Discharge lamp lighting apparatus and discharge lamp apparatus

Information

  • Patent Grant
  • 6815912
  • Patent Number
    6,815,912
  • Date Filed
    Wednesday, September 25, 2002
    22 years ago
  • Date Issued
    Tuesday, November 9, 2004
    19 years ago
Abstract
A discharge lamp lighting apparatus which can prevent an increase of loss and a rise of temperature in the area where discharge lamp tube voltage is low. A power conversion circuit converts the input power Pin to output the DC power Pd. A discharge lamp driving circuit converts the DC power Pd supplied from the power conversion circuit to output AC voltage Vo and AC current Io. A controller provides constant power control for maintaining the AC power Po provided by the AC voltage Vo and AC current Io to be constant when the AC voltage Vo is higher than the predetermined value V1, and provides power reduction control for reducing AC power Po to the power conversion circuit when the AC voltage Vo is lower than the predetermined value V1.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a discharge lamp lighting apparatus for lighting a discharge lamp, such as a high-pressure mercury lamp, and a discharge lamp apparatus where the discharge lamp lighting apparatus and a discharge lamp are combined.




2. Description of the Related Art




The discharge lamp lighting apparatus converts the input power from the power supply into AC voltage and AC current for driving the discharge lamp, and supplies the AC voltage and AC current to the discharge lamp. The discharge lamp is driven by the AC voltage and AC current, and is lit. The discharge lamp tube voltage (AC voltage) of the discharge lamp fluctuates due to dispersion or time-based changes of the discharge lamp characteristics, but in the discharge lamp lighting apparatus, constant power control is performed for maintaining the discharge lamp tube power to be constant, regardless the fluctuation of the discharge lamp tube voltage.




However if the abovementioned constant power control is performed in an area where the discharge lamp tube voltage (AC voltage) is low, the discharge lamp tube current (AC current) suddenly increases as the discharge lamp tube voltage drops. The ratio of the factors which cause the loss in the discharge lamp lighting apparatus is high in a component depending on the discharge lamp tube current, and a sudden increase in the discharge lamp tube current causes an increase of loss in the discharge lamp lighting apparatus.




Also recently discharge lamp apparatuses are designed with less margin in cooling conditions to decrease the size and weight of the device, so an increase in the loss of the discharge lamp lighting apparatus easily causes a rise in the temperature of the discharge lamp lighting apparatus. If the temperature of the discharge lamp lighting apparatus rises, the overheat protection function of the discharge lamp apparatus is activated, which stops the supply of power to the discharge lamp and turns the discharge lamp OFF.




SUMMARY OF THE INVENTION




It is an object of the present invention to provide a discharge lamp lighting apparatus which can prevent an increase of loss in an area where the discharge lamp tube voltage is low, and a discharge lamp apparatus using the discharge lamp lighting apparatus.




It is another object of the present invention to provide a discharge lamp lighting apparatus which can prevent a rise in the temperature in an area where the discharge lamp tube voltage is low, and a discharge lamp apparatus using the discharge lamp lighting apparatus.




To achieve the abovementioned objects, a discharge lamp lighting apparatus according to the present invention comprises a power conversion circuit, a discharge lamp driving circuit, and a controller.




The power conversion circuit converts the input power to output DC power. The discharge lamp driving circuit converts the DC power supplied from the power conversion circuit to output AC voltage and AC current.




A signal corresponding to the AC voltage and a signal corresponding to the AC current are input to the controller. The controller provides constant power control for maintaining the AC power, which is provided by the AC voltage and AC current, to be constant to the power conversion circuit when the AC voltage is higher than a predetermined value.




The controller provides power reduction control for reducing the AC power to the power conversion circuit when the AC voltage is lower than the predetermined value.




In the abovementioned discharge lamp lighting apparatus according to the present invention, the input power is converted into DC power by the power conversion circuit. Moreover, this DC power is converted into AC voltage and AC current by the discharge lamp driving circuit, and is output. Therefore if the discharge lamp is connected to the output side of the discharge lamp driving circuit, the discharge lamp can be driven and lit by the AC voltage and AC current.




Also in the discharge lamp lighting apparatus according to the present invention, constant power control is performed for maintaining the AC power, which is provided by the AC voltage and the AC current, to be constant when the abovementioned AC voltage is higher than a predetermined value.




An important feature of the present invention is performing power reduction control to reduce the AC power when the AC voltage is lower than the abovementioned predetermined value. This power reduction control allows suppressing an increase of the AC current in an area where the AC voltage is low, which can prevent an increase of loss in the discharge lamp lighting apparatus.




Also if the increase of loss in the discharge lamp lighting apparatus in an area where the AC voltage is low is prevented, as mentioned above, a rise in the temperature of the discharge lamp lighting apparatus can be prevented as well, and activation of the overheat protection function and the discharge lamp turning OFF due to this activation can also be solved.




Also in the discharge lamp lighting apparatus according to the present invention, the abovementioned constant power control and the power reduction control are executed for the power conversion circuit which outputs the DC power, so these controls are simple.




