to move synergistically with the piston 12 since the rotating movement of the disc provides intake and exhaust and the translational movement T of the piston 20 provides compression. Timing the movements of the disc 12 and the piston 20 can be provided in a variety of ways known to the skilled artisan within the context of the present invention.
Of course a greater number of intake and exhaust ports 80 and 84 can be provided. These ports 80 and 84 can be positioned in variety of fashions and be provided in a variety of configurations, shapes and sizes to match corresponding ports of a variety of disc valves in accordance with the present invention.
With reference to
With particular reference to
In the embodiment shown in
With reference to
Hence, intake or exhaust will increase with the speed of rotation or via the complementary intake and exhaust ports (such as ports 80 and 84 for example) of a cylinder head 14 meeting with ports 120 and 122 more frequently, and via these ports 120 and 122 becoming larger with the higher rotational speed.
Of course, the series of a plurality of exhaust or intake sequencing ports can include ports of varying sizes in a respective series depending on how the skilled artisan wishes to design the cylinder head and what kind of timing and amount of intake or exhaust the ordinarily skilled artisan wishes to achieve.
Disc 154 includes a turbulator portion 156 at its inner face 40 configured to provide for turbulence thereunder during the rotating movement of said disc 154 as shown by arrow S. The turbulator portion includes a receding portion 158 in the inner face 40 as well as propeller members 160 (in this example there are four such members) in the form of generally circular blade members. In this non-limiting example, sequencing intake ports 162 and sequencing exhaust ports 164 define apertures through these blades 160. The intake and exhaust ports 162 and 164 are symmetrical about a generally central aperture 166. This generally central aperture provides communication with an ignitor such as a fuel injector, a spark plug and the like.
In accordance with the present invention, the disc valve engine, such as E, can operate on a variety of alternative fuels. This diversification is achieved with only slight modification since the induction and exhaust circuits are combined in a single disc and operate in a single rotational motion relative to stationary cylinder head ports (80 and 84, for example). Modification is easily accomplished by changes in the angular positioning and in dimensioning of the relative matching disc and cylinder head port opening.
Combustion in the disc valve engine E is mechanically facilitated by the swirling motion S generated in the combustion chamber 18 by the high speed rotation of the disc valve 154 below the cylinder head 14, which increases the turbulent mixing prior to spark ignition. Swirling turbulence S is intensified by the placement of small propelling blade 160 members that are machined around the disc valve 154 conical opening 158 that protrudes from the disc undersurface 40.
In diesel engine design autoignition and combustion efficiencies are enhanced by injecting into a conical volume 158 formed in the center of the disc valve 154. The rotational velocity of the swirling charge S is the same at every axial station within the conical section 158 since the swirling motion S is induced by the rotation of the disc 154. But air tangential or circular velocity decreases proportionally with decreasing conical diameter, thereby increasing the temperature at the point of fuel injection. Increase in system temperature at the point of fuel injection and induced turbulent mixing will increase atomization and combustion efficiency.
Gasoline Disc Valve Engine: In small high-speed spark ignition disc valve engines E, the major source of unburned hydrocarbons, assuming a complete homogeneous charge, is cylinder wall 17 (see
Diesel Disc Valve Engine: The disc valve engine constant volume Otto cycle is easily converted to the constant pressure Diesel cycle. This is achieved by replacement of the engine ignition spark plug (51) with a fuel injector (not shown).
Unlike the homogenous mixture of fuel and air on the constant volume combustion in gasoline engines the constant pressure combustion of diesel engines is heterogeneous and occurs as droplet surface burning phenomena producing a different mixture of emissions than that obtained in gasoline engines. In the diesel engine autoignition can occur at several locations in the combustion chamber 18, while in other portions of the chamber the fuel may still be in the liquid phase.
The distribution of the fuel within the combustion field has a great effect on the combustion mechanism and most certainly effects the emissions formed. The undesirable emissions to be regulated are unburned hydrocarbons, aldehydes, carbon monoxide, smoke particles and nitrogen oxides. The technical approach to reducing these harmful emissions is by configuring the combustion chamber 18 to achieve efficient mixing during combustion.
Combustion Chamber Design: Turbulence in the combustion chamber and good spray formation are the most important parameters in the design of high performance low emission diesel engines. Turbulence is most often created by radial flow compression in conventional engines called squish.
