1. Field of the Invention
The invention relates to a discharge lamp, especially to a discharge lamp of the short arc type which is used, for example, as a light source in UV irradiation treatment in the photochemical industry, in semiconductor manufacture and the like or as a light source in projections, as in a projector or the like.
2. Description of the Prior Art
The cathode 44 has a tapering part 44A which is shaped essentially like a truncated cone, with a diameter which decreases in the direction to the tip end (anode side), and a body part 44B which borders this tapering part 44A extends to the rear in the axial direction, and for example, is cylindrical. The cathode 44 contains an emitter substance such as, for example, thorium or the like.
In such a discharge lamp of the short arc type 40, when the lamp is started, a high voltage, for example, from a few kV to a few dozen kV, is applied between the cathode 44 and the anode 45, by which an insulation breakdown takes place between the cathode 44 and the anode 45. Afterwards, a transition to an arc discharge takes place and the lamp is operated.
The discharge phenomenon when the lamp is started is described specifically below.
Immediately after the insulation breakdown between the cathode 44 and the anode 45 has taken place, an arc start point is formed on the tip surface 46 of the cathode 44. An arc is formed such that it extends in the axial direction between the cathode 44 and the anode 45. The reason for formation of the arc start point on the tip surface 46 of the cathode 44 is described below.
Because the cathode 44 has essentially the shape of a truncated cone in which the tapering part 44A is present and its diameter decreases in the direction to the tip end, an electrical field is concentrated on the tip area, especially on the edge area on the tip surface 46. In this way, the electrons in the tip area become free more easily. Furthermore, after the insulation breakdown has taken place and the arc has been formed, the cathode 44 reaches its highest temperature at its tip area. As becomes apparent from the Richardson-Dushmann equation, there is a tendency for the thermion emission capacity to increase exponentially according to the temperature increase. The electron emission capacity of the tip area becomes greater than in the other area of the cathode 44. For these and similar reasons, the arc start point is formed on the tip surface 46 of the cathode 44.
However, in a discharge lamp of the short arc type 40 with the above described arrangement, as is shown, for example, in
When the start point P of the arc A is formed at the above described position, as was described above, the arc A is formed, for example, such that it extends in the manner of an arc along the inner surface of the arc tube 41. In this way, a state is obtained in which the arc A of the inner surface of the arc tube 41 is approached. Or, depending on the conditions of the arrangement and the operating conditions of the lamp, a state is obtained in which the arc A is in contact with the inner surface of the arc tube 41. As a result, the following disadvantages arise.
The above described fluctuation phenomenon of the arc A occurs more and more distinctly in the course of repeated use of the lamp (on or off operation). The reasons for this are the following:
Various factors like these and similar reasons overall cause formation of the fluctuation phenomenon of the arc A, since the start point P of the arc A moves more often to a position outside of the tip area 46 of the cathode 44.
In view of this disadvantage, technology has been disclosed (see, for example, Japanese patent disclosure document 2003-257363) in which the following is done:
As is shown, for example, in
However, even when using the technology disclosed in JP-A-2003-257363, there are cases in which the arc start point passes beyond the point at the tapering part 51 of the cathode 50 at which, for example, the concave part 55 is formed, the arc start point moves, for example, to the surface position of the body 52 of the cathode 50, and at this point, the arc start point is formed. Therefore, there is the disadvantage that devitrification or damage to the arc tube as a result of the fluctuation phenomenon of the arc cannot be reliably prevented.
The invention was devised to eliminate the above described disadvantage in the prior art. Thus, a primary object of the invention is to devise a discharge lamp in which the formation of the fluctuation phenomenon of the arc when the lamp starts can be reliably prevented, in which, thus, devitrification and damage of the arc tube can be prevented, in which, therefore, the amount of reduction of the light intensity can be kept low, and in which light with a uniform intensity can be reliably obtained over a long time.