It is preferable that the power reduction control has the characteristic to reduce the AC power according to the difference between the AC voltage and the abovementioned predetermined value. According to this power reduction control characteristic, an increase of the AC current in an area where the AC voltage is low can be suppressed effectively.




Generally in an area where the AC voltage (discharge lamp tube voltage) is low, the luminance of the discharge lamp does not drop very much, even if the AC power (discharge lamp tube power) is reduced slightly. Therefore the abovementioned power reduction control can be performed in a range where the luminance of the discharge lamp does not drop.




Another mode of the discharge lamp lighting apparatus according to the present invention may comprise a power conversion circuit, a high voltage generator, and a controller.




The power conversion circuit converts input power to output DC power. The high voltage generator receives the supply of the DC power from the power conversion circuit, and outputs DC voltage and DC current for driving a discharge lamp.




The controller, to which a signal corresponding to the DC voltage and a signal corresponding to the DC current are input, provides constant power control for maintaining the DC power, which is provided by the DC voltage and the DC current, to be constant to the power conversion circuit when the DC voltage is higher than a predetermined value, and provides power reduction control for reducing the DC power to the power conversion circuit when the DC voltage is lower than the predetermined value.




The discharge lamp lighting apparatus according to this mode as well exhibits a functional effect similar to the discharge lamp lighting apparatus described first.




Other objects, configurations and advantages of the present invention will be described in detail with reference to the accompanying drawings. The drawings, however, merely show examples.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a block diagram depicting a configuration of the discharge lamp lighting apparatus according to the present invention;





FIG. 2

is a diagram depicting an example of power control in the discharge lamp lighting apparatus according to the present invention;





FIG. 3

is a diagram depicting another example of power control in the discharge lamp lighting apparatus according to the present invention;





FIG. 4

is a block diagram depicting a specific configuration of the discharge lamp lighting apparatus shown in

FIG. 1

;





FIG. 5

is a flow chart depicting calculation process for the power command value Pa for the power control described in

FIG. 2

;





FIG. 6

is a flow chart depicting calculation process for the power command value Pa for the power control described in

FIG. 3

;





FIG. 7

is a block diagram depicting another embodiment of the discharge lamp lighting apparatus according to the present invention;





FIG. 8

is a circuit diagram depicting a part of the controller included in the discharge lamp lighting apparatus shown in

FIG. 7

;





FIG. 9

is a block diagram depicting still another embodiment of the discharge lamp lighting apparatus according to the present invention; and





FIG. 10

is a block diagram depicting still another embodiment of the discharge lamp lighting apparatus according to the present invention.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




Referring to

FIG. 1

, the discharge lamp lighting apparatus


9


according to the present invention comprises a power conversion circuit


1


and a discharge lamp driving circuit


5


. The reference numeral


3


indicates a discharge lamp, such as a high-pressure mercury lamp. The reference numeral


4


is a power supply. The power supply


4


in

FIG. 1

is a DC power supply, for which either a battery or voltage where AC voltage is converted into DC via a rectifying smoothing circuit can be used. The power supply


4


may be either an internal component or an external component of the present invention.




The power conversion circuit


1


converts the input power Pin, which is input from the power supply


4


to the input terminals T


11


and T


12


, and outputs the DC power Pd. In the present embodiment, the input power Pin from the power supply


4


is DC, and the power conversion circuit


1


is comprised of a DC-DC converter. The DC-DC converter, constituting the power conversion circuit


1


, switches the DC input power Pin, which is input to the input terminals T


11


and T


12


, converts the switched output into DC power Pd, and outputs the DC power Pd. The switching frequency can be set to a 10-500 kHz value, for example.




The discharge lamp driving circuit


5


converts the DC power Pd, which is supplied from the power conversion circuit


1


, and outputs the AC voltage Vo and AC current Io to the output terminals T


21


and T


22


. The AC voltage Vo and AC current Io are an AC voltage and AC current appropriate for driving the discharge lamp respectively.




The discharge lamp


3


is connected to the output side of the discharge lamp driving circuit


5


. More specifically, one electrode of the discharge lamp


3


is connected to one output terminal T


21


of the discharge lamp driving circuit


5


, and the other electrode thereof is connected to the other output terminal T


22


. The AC voltage Vo and AC current Io from the discharge lamp driving circuit


5


are supplied to the discharge lamp


3


via the output terminals T


21


and T


22


.




The abovementioned discharge lamp lighting apparatus


9


also includes a controller


2


. Voltage detection signal S(V) corresponding to the abovementioned AC voltage Vo is input to the controller


2


. The voltage detection signal S(V) is obtained by detecting the voltage which appears at the output side of the power conversion circuit


1


by the voltage detector


61


. The voltage detector


61


is installed at the output side of the power conversion circuit


1


and the input side of the discharge lamp driving circuit


5


. The output voltage of the power conversion circuit


1


is DC voltage, but includes the voltage information of the AC voltage Vo to be supplied to the discharge lamp


3


, and the voltage detection signal S(V) corresponds to the abovementioned AC voltage Vo.




