The present invention relates to a discharge head favorably used in an apparatus that discharges a liquid, a substance that includes a liquid and molecules, or the like.
Japanese Laid-Open Patent Publication No. 2007-296817 (Document 1) discloses a method of applying a voltage to a pressure generator constructed by layering a piezoelectric element that uses PZT (lead zirconate titanate) or the like, a metal plate and ceramics to generate pressure and thereby cause a liquid to be discharged. In addition, Document 1 discloses a method that uses the above method, has a slender cylindrical piezoelectric body with a diameter of around 0.1 to 1 mm provided midway from a tank to a discharge outlet, and causes droplets to be expelled by having such part function as a pressurizing pump. This is called a Gould-type ink jet head and has electrodes formed on an inner surface and an outer surface of the cylindrical piezoelectric body with lead wires that apply the driving voltage being connected. The inner surface electrode of the cylindrical piezoelectric body is attached to a hollow pipe that passes through such cylindrical piezoelectric element by adhesive. To avoid an electrical connection with the cylindrical piezoelectric body, the hollow pipe is constructed of an insulating material such as glass, an ink tube for supplying ink from an ink tank or the like is connected to one end of the hollow pipe, and a discharge outlet for discharging ink droplets is formed at the other end.
Research is being carried out into discharging ink and other substances onto printing paper and alternative materials and mediums using ink jet technologies developed as printer apparatuses. With a method that uses an actuator such as a piezo element, since discharging is possible without heating the liquid, a wide range of applications is anticipated. The substance to be discharged is not limited to liquid and research is being conducted into a wide variety of substances including a mixture of liquid and particles (a liquid substance) that may include an aqueous solution, a solvent, a reagent, a living (living body) material such as cells or genes, and the like. Accordingly, there is demand for a discharge head that is compatible with liquids from a low viscosity to a high viscosity, a discharge head that is compatible with high surface tension and capable of discharging even pure water, and a discharge head that is resistant to acids and solvents.
Tubular members that include glass tubes, resin tubes, ceramic tubes, and metal tubes, and in particular glass tubes are commonly used as pipettes and the other instruments in experiments and the other jobs that use reagents and are suited to handling a wide variety of solutions. Accordingly, a Gould-type ink jet head in which a glass tube and a cylindrical piezoelectric body are combined is one example of a head that can satisfy the above demands. A method of forming a piezoelectric layer directly on a glass tube by sputtering, screen printing, gas deposition, or the like to form a cylindrical piezoelectric element along the glass tube, a method where a piezoelectric ceramic is sintered and the center thereof is removed by cutting, and a method of sintering in a cylindrical shape are applicable. However, regardless of which method is used, it is not very easy or economical to efficiently apply pressure to a glass tube using a Gould-type ink jet head. In particular, since it is necessary to make the inner diameter of the piezoelectric element only slightly larger than the diameter of the tube, it is necessary to match the inner diameter of the piezoelectric element in a range of several μm to several hundred μm to fluctuations in the outer diameter of the tube, which has caused an increase in cost and a drop in yield.
One aspect of the present invention is a discharge head including: a tubular member that includes a flat portion with an oblate shape where a cross-section of a tube path extends in a first direction, the tubular member being formed so that the flat portion includes a first wall that is flat and configured so that an actuator is attached to an outside thereof and the flat portion becomes a cavity with an internal volume thereof varying due to displacement of the first wall; and a nozzle opening that is provided at one end of the tubular member and discharges a liquid substance due to variation in the internal volume of the cavity.
A discharge head equipped with this tubular member is capable of varying the internal volume of the cavity by attaching a plate-like actuator to the flat first wall and discharging the liquid substance from the nozzle opening. Accordingly, it is possible to provide a discharge head where a part including a cavity is configured by a tubular member such as a glass tube and is capable of being driven by a plate-like actuator instead of a cylindrical actuator. This means that it is possible to provide a discharge head with a tubular member simply and at low cost by a method such as sticking on a plate-like piezoelectric element.
