The invention relates to discharge lamp ballasts, lighting systems and projectors that apply starting voltage across discharge lamps at a starting mode and supply the lamps with DC power for steady operating (lighting) at a steady operating mode after the starting mode.
A discharge lamp ballast for a DC discharge lamp comprises a voltage step down converter in order to supply the lamp with DC power for its steady operating at a steady operating mode. Also, in case that the lamp is a high pressure discharge lamp (HID lamp) such as a metal halide lamp or the like, the ballast is provided with an igniter that generates high voltage pulse from several kV to 10s kV with a pulse transformer (see, e.g., Japanese Patent Publication number H10-144488).
However, when the above transformer provides the lamp with high voltage from several kV to 10s kV, electromagnetic induction noise (flux) is radiated from the transformer and therefore there is a problem that the noise gives the ballast and peripheral circuits wrong operation.
It is therefore an object of the present invention to reduce noise from a starting means that applies starting voltage across a discharge lamp.
A discharge lamp ballast of the present invention comprises: a voltage step down converter connected to a DC power source with a positive terminal and a negative terminal; a converter control means that controls the converter; a first capacitor that applies DC voltage across a discharge lamp having a first end and a second end through DC power from the converter; and a starting means that applies starting voltage across the lamp in case of a starting mode. The converter is constructed with a diode, a first switching element and a first inductor. The diode has a cathode and an anode, and the anode is connected to the negative terminal of the DC power source and a negative voltage side of the first capacitor. The first switching element is connected between the cathode of the diode and the positive terminal of the DC power source. The first inductor is connected between the cathode of the diode and a positive voltage side of the first capacitor. In case of a steady operating mode after the starting mode, the converter control means turns the first switching element on and off at a high frequency so as to supply DC power for steady operating to the lamp via the first capacitor. For an aspect of the present invention, the starting means comprises a second inductor, a second capacitor, a second switching element, a third switching element and a starting control means. The second inductor is connected between the first end of the lamp and the positive voltage side of the first capacitor. The second capacitor is connected in parallel with the lamp and forms a resonance circuit together with the second inductor. The second switching element is connected between the positive terminal of the DC power source and the second end of the lamp. The third switching element is connected between the second end of the lamp and the negative voltage side of the first capacitor. The starting control means controls the second switching element and the third switching element. In case of the steady operating mode, the starting control means operates so as to include an on period of the third switching element while keeping the second switching element turned off. In case of the starting mode, the starting control means alternately turns the second switching element and the third switching element on and off so as to contribute resonance voltage of the resonance circuit for starting of the lamp. Thus, by contributing the resonance voltage for starting of the lamp, noise from the starting means cane be reduced.
The present invention may comprise a transformer with a primary winding and a secondary winding, and utilize the primary winding as the second inductor. In this case, the secondary winding is connected in series with the lamp, while the series combination of the secondary winding and the lamp is connected in parallel with the secondary capacitor. Thus, induction voltage responding to a resonance current passing through the primary winding is superposed onto resonance voltage across the second capacitor, so that the starting voltage applied across the lamp is increased.
The second capacitor of the present invention may have capacitance smaller than that of the first capacitor. Thus, the second capacitor has capacitance smaller than that of the first capacitor and therefore the resonance current is reduced, while the first capacitor has capacitance larger than that of the second capacitor and therefore ripple voltage across the first capacitor for the lamp is reduced.
In case of the steady operating mode, the starting control means of the present invention may turn the third switching element on and off while synchronizing the turning on and off of the third switching element with the turning on and off of the first switching element.
In case of the starting mode, the starting control means of the present invention may alternately turn the second switching element and the third switching element on and off approximately at a resonance frequency of the resonance circuit.
In case of the starting mode, the starting control means of the present invention may alternately turn the second switching element and the third switching element on and off approximately at a frequency f0×1/ODD, where f0 is a resonance frequency of the resonance circuit and ODD is an odd number. In this invention, since an odd harmonic frequency of square wave voltage applied across the LC resonance circuit becomes approximately equal to the resonance frequency of the resonance circuit, the lamp can be started with the resonance voltage of the resonance circuit.
In case of the starting mode, the starting control means of the present invention may alternately turn the second switching element and the third switching element on and off at a switching frequency of a continuous sweep frequency or a switching frequency of multistage frequency. It is also preferable that the starting control means sweeps the switching frequency from a first frequency to a second frequency, while the means repeats the sweeping operation. It is further preferable that the first frequency is higher than the second frequency.