Also the current detection signal S(I) corresponding to the abovementioned AC current Io is input to the controller


2


. The current detection signal S(I) is obtained by the current detector


62


for detecting current which flows in the power supply line. The current detector


62


is installed at the output side of the power conversion circuit


1


and the input side of the discharge lamp driving circuit


5


. The current which flows in the power supply line is substantially equivalent to the AC current Io which flows through the discharge lamp


3


, and the current detection signal S(I) corresponds to the above AC current Io.




The controller


2


provides power control S to the abovementioned power conversion circuit


1


. Now the specific content of the power control S will be described.





FIG. 2

is a diagram depicting an example of power control in the discharge lamp lighting apparatus according to the present invention.

FIG. 2

(


a


) shows the AC voltage—AC power characteristic. In FIG.


2


(


a


), the abscissa shows the AC voltage Vo which is output from the discharge lamp driving circuit


5


, and the ordinate shows the AC power Po which is output from the discharge lamp driving circuit


5


. The AC power Po is provided by the AC voltage Vo and the AC current Io.




FIG.


2


(


b


) shows the AC voltage—AC current characteristic. In FIG.


2


(


b


), the abscissa is common with the abscissa of FIG.


2


(


a


), and the ordinate shows the AC current Io which is output from the discharge lamp driving circuit


5


.




In FIG.


2


(


a


) and FIG.


2


(


b


), the reference symbol W


0


shows the stable voltage area of the discharge lamp


3


, and the reference symbols VH and VL are the stable voltage upper limit value and the stable voltage lower limit value of the stable voltage area W


0


respectively.




As the solid line J


1


in FIG.


2


(


a


) shows, the controller


2


provides constant power control for maintaining the AC power Po to be constant to the power conversion circuit


1


when the AC voltage Vo is higher than the predetermined value V


1


. More specifically, the predetermined value V


1


is set between the stable voltage upper limit value VH and the stable voltage lower limit value VL of the stable voltage area W


0


, and the abovementioned constant power control is provided when the AC voltage Vo is in the area W


1


from the predetermined value V


1


to the stable voltage upper limit value VH. The constant power control is control for maintaining the AC power Po to be a steady-state power value P


1


(constant value), and fixes the power command value Pa of the AC power Po to the steady-state power value P


1


. The steady-state power value P


1


is determined considering the characteristics of the discharge lamp


3


.




Also as the solid line K


1


in FIG.


2


(


a


) shows, the controller


2


provides power reduction control for reducing the AC power Po to the power conversion circuit


1


when the AC voltage Vo is lower than the predetermined value V


1


. Compared with the abovementioned constant power control, this power reduction control is a control for decreasing the AC power Po to be lower than the steady-state power value P


1


(constant value) by the constant power control. The power reduction control is provided when the AC voltage Vo is in the area W


2


from the predetermined value V


1


to the stable voltage lower limit value VL.




In this embodiment, the characteristic of the abovementioned power reduction control is a characteristic for reducing the AC power Po according to the difference between the AC voltage Vo and the predetermined value V


1


. More specifically, the power reduction control characteristic decreases the AC power Po for an amount in proportion to the difference (V


1


−Vo) between the AC voltage Vo and the predetermined value V


1


, which is a simple reduction characteristic. Namely, the power command value Pa under the power reduction control is given by the following formula (1) using the AC voltage Vo at that time.








Pa=P




1


−α·(


V




1





Vo


) (where


Vo<V




1


)  (1)






In the above formula (1), the value α is a constant value, and is determined considering the characteristics of the discharge lamp


3


, power conversion circuit


1


or the discharge lamp driving circuit


5


. Another characteristic to reduce the AC power according to the difference between the AC voltage and the predetermined value is a curved reduction characteristic, for example.




The power reduction control characteristic is not limited to the simple reduction characteristic in FIG.


2


. For example, the power reduction control characteristic may be a curved reduction characteristic or a step reduction characteristic. Or the power reduction control characteristic may be a characteristic for reducing the AC power according to various functions depending on the discharge characteristic of the discharge lamp.




As described above with reference to

FIG. 1

, in the discharge lamp lighting apparatus


9


according to the present invention, the input power Pin is converted into DC power Pd by the power conversion circuit


1


, and this DC power Pd is converted to the AC voltage Vo and AC current Io by the discharge lamp driving circuit


5


, and is output. Therefore if the discharge lamp


3


is connected to the output side of the discharge lamp driving circuit


5


, the discharge lamp


3


is driven and lit by the AC voltage Vo and the AC current Io.




Also as the solid line J


1


in FIG.


2


(


a


) shows, constant power control for maintaining the AC power Po, which is provided by the AC voltage Vo and AC current Io, to be constant is performed when the AC voltage Vo is higher than the predetermined value V


1


.




In a conventional discharge lamp lighting apparatus, constant power control is performed even in an area where the AC voltage Vo is low. For example, as the broken line L


1


in FIG.


2


(


a


) shows, constant power control is performed even in the area where the AC voltage Vo is low, so as to maintain the AC power Po to be the steady-state power value P


1


(constant value). As a result, as the broken line L


2


in FIG.


2


(


b


) shows, the AC current Io suddenly increases as the AC voltage Vo drops, and this sudden increase in the AC current Io causes an increase of loss in the discharge lamp lighting apparatus.