In the disc valve engine E turbulence is generated as a radial swirl S. This motion is carried upward in a spiral by conically configuring the disc toward the point of fuel injection
The compressive flow in the Disc valve combustion chamber is seen as comprising a tangential as well as a radial component. The radial flow is caused principally by piston compression T and the tangential swirl S is caused by the spinning disc valve. The two components of radial and tangential flow result in a vectored upward circular path which when compressed in the conical volume generates an upward climbing spiral which terminates at the injector opening 166.
When the engine piston has reached TDC the upward squishing action ceases and fluid momentum reacts against the turbulator blades producing an augmenting torquing force in the same direction as the disc valve rotation which alleviates the frictional load.
As will be ascertained by the ordinarily skilled artisan, the shapes, number, size and general configuration of the sequencing ports can be varied for a variety of intake or exhaust needs. Furthermore, the disc valve of the present invention can be configured and sized depending on the disposition of ports thereon; depending on the sequencing time for mating the disc ports with the cylinder head ports, thereby modulating outtake and exhaust time; depending on the geometric shape of the disc and on the material it is made from. Furthermore, the ordinarily skilled artisan will understand that the various features of the various disc valves of the invention can be combined in a variety of ways depending on what advantages or objects the skilled artisan wishes to achieve. Hence, all the features of the disc valves described and illustrated herein as well as the alternative embodiments thereof can be mosaiced in different ways in order to produce alternative embodiments of the disc valves of the present invention.
Turning to
The intermediate seal member comprises a dynamic seal 168 for contact with said rotating disc, such as 12 for example, and a stationary seal 170 for sealing contact with the engine cylinder 16.
The intermediate seal members 50 and 50A are in the form comprise an upper face 172, a bottom face 174 and an intermediate surface 176. In this example, the intermediate seal members are in the form of rings.
Ring seals effectively seal the combustion chamber 18 defined by the engine cylinder 16 by forming a dynamic sliding seal with the rotating disc 12 and a static or stationary seal with the engine cylinder 16 within the limiting axial distance of the combustion volume when the engine piston 21 is at top dead centre at the end of its compression stroke.
In previous designs and proprietary illustrations, the stationary sealing contact has been in the cylinder head. The stationary seal of the intermediate rings 50 and 50A of the present invention is at the engine cylinder inside surfaces 178.
Ring members 50 and 50A include the stationary seal 170 at the intermediate surface 176. In this embodiment, the stationary seal is an o-ring extending beyond surface 176 and slidably held within a groove machined at the outer perimeter of surface 176.
The bottom faces 174 of ring seals 50 and 50A are configured to be fitted within the cylinder 16 and mate with the inner top surface 178 thereof. Furthermore, the bottom faces 174 (or edges) include locking members 158 in the form of a recess. Ring seal 50 includes an inclined recess 180 whereas ring seal 50A includes a straight recess 182. Recesses 180 and 182 are formed to accept complementary locking members in the form of pins 184 and 186 at the inner top perimeter surface 178 of cylinder 16 for holding the intermediate ring seals 50 and 50A in place and preventing their rotation.
Since, the top faces 172 of both ring seals 50 and 50A are in a dynamic seal contact with any of the disc valves of the present invention, they provide for the disc valves to rotate with respect thereto.
The stationary seal 170 is in sealing relationship with rim 179 of the cylinder 16. This relationship is clearly shown in
The bottom face 174 of each ring seal 50 and 50A is in a static stationary seal within the cylinder 16. The top internal periphery 178 of the piston cylinder 16 is recessed and forms a seating arrangement that is complementary to a given bottom face 174 in order for the rings 50 or 50A to be seated thereon in sufficient fit.
An aspect of this invention is the method of sealing the combustion chamber of a rotary disc valve engine between the cylinder head and the engine cylinder. At the cylinder 16 the intermediate ring seal 50 or 50A provides a static seal with the engine cylinder 16 by a seal 170 operating within a seal groove 171 (see
In an embodiment, the stationary seal mates with the external rim 177 of the cylinder 16.
Dynamic and static sealing between the rotating disc valve and stationary engine cylinder 16 occurs within the limited axial length of the combustion volume.