The cavity where the pressure varies to discharge the liquid substance from the nozzle opening is a location where it is easy for bubbles to be produced. Since this discharge head includes a flat portion that is oblate in shape where the cross-section of the tube path (flow path, conduit) of the tubular member extends in a first direction, it is possible to form the cross-section of the flow path of the cavity in an oblate (oval) shape or a similar form with few or no angles (i.e., is not angulated). Accordingly, it is possible to provide a discharge head that is capable of preventing bubbles, a substance included in the liquid substance, or the like from adhering and hindering the flow of the liquid substance or causing a blockage of the liquid substance from the outset and is therefore suited to discharging a wide variety of liquid substances.
The nozzle opening of the discharge head should preferably be formed or molded by narrowing one end of the tubular member. By doing so, it is possible to provide a discharge head in which a single tubular member, for example, a single glass tube, can be formed from the cavity to the nozzle opening, which has chemical resistance such as acid resistance, where hindered flow and blockages due to bubbles and the like rarely occur, and which is suited to discharging a wide variety of liquid substances.
In addition, in this discharge head, the tubular member should preferably include a narrowed part that is positioned on an opposite side of the nozzle opening to the cavity. By the narrowed part, it becomes possible to transmit changes in pressure due to variation in the internal volume of the cavity more efficiently to the nozzle opening and to form the cavity, the narrowed portion and the nozzle opening from a single tubular member. This means that it is possible to provide a discharge head where hindered flow and blockages due to bubbles and the like rarely occur, and which is suited to discharging a wide variety of liquid substances.
A typical tubular member for this discharge head is a glass tube, a resin tube, a ceramic tube, or a metal tube, and it is possible to provide a discharge head with the merits of such tubular members at low cost by making a part of a tubular member match a plate-like first actuator instead of making the form of an actuator match a tubular member.
The tubular member can be formed or molded so as to include a flat second wall that faces the first wall. A second actuator that is flat and is driven independently of the first actuator attached to the outside of the first wall may be attached to the outside of the second wall. Using the first and the second actuator, it becomes possible to control the pressure inside the nozzle (inside the discharge head) via the cavity according to more variable conditions.
To discharge a liquid substance with high viscosity even more easily, it is effective to heat the liquid substance inside the discharge head. To do so, it is preferable to attach a sheet-like heater to the outside of the second wall. Also, a heater wound in a coil around at least part of the outer surface of the tubular member may be provided.
The flat second wall can also be used as an installation location of a connecting electrode. In addition, by providing a voltage-applying electrode that is electrically connected to the connecting electrode and extends to a vicinity of the nozzle opening, it is possible to provide a discharge head that is capable of discharging the liquid substance by an electrostatic attraction method and/or electrostatically-assisted method in addition to a discharge method according to an actuator such as a piezo element.
Also, by bending a first tube part of the discharge head that extends from the cavity of the tubular member to the nozzle opening, it is possible to adjust the orientation of the nozzle opening and conversely to change the attached position of the actuator with respect to the orientation of the nozzle opening. Accordingly, this is suited to combining a plurality of discharge heads to construct a head block.
Another aspect of the present invention is a discharge apparatus including: the discharge head described above; a first actuator that is plate-like and is attached to the outside of the first wall; and a driving apparatus that drives the first actuator. With this discharge apparatus, the tubular member may include a second wall that is flat and faces the first wall, the discharge apparatus may further include a second actuator that is plate-like and attached to an outside of the second wall, and the driving apparatus may drive the first actuator and the second actuator independently.
The discharge apparatus may further include a voltage applying electrode that extends to the vicinity of the nozzle opening; and an electrostatic driving apparatus that applies a voltage to the voltage applying electrode. With this discharge apparatus, it is preferable for the tubular member to include a second wall that is flat and faces the first wall, for the discharge apparatus to further include a connecting electrode that is attached to the outside of the second wall, for the voltage applying electrode to be electrically connected to the connecting electrode, and the electrostatic driving apparatus to apply a voltage to the connecting electrode.
This discharge apparatus should preferably also include an attaching portion to which a vessel storing the liquid substance can be attached; and a supply path that supplies the liquid substance from the vessel attached to the attaching portion to the tubular member. According to this discharge apparatus, since the discharge head is constructed of the tubular member where bubbles or hindering of the liquid substance rarely occur, it is possible to provide a favorable discharge apparatus for discharging a variety of liquid substances, for example, an aqueous or living matter-type liquid substance.