In the case of the discharge lamp lighting apparatus


9


of the present invention, on the other hand, power reduction control for reducing the AC power Po is performed when the AC voltage Vo is lower than the predetermined value V


1


(see the solid line K


1


in FIG.


2


(


a


)). By the abovementioned power reduction control, the increase of the AC current Io in the area W


2


where the AC voltage Vo is low can be suppressed (see the solid line K


2


in FIG.


2


(


b


)), and an increase of loss in the discharge lamp lighting apparatus


9


can be prevented.




Also if the increase of loss in the discharge lamp lighting apparatus


9


in the area W


2


where the AC voltage Vo is low is prevented, as mentioned above, a rise in the temperature of the discharge lamp lighting apparatus


9


is also prevented, and the activation of the overheat protection function and the turning OFF of the discharge lamp


3


due to this activation can also be solved.




Also in the discharge lamp lighting apparatus


9


according to the present invention, the abovementioned constant power control and power reduction control are executed for the power conversion circuit


1


which outputs the DC power Pd, so these controls are simple.




In the present embodiment, a characteristic of the abovementioned power reduction control is a characteristic for reducing the AC power Po according to the difference between the AC voltage Vo and the predetermined value V


1


. According to this power reduction control characteristic, an increase of the AC current Io can be effectively suppressed.




Generally in the area W


2


where the AC voltage Vo (discharge lamp tube voltage) is low, the luminance of the discharge lamp


3


does not drop very much, even if the AC power Po (discharge lamp tube power) is reduced slightly. Therefore the abovementioned power reduction control can be performed within a range where the drop in luminance of the discharge lamp


3


does not become a problem.




As the solid line K


2


in FIG.


2


(


b


) shows, the controller


2


suppresses an increases of the AC current Io by the abovementioned power reduction control in the area W


2


where the AC voltage Vo is low. This AC current increase suppression characteristic is closely related to the abovementioned power reduction control characteristic.




The AC current increase suppression characteristic shown in FIG.


2


(


b


) is a characteristic which maintains the AC current Io to be the constant value I


1


, but this invention is not limited to this characteristic. For example, the AC current increase suppression characteristic may be a characteristic which reduces the AC current as the AC voltage drops, or a characteristic which decreases the AC current to lower than the AC current shown by the conventional characteristic (broken line L


2


).





FIG. 3

is a diagram depicting another example of power control in the discharge lamp lighting apparatus according to the present invention. FIG.


3


(


a


) shows the AC voltage—AC power characteristic, where the abscissa and the ordinate are the same as FIG.


2


(


a


). FIG.


3


(


b


) shows the AC voltage—AC current characteristic, where the abscissa and the ordinate are the same as FIG.


2


(


b


).




Compared with the power control described with reference to

FIG. 2

, in this power control, the lower limit power value P


3


is set for power reduction control to prevent the AC power Po from dropping too much by power reduction control. Specifically, this power reduction control includes a control for reducing the AC power Po according to the difference between the AC voltage Vo and the predetermined value V


1


when the AC voltage Vo is in the area W


21


from the predetermined value V


1


to the value V


2


(see the solid line K


11


in FIG.


3


(


a


)), and a control for maintaining the AC power Po to be the lower limit power value P


3


when the AC voltage Vo is in the area W


22


from the value V


2


to the stable voltage lower limit value VL in the stable voltage area W


0


(see the solid line K


12


in FIG.


3


(


a


)). The value V


2


is set to a value lower than the predetermined value V


1


and higher than the stable voltage lower limit value VL. The lower limit power value P


3


is given by the following formula (2), for example, using the steady-state power value P


1


, the predetermined value V


1


and the value V


2


.








P




3


=


P




1


−α·(


V




1





V




2


)  (2)






As the solid lines K


21


and K


22


in FIG.


3


(


b


) show, the controller


2


suppresses an increase of the AC current Io by the abovementioned power reduction control in the areas W


21


and W


22


where the AC voltage Vo is low.





FIG. 4

is a block diagram depicting a specific configuration of the discharge lamp lighting apparatus shown in FIG.


1


. In the discharge lamp lighting apparatus


9


in

FIG. 4

, the controller


2


comprises a power computing section


20


, a signal processing section


27


, a signal generating section


21


, and a pulse width controlling section


23


.




The power computing section


20


, to which the voltage detection signal S(V) from the voltage detector


61


and the current detection signal S(I) from the current detector


62


are supplied, computes power from the voltage detection signal S(V) and current detection signal S(I) to generate the power detection signal S(IV). This power detection signal S(IV) corresponds to the abovementioned AC power Po which is output from the discharge lamp driving circuit


5


.




The signal processing section


27


, to which the voltage detection signal S(V) is supplied, outputs the power command signal S(Pa) according to the voltage detection signal S(V). Specifically the power command signal S(Pa) indicates the power command value Pa, and the power command value Pa is calculated according to the AC voltage Vo indicated by the voltage detection signal S(V). Now calculation process of the power command value Pa will be described.