In case of a grow-arc transition mode between the starting mode and the steady operating mode, the starting control means of the present invention may alternately turn the second switching element and the third switching element on and off at a switching frequency lower than that in the starting mode. In this invention, the lamp is able to preferably transit from grow discharge to arc discharge after breakdown.
Therefore, the present invention achieves reduction of noise from the starting means and gives benefit of the noise reduction and high reliability in equipment such as a lighting system constructed with the ballast and the lamp, a projector constructed with the ballast and the lamp, or the like.
Preferred embodiments of the invention will now be described in further details. Other features and advantages of the present invention will become better understood with regard to the following detailed description and accompanying drawings where:
a) illustrates another example of arrangement of a pulse transformer in the ballast of
b) illustrates another example of arrangement of a pulse transformer in the ballast of
c) illustrates another example of arrangement of a pulse transformer in the ballast of
The voltage step down converter 11 is constructed with a diode D11, a switching element Q11 and an inductor L11. The diode D11 has a cathode and an anode, and the anode is connected to the negative terminal of the source DC1 and a negative voltage side of the capacitor C11.
The switching element Q11 is connected between the cathode of the diode D11 and the positive terminal of the source DC1. The element Q11 is, for example, a power MOSFET with a diode (body diode) BD 11, and its drain and source are connected to the positive terminal of the source DC1 and the cathode of the diode D11, respectively. A cathode and an anode of the diode BD11 are also connected to the drain and the source of the power MOSFET, respectively. The inductor L11 is connected between the cathode of the diode D11 and a positive voltage side of the capacitor C11.
The converter controller 12 is constructed with a low-resistance resistor R10 (current detection means), series resistors R11 and R12 (voltage detection means), an operational circuit 121 and a PWM (pulse width modulation) circuit 122, and controls the converter 11.
The resistor R10 is located between the negative voltage side of the capacitor C11 and a switching element Q13 of the starter 13, and detects a lamp current. The resistors R11 and R12 are connected in parallel with the capacitor C11, and detects lamp voltage (voltage across the capacitor C11).
In case of a steady operating mode after a starting mode, the operational circuit 121 figures out lamp power based on the lamp current detected through the resistor R10 and the lamp voltage detected through the resistors R11 and R12, and then calculates difference (voltage) between target power and the lamp power. The PWM circuit 122 controls pulse widths of a control signal to (a gate of) the switching element Q11 so that the difference calculated through the circuit 121 becomes zero.
In short, the converter controller 12 turns the switching element Q11 on and off at a high frequency so as to supply DC power (target power) for steady operating to the lamp DL1 via the capacitor C11 in case of the steady operating mode.
The starter 13 is constructed with an inductor L12, a capacitor C12 having capacitance smaller than that of the capacitor C11, switching elements Q12 and Q13, and a starting controller (starting control means) 130 that controls the elements Q12 and Q13, and applies starting voltage across the lamp DL1 in case of the starting mode.
The inductor L12 is connected between the first end of the lamp DL1 and the positive voltage side of the capacitor C11. The capacitor C12 is connected in parallel with the lamp DL1 and forms a resonance circuit together with the inductor L12. The inductor L12 and the capacitor C12 also constitutes a low pass filter. For example, a value of the inductor L12 may be 600 pH and a value of the capacitor C12 may be 3,300 pF.
The switching element Q12 is, for example, a power MOSFET with a diode (body diode) BD 12, and its drain and source are connected to the positive terminal of the source DC1 and the second end of the lamp DL1, respectively. The switching element Q13 is, for example, a power MOSFET with a diode (body diode) BD 13, and its drain and source are connected to the second end of the lamp DL1 and the negative voltage side of the capacitor C11, respectively. A cathode and an anode of each body diode are the drain and the source of the power MOSFET, respectively.
The starting controller 130 is constructed with a pulse generation circuit 131 and an organization circuit 132. In case of the starting mode, the pulse generation circuit 131 alternately turns the switching elements Q12 and Q13 on and off so that the lamp DL1 is started by resonance voltage of the above resonance circuit. In case of the starting mode, the circuit 131 in the first embodiment alternately turns the switching elements Q12 and Q13 on and off approximately at a resonance frequency (e.g., 115 KHz) of the resonance circuit in order to secure the starting voltage of the lamp DL1 through the resonance voltage.