Yet another aspect of the present invention is a tubular member including a flat portion with an oblate shape where a cross-section of a tube path extends in a first direction and a first wall that is flat and has an actuator attached to an outside thereof, the flat portion being formed or molded so as to become a cavity with an internal volume thereof varying due to displacement of the first wall, wherein a nozzle opening that discharges a liquid substance due to variation in the internal volume of the cavity is provided at one end of the tubular member. The nozzle opening should preferably be molded by narrowing the one end of the tubular member. In addition, a narrowed part may be provided on an opposite side of the nozzle opening to the cavity.
The discharge head 10 includes the glass tube (tubular member) 20 that extends in substantially a straight line. A front end part 21 of the glass tube 20 is a nozzle opening 11 and a part (flat part, flat portion, flat compartment) 23 that is configured on a backside of the front end part 21 is a flat (flat-shaped) cavity (pressure chamber) 13. A tail end (rear end) 29 of the glass tube 20 is connected via a supply tube 4 to the vessel 5. The tubular member 20 equipped with the flat portion 23 is molded from a single glass tube using an appropriate method, for example using a mold, and a seamless flow path (tube path, conduit) from the cavity 13 to the nozzle opening 11 is formed inside the tubular member 20. Accordingly, the part of the cavity 13 of the glass tube 20 includes a first wall 23a whose outside is flat. The supply tube 4 may be a glass tube, or may be a flexible silicon tube, a resin tube such as a rubber tube, a metal tube, or the like.
The discharge head 10 includes the plate-like piezoelectric element (piezo element, actuator) 6 that is attached to or mounted on the outside surface (outer surface) 23b of the flat first wall 23a of the cavity 13 of the glass tube 20, and when the internal pressure variation or change of the cavity 13 using the actuator (first actuator) 6 causes discharging of the liquid substance 9 from the nozzle opening 11 that is connected to the cavity 13. The piezoelectric element 6 is attached to the glass tube 20 together with a thin-film electrode 6e made of ITO, metal, or the like, expands and contracts on receiving driving pulses (voltage driving pulses) via the electrode 6e and causes the internal volume of the cavity 13 to vary. Note that a typical example of the piezoelectric element 6 is a piezo element, and the piezo element 6 includes well-known constructions that include electrodes and the like.
In this discharge apparatus 1, instructions (signals) from a host device, such as a personal computer, are received by the driver 2 and the driver 2 drives the first actuator 6 using driving pulses. Using the actuator 6, the first wall 23a that includes the flat outside surface 23b of the cavity 13 provided in the glass tube 20 becomes displaced, and since the internal volume of the cavity 13 varies, the internal pressure of the cavity 13 changes. Due to such changes in internal pressure, the liquid substance 9 supplied from the vessel 5 is discharged from the nozzle opening 11 provided at the front end 21 of the glass tube 20.
The discharge apparatus 1 according to the present embodiment includes the vessel 5 attached to an attaching portion 3 of the discharge head 10, and is suited to discharging and/or dispensing a variety of liquid substances 9 using the ink jet-type discharge head 10. As one example, the liquid substance 9 is an aqueous solution that includes a reagent and/or a living specimen such as cells. Since the main part, including the cavity 13, of the discharge head 10 is formed by a single glass tube 20, it is possible to discharge even a liquid in which bubbles are easily produced due to various conditions or a liquid substance 9 includes easily blockage able materials such as cells without such problems occurring. That is, the discharge apparatus 1 is compatible with liquids from a low viscosity to a high viscosity and is capable of discharging even a liquid with high surface tension, such as pure water. In addition, since a glass tube 20 is resistant to being dissolved, the discharge apparatus 1 is capable of discharging acids and solvents easily.