FIG. 5

is a flow chart depicting the calculation process of the power command value Pa when the power control described in

FIG. 2

is performed. In this case, the signal process section


27


first judges whether the AC voltage Vo is lower than the predetermined value V


1


. If the AC voltage Vo is not lower than the predetermined value V


1


, the signal processing section


27


provides the steady-state power value P


1


as the power command value Pa.




If the AC voltage Vo is lower than the predetermined value V


1


, the signal processing section


27


calculates the value A (=V


1


−Vo), calculates the value B (=α·A) using the value A, and calculates the value (P


1


−B) using the value B. And the signal processing section


27


provides the value (P


1


−B) as the power command value Pa. Namely, the power command value Pa is given by the abovementioned formula (1).





FIG. 6

is a flow chart depicting the calculation process of the power command value Pa when the power control described in

FIG. 3

is performed. In this case as well, the signal processing section


27


first judges whether the AC voltage Vo is lower than the predetermined value V


1


. If the AC voltage Vo is not lower than the predetermined value V


1


, the signal processing section


27


provides the steady-state power value P


1


as the power command value Pa.




If the AC voltage Vo is lower than the predetermined value V


1


, the signal processing section


27


judges whether the AC voltage Vo is higher than the value V


2


. If the AC voltage Vo is not higher than the value V


2


, the signal processing section


27


provides the lower limit power value P


3


as the power command value Pa. The lower limit power value P


3


is given by the abovementioned formula (2).




If the AC voltage Vo is higher than the value V


2


, the signal processing section


27


calculates the value A (=V


1


−Vo) just like the calculation process shown in

FIG. 5

, calculates the value B (=α·A) using the value A, and calculates the value (P


1


−B) using the value B. And the signal processing section


27


provides the value (P


1


−B) as the power command value Pa.




The signal processing section


27


outputs the power command signal S(Pa) of the power command value Pa obtained by one of the abovementioned calculation processes. The signal processing section


27


can be comprised of a dedicated or general purpose IC for control, or a microcomputer.




Now the signal generating section


21


and the pulse width controlling section


23


will be described with reference to FIG.


4


. To the signal generating section


21


, the power detection signal S(IV) is supplied from the power computing section


20


, and the power command signal S(Pa) is supplied from the signal processing section


27


. And the signal processing section


21


outputs the signal S(ΔP) which corresponds to the difference between the power detection signal S(IV) and the power command signal S(Pa).




The pulse width controlling section


23


provides pulse width control to the power conversion circuit


1


, which is comprised of the DC-DC converter, based on the signal S(ΔP) supplied from the signal generating section


21


. More specifically, the pulse width controlling section


23


has a triangular wave oscillation circuit


26


, and generates a signal having a pulse width according to the signal S(ΔP) by using the triangular wave signal which is supplied from the triangular wave oscillation circuit


26


and the signal S(ΔP) which is supplied from the signal generating section


21


, and supplies this signal to the power conversion circuit


1


(DC-DC converter) to control the switching operation thereof.




When the power conversion circuit


1


(DC-DC converter) performs the switching operation by the abovementioned pulse width control, the DC voltage and the DC current which appear at the output side of the power conversion circuit


1


are detected by the voltage detector


61


and the current detector


62


. And the voltage detection signal S(V) and the current detection signal S(I) are supplied to the power computing section


20


, and the power detection signal S(IV) is supplied from the power computing section


20


to the signal generating section


21


. In addition, the abovementioned voltage detection signal S(V) is also supplied to the signal processing section


27


, and the power command signal S(Pa) is supplied from the signal processing section


27


to the signal generating section


21


.




In the signal generating section


21


, the power detection signal S(IV) from the power computing section


20


is compared with the power command signal S(Pa) from the signal processing section


27


, and the signal S(ΔP) corresponding to the difference is generated. And the pulse width control according to the signal S(ΔP) is provided to the power conversion circuit


1


by the pulse width controlling section


23


. The pulse width controlling direction in this case is the direction where the difference between the power detection signal S(IV) and the power command signal S(Pa) decreases.




By the abovementioned feedback control, control to make the difference between the power detection signal S(IV) and the power command signal S(Pa) to be zero is provided. The power detection signal S(IV) corresponds to the AC power Po which is output from the discharge lamp driving circuit


5


, and control to make the AC power Po to be the same as the power command value Pa of the power command signal S(Pa) is provided.




In the discharge lamp lighting apparatus


9


shown in

FIG. 4

, the discharge lamp driving circuit


5


comprises an inverter


51


and a high voltage generator


52


. The inverter


51


converts the DC power PD, which is output from the power conversion circuit


1


, into AC power, and outputs it. The inverter


51


is a type of square-wave generating circuit, and generates square-shaped AC pulse voltage and AC pulse current. The inverter


51


is driven by the drive pulse signals S


10


and S


01


, which are supplied from the abovementioned signal processing section


27


. The drive pulse signal S


10


is obtained by inverting the drive pulse signal S


01


, and becomes low level (logic value 0) when the drive pulse signal S


01


is at high level (logic value 1), and becomes high level (logic value 1) when the drive pulse signal S


01


is at low level (logic value 0).