In case of the steady operating mode, the organization circuit 132 operates so as to include an on period of the switching element Q13 while keeping the switching element Q12 turned off. In the first embodiment, the circuit 132 turns the switching element Q13 on and then holds the turn on, while keeping the switching element Q12 turned off in case of the steady operating mode.
The operation of the discharge lamp ballast 10 is now explained with reference to
In the steady operating mode, the switching element Q12 is held off and also the switching element Q13 is turned and held on, while the switching element Q11 is turned on and off at a high frequency so as to supply DC power for steady operating to the lamp DL1 via the capacitor C11. By holding the switching elements Q12 and Q13 off and on, respectively, the circuit of the ballast 10 is organized into a circuit for DC operating (lighting).
When the switching element Q11 is turned on, a charging current flows from the source DC1 to the capacitor C11 via the switching element Q11 and the inductor L11, and thereby the capacitor C11 is charged. When the switching element Q11 is turned off, a regenerative current by energy accumulated in the inductor L11 flows from the inductor L11 to the capacitor C11 via diode D11. On time of the switching element Q11 is controlled with pulse widths of a control signal from the PWM circuit 122, and thereby DC power for steady operating is supplied to the lamp DL1.
According to the first embodiment of the present invention, starting of the lamp DL1 is possible through the resonance voltage of the resonance circuit with no use of a pulse transformer, and therefore it is possible to reduce noise from the starter 13 that applies the starting voltage across the lamp DL1. Also, since the starting voltage is AC, electrode wear of the lamp DL1 is restrained. Moreover, the capacitor C12 has capacitance smaller than that of the capacitor C11 and therefore the resonance current can be reduced, while the capacitor C11 has capacitance larger than that of the capacitor C12 and therefore ripple voltage across the capacitor C11 for the lamp DL1 (DC discharge lamp) can be reduced.
In an alternate embodiment, the pulse generation circuit 131 alternately turns the switching elements Q12 and Q13 on and off approximately at a frequency (switching frequency) f0×1/ODD in case of the starting mode, where f0 is a resonance frequency of the above resonance circuit and ODD is an odd number (e.g., 3). In this embodiment, since an odd harmonic frequency of square wave voltage applied across the LC resonance circuit becomes approximately equal to the resonance frequency of the resonance circuit, it is possible to secure starting voltage of the lamp DL1 through the resonance voltage of the resonance circuit as well as the first embodiment. For example, when a value of the inductor L12 is 100 μH and a value of the capacitor C12 is 2,200 pF, the switching frequency is 115 KHz. According to this embodiment, compacting the resonance circuit is possible. The switching frequency can be also reduced (e.g., ⅓, ⅕, 1/7, . . . ).
In this second embodiment, the inductor L12 of
According to the second embodiment of the present invention, since the induction voltage responding to the resonance current passing through the primary winding n1 is superposed onto the resonance voltage across the capacitor C22, staring voltage applied across the lamp DL2 can be increased.
In the steady operating mode (
According to the third embodiment of the present invention, it is possible to reduce noise from the starter 33 that applies starting voltage across the lamp DL3 as well as the first embodiment. The intermittent organization circuit 332 of the third embodiment is also applicable to the starting controller 230 in the second embodiment.
In the starting mode (
According to the fourth embodiment of the present invention, starting voltage is able to include the resonance voltage of the resonance circuit (
In an alternate embodiment, the above range of the continuous sweep frequency (substantially) includes a frequency f0×1/ODD, where f0 is the resonance frequency of the resonance circuit and ODD is an odd number. According to this embodiment, the starting voltage is able to include the resonance voltage of the resonance circuit, and the lamp DL4 can be started with the starting voltage as well as the fourth embodiment.
In this fifth embodiment, the frequency step circuit 534 alternately turns switching elements Q52 and Q53 on and off at a switching frequency of a multistep frequency through a pulse generation circuit 531 in a starting mode. As shown in
According to the fifth embodiment of the present invention, the lamp DL5 is able to start through the starting voltage with approximately resonance voltage of the resonance circuit, and moreover the lamp DL5 can ideally transit from grow discharge to arc discharge after breakdown. As a result, starting performance (prevention of non-lighting) of the lamp DL1 can be improved. The frequency step circuit 534 of the fifth embodiment is also applicable to the starting controller 230 in the second embodiment or the starting controller 330 in the third embodiment.