From the nozzle opening 11 of the front end to the rear end 29, the glass tube 20 includes the front end part 21 that gradually narrows toward the nozzle opening 11 at the front end, a first cylindrical portion 22 that is communicated with the front end part 21 and has substantially cylindrical cross-section, a first connecting portion 27 that is communicated with the first cylindrical portion 22 and deforms the first cylindrical portion 22 to the flat part 23 that is flatly molded with a cross section that is wide in the X direction and narrow in the Y direction, the flat portion 23 that is communicated with the first connecting portion 27 and has flattened into a substantially oblate shape (oval shape) or a similar shape cross-section, a second connecting portion 28 that is communicated with the flat portion 23 and connects the flat portion 23 to a second cylindrical portion 24 whose cross section is cylindrical, a narrowed portion 25 that is communicated with the second cylindrical portion 24 and the cylindrically narrowed so as to reduce the cross-sectional area, and a third cylindrical portion 26 that is communicated with the narrowed portion 25 and has substantially cylindrical cross-section for connecting to the supply tube 4.
The flat part 23 may be formed so as to be flat in other directions, for example wide in the Y direction and narrow in the X direction. Note that the expression “oblate shape (oval shape)” in the present specification is a concept that includes a variety of shapes that exclude angulated shapes (i.e., shapes with angles) such as a rectangle or a square. The oblate shape includes an oval like shape that is an elongated round shape that is not a perfect circle (circle), and a shape where semicircles with a diameter equal to the distance between facing sides (the gap between facing sides) of a rectangle or a square are added to each of the two facing sides or the like.
To describe the respective parts in more detail, first, the front end part 21 of the glass tube 20 is molded in a shape where the front end of the glass tube 20 narrows to a suitable size as the nozzle opening 11 as shown in enlargement in
The first cylindrical portion 22 that is arranged after or behind the front end part 21 is a part that configures the connecting path 12 for fluidly connecting the cavity 13 and the nozzle opening 11 and the cross-section thereof is shown in enlargement in
The flat part 23 that is arranged behind the first cylindrical portion 22 internally forms a space that is shaped as a flattened oblate cylinder or elongated cylinder, is a part that configures the cavity 13 that is a pressure chamber, and a cross-section thereof is shown in enlargement in
Since the pressure for discharging the liquid substance 9 from the nozzle opening 11 fluctuates, the cavity 13 is a location where it is easy for bubbles to be produced. The flat part 23 is oblate-shaped (oval shaped) with the cross-section of the flow path (tube path) of the glass tube 20 extending in the first direction (X direction), and is formed in such oblate (oval) shape so that the cross-section has few angles or no angles (i.e., is not angulated or substantially no angles). This means that the cross-section of the flow path (tube path, conduit) of the cavity 13 can be formed in a smooth shape with no or few (substantially no) stepped parts, protrusions, depressions, or the like. Accordingly, it is possible from the outset to prevent bubbles or substances included in the liquid substance 9 from adhering and hindering the flow of the liquid substance 9 and the liquid substance 9 becoming blocked, and to provide the discharge head 10 and the discharge apparatus 1 that are suited to discharging a wide variety of liquid substances 9.
A typical internal size of the cavity 13 has a maximum height (maximum internal diameter) h in the Y direction of 0.05 to 1 mm, a maximum width Wi in the X direction of around 0.5 to 5 mm, and a length in the longitudinal direction (Z direction) of 2 to 20 mm. One method of forming the flat portion 23 is to heat the glass tube 20 and press the glass tube 20 from the up-down direction (a direction that is perpendicular to the longitudinal direction, Y direction). By press molding in a state where the glass tube 20 is pressed out not only in a first dimensional direction (front-back direction, longitudinal direction, Z direction) but a second dimensional direction (up-down direction, a direction perpendicular to the longitudinal direction, Y direction), the flat cavity 13 is formed inside. At the same time, the flat surface 23b is formed outside the wall 23a of the flat portion 23 of the glass tube 20. This method of forming is one example, and it is also possible to mold the glass tube 20 of a predetermined shape by blowing out a tubular member such as glass or resin onto a metal mold (mold) as in injection molding, with it also being possible to obtain a tubular member of a predetermined shape by rolling metal. Also, a maximum height (maximum inner diameter) h in the Y direction inside the cavity 13 of 0.05 to 0.5 mm is even more preferable, and an internal length in the longitudinal direction (Z direction) of 2 to 15 mm is even more preferable.