The switching frequency of the inverter


51


, which is determined by the drive pulse signals S


10


and S


01


, is selected to be a value lower than the switching frequency of the DC-DC converter constituting the power conversion circuit


1


. For example, the switching frequency in the DC-DC converter constituting the power conversion circuit


1


is selected to be 10-500 kHz, and the switching frequency of the inverter


51


is selected to be 50-500 Hz.




The high voltage generator


52


is installed at the subsequent stage of the abovementioned inverter


51


. The high voltage generator


52


generates the voltage required for lighting the discharge lamp


3


, and supplies the voltage to the output terminals T


21


and T


22


.





FIG. 7

is a block diagram depicting another embodiment of the discharge lamp lighting apparatus according to the present invention. Just like the embodiment shown in

FIG. 4

, the signal processing section


27


, to which the voltage detection signal S(V) is supplied, outputs the power command signal S(Pa) according to the voltage detection signal S(V) in this embodiment as well.




Compared with the embodiment shown in

FIG. 4

, in this embodiment, the signal processing section


27


comprises a predetermined value setting section


271


, a signal generating section


272


, a computing processing section


273


, a steady-state power value setting section


274


, a power command signal generating section


275


, and a drive pulse signal generating section


276


. This signal processing section


27


, however, is for performing the power control described in FIG.


2


.




As

FIG. 7

shows, the predetermined value setting section


271


outputs a predetermined value signal S(V


1


). The predetermined value signal S(V


1


), which indicates the predetermined value V


1


, is set to be a constant.




To the signal generating section


272


, the abovementioned voltage detection signal S(V) is supplied, and the predetermined signal S(V


1


) is supplied from the predetermined value setting section


271


. The AC voltage Vo is indicated by the voltage detection signal S(V), and the predetermined value V


1


is indicated by the predetermined value signal S(V


1


).




When the AC voltage Vo is lower than the predetermined value V


1


, the signal generating section


272


outputs the difference signal S(A) corresponding to the difference between the voltage detection signal S(V) and the predetermined value signal S(V


1


). The value A of the difference signal S(A) is given by (V


1


−Vo).




When the AC voltage Vo is not lower than the predetermined value V


1


, the signal generating section


272


makes the value A of the difference signal S(A) to be zero. Rather than make the value A of the difference signal S(A) to be zero, the output of the difference signal may be stopped.




The computing processing section


273


, to which the difference signal S(A) is supplied from the signal generating section


272


, computes the difference signal S(A) to output the computing process signal S(B). The value B of the computing process signal S(B) is given by (α·A) using the value A of the difference signal S(A). Namely, this computing processing section


273


performs computing process such that the value A of the difference signal S(A) is multiplied by α. The computing process is not limited to this, but various computing processes may be used according to the discharge characteristic of the discharge lamp.




The steady-state power value setting section


274


outputs the steady-state power value signal S(P


1


). The steady-state power value signal S(P


1


) indicates the steady-state power value P


1


, which is set to be a constant.




To the power command signal generating section


275


, the computing process signal S(B) is supplied from the computing processing section


273


, and the steady-state power value signal S(P


1


) is supplied from the steady-state power value setting section


274


. The power command signal generating section


275


outputs the power command signal S(Pa) corresponding to the difference between the computing process signal S(B) and the steady-state power value signal S(P


1


). The power command value Pa indicated by the power command signal S(Pa) is given as follows.






When


Vo>V




1


,


Pa=P




1


.








When


Vo<V




1


,


Pa=P




1


−α·(


V




1




−Vo


).






As described above, the signal processing section


27


outputs the power command signal S(Pa) according to the voltage detection signal S(V).




The abovementioned signal processing section


27


is for the power control described in

FIG. 2

, but an expert skilled in this field could easily think of the signal processing section for the power control described in FIG.


3


.




The abovementioned signal processing section


27


can be comprised of an analog circuit. A configuration example using an analog circuit will now be described.





FIG. 8

is a circuit diagram depicting a part of the controller included in the discharge lamp lighting apparatus shown in FIG.


7


. The power computing section


20


is comprised of a multiplier.




The predetermined value setting section


271


included in the signal processing section


27


(see

FIG. 7

) is comprised of a DC voltage source. The signal generating section


272


and the computing processing section


273


are integrated, which is comprised of an arithmetic circuit using an operational amplifier. The steady-state power value setting section


274


is comprised of a DC voltage source. And the power command signal generating section


275


is comprised of an arithmetic circuit using an operational amplifier.




The signal generating section


21


is comprised of an arithmetic circuit using an operational amplifier.





FIG. 9

is a block diagram depicting still another embodiment of the discharge lamp lighting apparatus according to the present invention. Compared with the embodiment shown in

FIG. 4

, this embodiment uses the current command signal S(Ia) for control of the AC power Po, and the controller


2


comprises a signal processing section


27


, a signal generating section


21


, and a pulse width controlling section


23


as a concrete configuration thereof.




To the signal processing section


27


, the voltage detection signal S(V) is supplied from the voltage detector


61


, and the current detection signal S(I) is supplied from the current detector


62


, and the signal processing section


27


outputs the current command signal S(Ia) according to the voltage detection signal S(V) and the current detection signal S(I).