In an embodiment, to alleviate this restrictive spatial requirement a skirt 44 extension can be added to the disc valve 12, which extends the axial length of the sealing contact between the dynamic seal and stationary seal without changing the combustion volume which would change the engine compression ratio and alter its performance. Hence, in one embodiment, this sealing is achieved by the skirt 44 which extends from the underside 40 of disc 12 and extends over the engine cylinder 16, as clearly shown in
An aspect of the invention is the extension of the axial distance between the dynamic seal and stationary sealing surfaces such that they overlap the interface between the cylinder head 14 and engine cylinder 16, facilitating engine component manufacture and installation of the cylinder head 14 on the engine cylinder 16 with improved sealing reliability. The seals 50 and 50A provide for sealing the combustion volume of a disc valve engine E. The seals 50 or 50A provide dynamic sealing against the sliding surfaces of the disc valve and also provide static seal with the engine cylinder. These seals are effective in the limiting axial length of the combustion volume measured as the distance between the engine piston crown or head 21 and the cylinder head 14 surface configured within the confining surface of the disc valve. To facilitate the sealing function the intermediate ring seal is designed to overlap the interface between the engine cylinder head 14 and engine cylinder 16. A purpose of the intermediate seal 50 or 50A is to confine the working fluids, being acted upon by the reciprocating motion of the engine piston 20, across the stationary interface of the engine cylinder 16 and rotative surface of the disc valves of the invention. The present seals 50 and 50A are dynamic and hence, there is minute vertical tremble during the translational movement T of the piston 20. The intermediate seal members of the invention provide for combustion to take place.
With particular reference to
This hub 27 with the resilient member 29 serve a flexible coupling between the gear 30 and the shaft 35. This flexible coupling is used to provide a shaft to work flexibly under heavy starting loads or to offset a shaft misalignment. The resilient member 29 provides a means for lowering big friction loads at the sliding interface between the stationary stator surface and the surface of the rotating disc 12 operating within the fluctuating pressure field of the engine combustion chamber 18. Rotation of the disc 12 within the engine combustion chamber 18 periodically opens and closes a plurality of exhaust and intake ports (80 and 84) in the stationary stator of the engine cylinder head 14 in a sequential manner corresponding to the alternating order of the engine through one or more dynamic pressure cycles. The flexible coupling between the timing gear 30 and the timing shaft 35 momentarily slows the rotational velocity of the disc 12 during the highest peak pressure of the engine combustion stroke at the point of the ignition spike thereby reducing the sliding contact frictional energy between the disc 12 and the stator surfaces, which is exponentially at its highest point during this brief period. At the few milliseconds of peak combustion pressure, ignition spike the resilient member 29 between the hub 27 of the timing gear 30 and the timing shaft 35 is slightly compressed causing the timing shaft 35 to rotate slower than the timing gear 30 for a brief instant over a small millisecond increment of a rotation and thereby transmitting a slowing motion to the disc 12 rotation. This slowing motion is hardly measurable but at the molecular interface of the lubricating film between the surfaces and slidable contact, the shearing impact across the interface is lessened exponentially as a function of the contact and velocity. Absorption of peak torque loads on the timing shaft by the resilient member 29 during the peak combustion pressures when the sliding contact friction between the disc 12 and the stator are highest, will lessen wear between the two surfaces and lower the potential for galling.
The resilient member 29 is an elastic material capable of fully responding over the engine operating frequency. Formulation of rubber resilient members with extenders or catalyst accelerators will stiffen the response in a manner that permits full recovery after each compression and will not couple with the engine's natural frequency. The resilient member 29 may be manufactured from any material that has the physical properties of sustained response of rapid compression loads with rapid recovery and good storage durability with long-term fatigue capability under heavy loads.
In another embodiment, the first sprocket gear 28 includes a resilient member 29, in still another embodiment, both sprocket gears include resilient members 29
Engines start easier at high compression. For increased operating reliability the disc valve engine timing is designed for high compression starting at retarded intake and exhaust port openings. At high speed operation dynamic flow losses and system resistances in the manifolding circuits are alleviated by early intake and exhaust port opening increasing the engine efficiency by advancing the effective period of the power cycle under load. Valve timing improves the engine reliability and efficiency, including easier starting, higher operating speed and increased load capacity.
It is to be understood that the invention is not limited in its application to the details of construction and parts illustrated in the accompanying drawings and described hereinabove. The invention is capable of other embodiments and of being practiced in various ways. It is also to be understood that the phraseology or terminology used herein is for the purpose of description and not limitation. Hence, although the present invention has been described hereinabove by way of embodiments thereof, it can be modified, without departing from the spirit, scope and nature of the subject invention as defined in the appended claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA05/00209 | 2/18/2005 | WO | 00 | 6/19/2007 |
Number | Date | Country | |
---|---|---|---|
60644010 | Jan 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10783137 | Feb 2004 | US |
Child | 10590065 | US | |
Parent | 10783110 | Feb 2004 | US |
Child | 10783137 | US |