The wall 23a of the flat portion 23, and in particular the wall (first wall) 23a for attaching the actuator 6 is plate-like and the wall thickness t thereof is preferably around 10 to 500 μm and more preferably around 10 to 300 μm. Also, the wall thickness t is more preferably around 50 to 500 μm and even more preferably around 50 to 300 μm. It is also preferable for the flat portion 23 to be molded so that the maximum width Wo of the outer portion is around 0.55 to 7 mm and for a substantially flat surface whose width Ws is around 0.5 to 5 mm or more preferably around 1.0 to 3.5 mm to be produced on the outer surface 23b of the wall 23a. It is even more preferable for the width Ws of the outer surface 23b of the wall 23a to be around 1.0 to 2.5 mm. By attaching the plate-like actuator (piezo element) 6 to the flat outer surface 23b of the wall 23a of the flat portion 23, it is possible to vibrate or deform (displace) the wall 23a using the actuator 6. By making the glass tube 20 oblate, it is possible to reduce the thickness of the wall 23a to which the first actuator 6 is attached to around the thickness t given above, and thereby cause the wall 23a to function as a diaphragm that vibrates or is displaced by the actuator 6. By driving the piezoelectric actuator 6 to vibrate the thin wall 23a, it is possible to cause the liquid inside the connecting path 12 to be discharged from the nozzle opening 11 as droplets.
The second cylindrical portion 24 that is arranged behind the flat portion 23 is a part that configures a second connecting path 14 for joining (fluidly connecting) the cavity 13 and a narrow flow path 15 that is arranged behind the cavity 13 and functions as an orifice whose opening area is narrowed. The connecting path 14 also functions as a buffer that supplies the liquid substance 9 to the cavity 13 and the length of the second cylindrical portion 24 that configures the connecting path 14 is around 1 to 50 mm for example, and more preferably 1 to 20 mm. That is, the length of the second cylindrical portion 24 is around 2 to 100 times the inner diameter, and more preferably around 2 to 50 times. The second cylindrical portion 24 may be a straight tube or may be bent by an appropriate angle.
The narrowed portion 25 that is arranged backside of the second cylindrical portion 24 is a part that configures the flow path 15 whose opening area is narrow, and the cross-section thereof is shown in
The third cylindrical portion 26 that follows the narrowed portion 25 is a part that configures a third connecting path 16 for connecting the supply tube 4. To connect the supply tube 4, it is preferable to have a length of at least 0.5 mm.
If required, this discharge 10 can, when discharging a minute amount or a comparatively low amount of the liquid substance 9, in a state where the liquid substance 9 that is to be discharged from the nozzle opening 11 has been introduced, suck up the liquid substance 9 a pump (not shown) connected to an end or the like of the supply tube 4 and after this by driving the piezo element 6, discharge the liquid substance 9 onto a target (not shown) such as a substrate. In this case, the length of the cylindrical portion 26 for sucking up and storing the liquid substance 9 is preferably around 5 to 100 mm. It is possible to suck up and discharge a desired amount of the liquid substance 9 without sucking the liquid substance 9 as far as inside the supply tube 4.
The first cylindrical portion 22, the flat portion 23, and the second cylindrical portion 24 are formed by working (molding) a single glass tube 20. The flat portion 23 is formed in a smooth shape via the first connecting portion 27 to the first cylindrical portion 22, also the flat portion 23 is molded into a smooth shape via the second connecting portion 28 to the second cylindrical portion 24. This means that as shown in
Accordingly, it is possible to prevent bubbles or substances, such as cells, included in the liquid substance 9 from adhering to the cavity 13 inside the glass tube 20 and to the connecting paths 12 and 14 that come before and after and hindering the flow of the liquid substance 9 or causing the liquid substance 9 to become blocked. This means that the discharge head 10 that uses the glass tube 20 is capable of discharging liquids with a low viscosity to a high viscosity and also discharging liquids with a high surface tension such as pure water.