To output the current command signal S(Ia), the signal processing section


27


calculates the AC power Po from the voltage detection signal S(V) and the current detection signal S(I). And the signal processing section


27


calculates the power command value Pa according to the AC voltage Vo shown by the voltage detection signal S(V). For the calculation process of the power command value Pa, the calculation process shown in

FIG. 5

may be performed, or the calculation process shown in

FIG. 6

may be performed.




Then the signal processing section


27


compares the abovementioned AC power Po and the power command value Pa to output the current command signal S(Ia) such that the difference between the AC power Po and the power command value Pa becomes zero.




To the signal generating section


21


, the current detection signal S(I) is supplied from the current detector


62


, and the current command signal S(Ia) is supplied from the signal processing section


27


. And this signal generating section


21


outputs the signal S(ΔI) corresponding to the difference between the current detection signal S(I) and the current command signal S(Ia).




The pulse width controlling section


23


provides pulse width control to the power conversion circuit


1


comprised of a DC-DC converter based on the signal S(ΔI) supplied from the signal generating section


21


. This pulse width control is the same as the pulse width control in the embodiment shown in FIG.


4


.




When the power conversion circuit


1


(DC-DC converter) performs the switching operation by the abovementioned pulse width control, the voltage and the current which appear at the output side of the power conversion circuit


1


are detected by the voltage detector


61


and the current detector


62


. And the voltage detection signal S(V) and the current detection signal S(I) are supplied to the signal processing section


27


, and the current command signal S(Ia) is supplied from the signal processing section


27


to the signal generating section


21


. Also the abovementioned current detection signal S(I) is supplied to the signal generating section


21


.




In the signal generating section


21


, the current detection signal S(I) from the current detector


62


is compared with the current command signal S(Ia) from the signal processing section


27


, and the signal S(ΔI) corresponding to the difference thereof is generated. And by the pulse width control section


23


, the pulse width control according to the signal S(ΔI) is provided to the power conversion circuit


1


. The pulse width control direction in this case is a direction where the difference between the current detection signal S(I) and the current command signal S(Ia) decreases.




The abovementioned feedback control provides control to make the difference between the current detection signal S(I) and the current command signal S(Ia) of the signal processing section


27


to be zero. By this, the difference between the AC power Po and the power command value Pa of the signal processing section


27


approaches zero. In this way, control of the AC power Po can also be implemented by using the current command signal S(Ia).





FIG. 10

is a block diagram depicting still another embodiment of the discharge lamp lighting apparatus according to the present invention. In

FIG. 10

, the same composing elements as the composing elements which appear in previous drawings are denoted with the same reference symbols, for which redundant descriptions are omitted.




The discharge lamp lighting apparatus shown in

FIG. 10

comprises a power conversion circuit


1


, high voltage generator


52


, and a controller


2


. Unlike the embodiments shown in

FIG. 1

,

FIG. 4

, FIG.


7


and

FIG. 9

, the inverter is not included.




The power conversion circuit


1


converts the input power Pin into the DC power Pd. The high voltage generator


52


receives the supply of the DC power Pd from the power conversion circuit


1


, and outputs the DC voltage Vo and the DC current Io for driving the discharge lamp.




To the controller


2


, the signal S(V) corresponding to the DC voltage Vo and the signal S(I) corresponding to the DC current Io are input. When the DC voltage Vo is higher than a predetermined value, the controller


2


provides constant power control for maintaining the DC power Po=Io·Vo provided by the DC voltage Vo and the DC current Io to be constant to the power conversion circuit


1


. When the DC voltage Vo is lower than the predetermined value, the controller


2


provides power reduction control for reducing the DC power Po to the power conversion circuit


1


.




The discharge lamp lighting apparatus according to this mode as well exhibits a functional effect similar to the previously mentioned discharge lamp lighting apparatuses.




In each embodiment described above, a single discharge lamp is lit, but an expert skilled in this field could easily think of a configuration for lighting a plurality of discharge lamps, and it is obvious that the same functions and effects can be obtained in this case as well.




As described above, according to the present invention, the following effects can be obtained.




(a) Provides a discharge lamp lighting apparatus which can prevent an increase of loss in an area where the discharge lamp tube voltage is low, and a discharge lamp apparatus using this discharge lamp lighting apparatus.




(b) Provides a discharge lamp lighting apparatus which can prevent a rise in the temperature in an area where the discharge lamp tube voltage is low, and a discharge lamp apparatus using this discharge lamp lighting apparatus.