The object is achieved in accordance with the invention in a discharge lamp which has an arc tube in which a discharge space is formed and in which a cathode and anode are arranged opposed relationship, in that the cathode has a tapering part with a diameter which decreases in the direction to the tip, that, in this tapering part, an area with different diameters is formed which has concave-convex parts which are formed of groups of convex parts which are located next to one another in the axial direction of the cathode, over the entire periphery in the peripheral direction, that the concave-convex parts, in cross section including the middle axis of the cathode, are arranged such that the corner point of the respective convex part is located on the inside, starting from the edge line of this tapering part, and that, moreover, the envelope curve which connects the respective corner point is convex with respect to the center line of the cathode.
Furthermore, the object is advantageously achieved in a discharge lamp in accordance with the invention in that, in the area with different diameters for the cathode, concave-convex parts are formed at two points at positions which are away from one another in the axial direction.
In the discharge lamp of the invention, the cathode has a tapering part with a diameter which decreases in the direction to the tip. In this tapering part, an area with different diameters is formed which has concave-convex parts with a certain shape over the entire periphery in the peripheral direction of the cathode. By this measure, the electrical field when the lamp starts can be concentrated on the concave-convex parts by the arrangement of the concave-convex parts in themselves, which form the area with different diameters, and by the arrangement of the entire area with different diameters, even if the lamp is repeatedly turned on and off and thus the electron emission capacity in the tip area of the cathode is reduced. There, the start point of the arc formed between the cathode and anode can be reliably prevented from moving in the axial direction to behind this area with different diameters. In this way, formation of the fluctuation phenomenon of the arc can be reliably prevented and as a result, devitrification or damage to the arc tube can be prevented. Therefore, light with a uniform intensity can be reliably emitted over a long time.
Furthermore, by the arrangement in which, in the area with the different diameters for the cathode, the concave-convex parts can be formed at two points at positions which are away from one another in the axial direction, the above described action can be even more reliably achieved.
The invention is further described below with reference to the accompanying drawings.
The discharge lamp of the short arc type 10 has an arc tube 11 which has a bulb 12 which forms, for example, an essentially oval discharge space S, and hermetically sealed portions 13 which border the two ends of this bulb 12 and which extend outward. In this arc tube 11, there is a pair of opposed electrodes, i.e., a cathode 20 and an anode 15, each of which is formed, for example, of tungsten. Moreover, at least one rare gas such as, for example, xenon gas or the like, is contained in the arc tube 11 in a suitable amount. Furthermore, the arc tube 11 is filled, depending on the application of the lamp, with a suitable amount of mercury together with the rare gas. Here, the rare gas with which the arc tube 11 is to be filled is not limited to xenon gas, but argon, krypton, or other rare gases which are conventionally advantageously used can be used. A base 17 is located on the outer end of each hermetically sealed portion 13.
The tip area of the anode 15 has, for example, an essentially hemispherical shape because the electrons which have been emitted from the cathode 20 can thus be captured with high efficiency. The cathode 20 has a tapering part 21 which has the shape of a truncated cone, for example, with a diameter which decreases in the direction toward the tip end, and a cylindrical body part 22 which borders this tapering part 21 and extends to the rear.
In this discharge lamp of the short arc type 10, in the tapering part 21 of the cathode 20, an area with different diameters 30 is formed over the entire periphery in the peripheral direction.
Specifically, the area with different diameters 30 of the cathode 20 is arranged as follows:
The area with different diameters 30 is therefore arranged such that the concave-convex parts 31A, 31B, which each have a certain shape and which are located at two points that are separated from one another in the axial direction by the smooth part 35.
The area with the different diameters 30 of the cathode 20 can be formed, for example, as follows.
At a given point in the tapering part 21 of the cathode 20, an annular groove part (concave part) is formed with a cross section which is essentially trapezoidal and which extends over the entire periphery in the peripheral direction of the cathode 20, for example, using a grinder or the like. In the respective edge area of this annular groove part—in other words, in areas which contain the boundary lines between the surface of the tapering part 21 and the inclined planes of the annular groove part—concave parts 34 are formed so as to extend over the entire periphery in the circumferential direction, for example, by laser machining or the like, of annular grooves with a, for example, essentially V-shaped cross section having a smaller pitch than the annular groove parts. In this way, the bottom of the annular groove part is made as a smooth part 35, and moreover, concave-convex parts 31A, 31B are formed at two points which are spaced apart from one another at opposite sides of this smooth part 35. Thus, an area with different diameters 30 with a given shape is formed. Here, the convex part 33A, which is formed on the back end for the concave-convex part 31A on the tip side, is arranged using the inclined plane of the annular groove part. The annular groove with the V-shaped cross section which is located on the last end is formed, in practice, in the vicinity of the edge area of the annular groove part. This also applies to the concave-convex part 31B on the side of the rear electrode tip end. The convex part 33B which is formed on the outermost tip is arranged using the inclination of the annular groove part.