In addition, in the discharge head 10, by narrowing an end and midpoint of a single glass tube 20, the nozzle opening 11 and the rear flow path 15 with an orifice are formed respectively. Accordingly, the flow path from the orifice 15 to the nozzle opening 11 can be configured in a single glass tube 20 and it is possible to smoothly connect the entire internal surface of tube paths even if the paths have different cross-sections. This means that the appearance of minute steps, protrusions, and depressions that are easily produced when different components were connected for making the flow path from the orifice 15 at the rear to the nozzle opening 11 at the front end, are prevented. Accordingly, across the entire flow path (tube path), hindering of the flow of the liquid substance 9 and blockage of the liquid substance 9 due to bubbles or adhesion of substances included in the liquid substance 9 can be prevented from the outset. For this reason, it is possible to provide the discharge head 10 that can easily discharge a wide variety of liquid substances 9 and the discharge apparatus 1 equipped with such discharge head 10.
Also, in the discharge head 10 it is easy to adjust the volume of the flat portion 23 that configures the cavity 13 by changing the length of the flat portion 23 out of the glass tube 20. Accordingly, it is possible to form the cavity 13 that has a sufficiently large volume for the nozzle opening 11, and additionally by making the cavity 13 a flattened space, it is possible to attach (stick or mount) a sufficiently large actuator 6 for the internal maximum width Wi and length of the cavity 13 onto the outer surface 23b of the wall 23a along the cavity 13. This means that by causing the thin wall 23a to expand and contract or become displaced up and down by the actuator 6, it is possible to greatly vary the volume of the cavity 13 and possible to greatly change the internal pressure of the cavity 13. Accordingly, it is possible to provide the discharge head 10 and the discharge apparatus 1 that can easily discharge a variety of liquid substances 9 from the nozzle opening 11.
In addition, in the discharge head 10, since the liquid substance 9 is discharged using the seamless glass tube 20, it is possible to safely and stably discharge corrosive liquid substances 9 and high solubility liquid substances 9 in a range such liquid substances 9 can be handled by glass vessels. This means that the ranges of liquid substances 9 that can be discharged by the discharge head 10 and/or the discharge apparatus 1 are further extended, and the discharge apparatus 1 that can discharge a variety of liquid substances 9 that are and will be required for a variety of experiments, tests, or other industrial applications can be provided.
In this discharge head 10, since the flat portion 23 is formed at one part of the glass tube 20 and the cavity 13 is configured inside, it is possible to vary the internal pressure of the cavity 13 using the plate-like piezoelectric actuator 6. Accordingly, it is possible to drive the seamless discharge head 10 that uses the glass tube 20 with a general type and easily obtained piezoelectric actuator 6 such as a plate-like piezo element instead of using a cylindrical actuator that is popular for the cylindrical glass tube 20. That is, although a Gould-type discharge head requires a piezoelectric actuator with a special construction or shape in keeping with a glass tube, for example, in the discharge head 10, by molding part of the glass tube 20 in a shape in keeping with a common plate-like actuator, it becomes possible to use a low-cost piezoelectric actuator 6. This means it is possible to provide the discharge apparatus 1 that is capable of stably discharging a wide variety of liquid substances 9 at low cost.
Note that the discharge head and the discharge apparatus included in the present invention are not limited to the above description.
The cavity 13 for obtaining pressure variations for discharging the liquid substance 9 from the nozzle opening 11 is the location where the pressure applied to the liquid substance 9 varies and bubbles might be easily produced, but, in this discharge header, by configuring the before and after connecting paths 12 and 14, include the cavity 13, are formed from the glass tube 20, it is possible to greatly reduce problems caused by bubbles. Accordingly, in place of constructing the entire discharge head from the glass tube 20, the nozzle opening and the like may be constructed of separate members, and in place of forming the nozzle opening by narrowing the front end of the glass tube 20, a member that reduces the opening area may be attached to the front end of the glass tube 20.
In addition, a configuration where the middle of the glass tube 20 is molded in a flattened shape to apply pressure to the liquid substance 9 is not limited to a discharge head and use as a pump midway on a path that transports the liquid substance 9 is also possible.