Claims
  • 1. A discharge lamp lighting apparatus for lighting a discharge lamp having a stable voltage area bounded by a stable voltage upper limit and a stable voltage lower limit, comprising:a power conversion circuit configured to convert input power to output DC power; a discharge lamp driving circuit configured to convert said DC power supplied from said power conversion circuit to output AC voltage and AC current; and a controller configured to receive a signal including voltage information of said AC voltage and a signal including current information of said AC current each obtained from said DC power and to control said power conversion circuit such that AC power is maintained to be steady-state power of said discharge lamp while a value of the signal including voltage information of said AC voltage is higher than a first predetermined value set between a value of the stable voltage upper limit and a value of the stable voltage lower limit and lower than the value of the stable voltage upper limit, and said AC power is reduced to be maintained lower than the steady-state power while the value of the signal including voltage information of said AC voltage is lower than said first predetermined value and higher than the value of the stable voltage lower limit.
  • 2. The discharge lamp lighting apparatus according to claim 1, wherein said AC power is reduced according to the difference between said AC voltage and said first predetermined value.
  • 3. The discharge lamp lighting apparatus according to claim 2, wherein said controller suppresses an increase of said AC current by reducing said AC power.
  • 4. The discharge lamp lighting apparatus according to claim 1, wherein said controller suppresses an increase of said AC current by reducing said AC power.
  • 5. The discharge lamp lighting apparatus according to claim 1, wherein said AC power is maintained at a constant power having a value lower than a value of said steady-state power while the value of the signal including voltage information of said AC voltage is lower than a second predetermined value set between the first predetermined value and the value of the stable voltage lower limit, and higher than the value of the stable voltage lower limit.
  • 6. A discharge lamp apparatus comprising:a discharge lamp lighting apparatus; and at least one discharge lamp having a stable voltage area bounded by a stable voltage upper limit and a stable voltage lower limit, wherein said discharge lamp lighting apparatus comprises a power conversion circuit, a discharge lamp driving circuit, and a controller, wherein said power conversion circuit converts input power to output DC power, said discharge lamp driving circuit converts said DC power supplied from said power conversion circuit to output AC voltage and AC current, said controller receives a signal including voltage information of said AC voltage and a signal including current information of said AC current and controls said power conversion circuit such that AC power is maintained to be steady-state power of said at least one discharge lamp while a value of said signal including voltage information of said AC voltage is higher than a first predetermined value set between a value of the stable voltage upper limit and a value of the stable voltage lower limit and lower than the value of the stable voltage upper limit, and said AC power is reduced to be maintained lower than the steady-state power while the value of said signal including voltage information of said AC voltage is lower than said first predetermined value and higher than the value of the stable voltage lower limit, and said discharge lamp is connected to the output side of said discharge lamp driving circuit.
  • 7. The discharge lamp apparatus according to claim 6, wherein said AC power is reduced according to the difference between said AC voltage and said first predetermined value.
  • 8. The discharge lamp apparatus according to claim 7, wherein said controller suppresses an increase of said AC current by reducing said AC power.
  • 9. The discharge lamp apparatus according to claim 6, wherein said controller suppresses an increase of said AC current by reducing said AC power.
  • 10. The discharge lamp apparatus according to claim 6, wherein said AC power is maintained at a constant power having a value lower than a value of said steady-state power while the value of the signal including voltage information of said AC voltage is lower than a second predetermined value set between the first predetermined value and the value of the stable voltage lower limit, and higher than the value of the stable voltage lower limit.
  • 11. A discharge lamp lighting apparatus for lighting a discharge lamp having a stable voltage area bounded by a stable voltage upper limit and a stable voltage lower limit, comprising:first means for converting input power to output DC power; second means for converting said DC power supplied from said first means to output AC voltage and AC current; and means for controlling said first means based on voltage information of said AC voltage and current information of said AC current each obtained from said DC power such that AC power is maintained to be steady-state power of said discharge lamp while said voltage information of said AC voltage is higher than a first predetermined value set between a value of the stable voltage upper limit and a value of the stable voltage lower limit and lower than the value of the stable voltage upper limit, and said AC power is reduced to be maintained lower than the steady-state power while said voltage information of said AC voltage is lower than said first predetermined value and higher than the value of the stable voltage lower limit.
  • 12. The discharge lamp lighting apparatus according to claim 11, wherein said AC power is reduced according to the difference between said AC voltage and said first predetermined value.
  • 13. The discharge lamp lighting apparatus according to claim 12, wherein said means for controlling suppresses an increase of said AC current by reducing said AC power.
  • 14. The discharge lamp lighting apparatus according to claim 11, wherein said means for controlling suppresses an increase of said AC current by reducing said AC power.
  • 15. The discharge lamp lighting apparatus according to claim 11, wherein said AC power is maintained at a constant power having a value lower than a value of said steady-state power while the value of the voltage information of said AC voltage is lower than a second predetermined value set between the first predetermined value and the value of the stable voltage lower limit, and higher than the value of the stable voltage lower limit.
Priority Claims (1)
Number Date Country Kind
2001-291761 Sep 2001 JP
US Referenced Citations (13)
Number Name Date Kind
5142203 Oda et al. Aug 1992 A
5151631 Oda et al. Sep 1992 A
5481163 Nakamura et al. Jan 1996 A
5572094 Yamashita et al. Nov 1996 A
5828177 Toda et al. Oct 1998 A
6008594 Kita et al. Dec 1999 A
6153987 Toda et al. Nov 2000 A
6208089 Ito et al. Mar 2001 B1
6281642 Konishi et al. Aug 2001 B1
6340870 Yamashita et al. Jan 2002 B1
6472829 Ito et al. Oct 2002 B2
6531830 Akimoto et al. Mar 2003 B2
6700335 Prasad Mar 2004 B2
Foreign Referenced Citations (1)
Number Date Country
2002-216987 Aug 2002 JP