In an alternate embodiment, the above frequency f51 is approximately a frequency f0×1/ODD, where f0 is the resonance frequency of the resonance circuit and ODD is an odd number. According to this embodiment, the lamp is able to start through the starting voltage with approximately the resonance voltage of the resonance circuit as well as the fifth embodiment.
In another alternate embodiment, when the lamp DL5 is started at the frequency f52, the frequency f52 is set to approximately the resonance frequency of the resonance circuit or approximately the frequency f0×1/ODD, where f0 is the resonance frequency of the resonance circuit and ODD is an odd number.
In this sixth embodiment, the repetition circuit 635 repeats sweep operation of a frequency sweep circuit 633 in case of a starting mode. As shown in examples of
According to the sixth embodiment of the present invention, since staring voltage including the resonance voltage is repeatedly applied across the lamp DL6, more preferable staring of the lamp DL6 is possible. The repetition circuit 635 of the sixth embodiment is also applicable to the starting controller 530 in the fifth embodiment.
In case of the grow-arc transition mode between the starting mode and the steady operating mode (
According to the seventh embodiment of the present invention, it is possible to stably lead the lamp DL7 to arc discharge and to stably operate the lamp DL7.
In this eighth embodiment, the igniter 837 is constructed with a diode D837, a capacitor C837, a pulse transformer PT with a primary winding n831 and a secondary winding n832, and a gap G, and superposes pulse voltage responding to voltage applied across the primary winding n831 onto resonance voltage across a capacitor C82. An anode of the diode D837 is connected between an inductor L82 and the lamp DL8. The capacitor C837 is connected in series with the diode D837, while the series combination of the capacitor C837 and the diode D837 (hereinafter referred to as a “combination A”) is connected in parallel with the capacitor C82. The winding n831 is connected in series with the gap G, while the series combination of the winding n831 and the gap G is connected in parallel with the capacitor C837. The winding n832 is connected in series with the lamp DL8, while the series combination of the winding n832 and the lamp DL8 is connected in parallel with each of the capacitor C82 and the combination A.
During a starting mode, resonance voltage (high frequency peak voltage) across the capacitor C82 is applied across the capacitor C837 via the diode D837, and therefore voltage across the capacitor C837 rises toward threshold voltage of the gap G. When the voltage across the capacitor C837 reaches the threshold voltage of the gap G, the capacitor C837 discharges against the primary winding n831 of the pulse transformer PT. As a result, pulse voltage is induced in the secondary winding n832 of the transformer PT. At this point, the pulse voltage generates electric field toward a negative terminal (second end) of the lamp DL8 from its positive terminal (first end). The pulse voltage is also generated in response to a turn ratio (n831:n832) of the transformer PT.
In case of any mode except the starting mode, resonance voltage across the capacitor C82 is not applied across the capacitor C837 via the diode D837, and therefore voltage across the capacitor C837 does not reach the threshold voltage of the gap G.
According to the eighth embodiment of the present invention, starting voltage is created by superposing the pulse voltage onto the resonance voltage across the capacitor C82, it is possible to reduce by the resonance voltage from the pulse voltage, so that noise from the starter 83 can be reduced. The igniter 837 of the eighth embodiment is also applicable to a starter in the above each embodiment.
Therefore, the present invention achieves reduction of noise from the starting means (starter) and gives benefit of the noise reduction and high reliability in equipment such as a lighting system constructed with the ballast and the lamp, a projector constructed with the ballast and the lamp, or the like. Especially, in a liquid crystal projector, many minute electric circuits are located around a discharge lamp ballast, and therefore reducing noise from the starting means makes it possible to improve reliability.
Although the present invention has been described with reference to certain preferred embodiments, numerous modifications and variations can be made by those skilled in the art without departing from the true spirit and scope of this invention. For example, the embodiments include switching elements, such as power MOSFETs, but such elements may be replaced with bipolar transistors and diodes. In another example, the converter controller (12, 22, 32, 42, 52, 62 or 82) may turn the switching element (Q11, Q21, Q31, Q41, Q51, Q61, Q71 or Q81) on and off at a high frequency of a specific pulse width.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP04/12518 | 8/31/2004 | WO | 00 | 7/11/2006 |