In addition, although the glass tube 20 is used in the above description, by forming into the same form using a resin tube, a ceramic tube, and a metal tube in place of the glass tube 20, it is possible to provide a discharge head 10 that can be driven by a plate-like piezoelectric actuator 6.
In addition, although the discharge head 10 that discharges the liquid substance 9 from a single nozzle opening 11 using a single glass tube 20 is shown in the above description, there may be a plurality of nozzle openings 11. In addition, the discharge head and the discharge apparatus are not limited to one glass tube 20 and may include a plurality of glass tubes.
For example, if the two piezo elements 6 and 7 are driven at the same time (synchronously), it is possible to discharge large size droplets. According to the same method, it is possible to discharge a highly viscose liquid. A liquid with a low viscosity may be discharged by the “fill-before-fire” action using one piezo element, in “fill-before-fire” action, after liquid has been drawn in from the meniscus by the variation in pressure caused by the piezo element, then the piezo element is caused to become displaced so as to press out the meniscus. After this, the pressure wave produced inside is reflected inside the nozzle and reaches again at the meniscus after discharge, and if such pressure wave has not sufficiently attenuated, there is the possibility of repeated discharge. In such a case, it is possible to carry out fill-before-fire using one of the piezo elements 6 or 7 and to cause the other piezo element 7 or 6 to become displaced so as to draw in the meniscus in keeping with the timing of such repeated discharge and thereby prevent the repeating of discharge. In addition, while discharging liquid with a pressure wave produced by discharge of one of the piezo elements 6 or 7, if the other of the piezo elements 7 or 6 is caused to become displaced so as to pull back the droplets inside the nozzle, it is possible to form and discharge smaller droplets.
For example, by supplying the driving pulses 2p1 and 2p2 that have different timing and changing the time (duration) at which the piezo elements 6 and 7 deform (become displaced) by the driving pulses 2p1 and 2p2, it is possible to generate a travelling wave that propagates from the cavity 13 toward the nozzle opening 11 with the liquid substance 9 held inside the discharge head 10 as the agent (medium). Due to such travelling wave, it is easy to cause movement toward the nozzle opening 11 even for a liquid substance 9 that includes a living specimen such as cells that is susceptible to becoming blocked inside the glass tube 20. This means that in the discharge head 10, it is possible to more thoroughly prevent the flow of the liquid substance 9 being hindered or the liquid substance 9 becoming blocked due to adhesion of cells or the like. Note that the first piezo element 6 and the second piezo element 7 may be attached by shifting the position of one of the first wall 23a and the second wall 23c in the longitudinal direction (Z direction).
Although a mechanism for moving an object, such as a pellet, a test tube, a recording sheet used for testing for example, onto which the liquid substance 9 is discharged and/or a mechanism for moving the discharge head 10 are not shown in the above description, a discharge apparatus that includes mechanisms for moving known to those skilled in the art is included in the range of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2009-034290 | Feb 2009 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2010/000956 | 2/16/2010 | WO | 00 | 8/4/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/095421 | 8/26/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4418354 | Perduijn | Nov 1983 | A |
6367925 | Chen et al. | Apr 2002 | B1 |
8348538 | Van Loenen et al. | Jan 2013 | B2 |
Number | Date | Country |
---|---|---|
4201923 | Aug 1992 | DE |
57-193374 | Nov 1982 | JP |
60-180849 | Sep 1985 | JP |
61-025849 | Feb 1986 | JP |
62-199451 | Sep 1987 | JP |
63-053049 | Mar 1988 | JP |
1-285355 | Nov 1989 | JP |
5-064885 | Mar 1993 | JP |
2001-277520 | Oct 2001 | JP |
2007-296817 | Nov 2007 | JP |
Entry |
---|
Extended European Search Report issued May 27, 2013, by the European Patent Office in corresponding European Patent Application No. 10 74 3551.3. (6 pages). |
International Search Report (PCT/ISA/210) for PCT/JP2010/000956 dated Apr. 6, 2010. |
Written Opinion (PCT/ISA/237) for PCT/JP2010/000956 dated Apr. 6, 2010. |
Number | Date | Country | |
---|---|---|---|
20110298864 A1 | Dec 2011 | US |