The depth d1 of the smooth part 35 which forms the area with different diameters 30, proceeding from the surface (edge line) of the tapering part 21 and the depth d2 of the respective concave part 34 for the concave-convex parts 31A, 31B which form the area with different diameters 30, can be set according to the conditions of arrangement and the operating conditions of the lamp in a suitable manner as long as they have magnitudes at which a heating surface can be ensured which is large enough to prevent melting of the tip area.
It is advantageous for the point at which the area with different diameters 30 in the tapering part 21 is formed to be at a point as near as possible to the tip area where a heating surface with a sufficient size is ensured for the area with different diameters 30.
The numerical values in the discharge lamp of the short arc type 10 with the above described arrangement are shown below.
In the case of use as a light source in the field of projection, the amount of added rare gas is fixed to a pressure in the range from 0.1 MPa to 4 MPa at a reference temperature of 300 K. In the case of use as a light source in the field of semiconductor production, the added amount of rare gas is fixed at a pressure in the range from 0.01 MPa to 1 MPa at a reference temperature of 300 K, and the amount of added mercury is 1 mg/cm3 to 100 mg/cm3.
In a discharge lamp of the short arc type 10 with the above described arrangement, the cathode 20 has a tapering part 21 with a diameter which decreases in the direction toward the tip. In the tapering part 21, over the entire periphery in the circumferential direction of the cathode 20, an area with different diameters 30 is formed in which at two different locations concave-convex parts 31A, 31B are formed at a certain distance from one another, separated by a by a smooth part 35. By this measure, an area with a discontinuous field strength is formed in which the continuity of the field strength is interrupted. Thus, the effect of concentration of the electrical field by the annular concave part with a relatively great width which forms the smooth part 35, and the effect of concentration of the electrical field by the concave-convex parts 31A, 31B which have annular grooves with a smaller width than this annular groove part are obtained.
This means that there is an arrangement in which the degree of concentration of the electrical field of the concave-convex parts 31A, 31B which form the area with different diameters 30 is increased. Moreover the smooth part 35 is formed with a greater width than the annular grooves which form the concave-convex parts 31A, 31B, i.e. with a large distance of movement which is required for the passage of the arc start point, bordering the concave-convex part 31A on the tip side. Therefore the arc start point which has moved away from the tip surface 23 can be allowed to remain temporarily in the concave-convex part 31A on the tip side.
For the cathode 50 with the arrangement shown, for example, in
The above described action can be furthermore obtained even more reliably by the arrangement in which in the area with different diameters 30 for the cathode 20, concave-convex parts 31A, 31B with a certain shape are formed at two points that are a distance from one another across the smooth part 35.
One embodiment of the lamp unit of the invention was described above. However, the invention is not limited to the above described version, and various changes can be made.
The shape of the concave-convex parts which form the area with the different diameters in the cathode and the shape of the smooth part are, for example, not especially limited, but the concave-convex parts 31A, 31B which form the areas with the different diameters 30 can also be formed with helical grooves, such as shown, for example, in
It is sufficient if the smooth part which forms the area with different diameters constitutes an area with a field strength which is discontinuous relative to the field strength of the areas provided with the concave-convex parts. In the smooth part, annular grooves or projections which extend in the peripheral direction can also be formed.
It is not necessary for the concave-convex parts which form the area with the different diameters to be formed at two locations. It is sufficient if they border at least the tip end of the cathode in the smooth part.
Experimental examples which were carried out for confirming the action of the invention are described below. However, the invention is not limited to these examples.
According to the arrangement shown in
A discharge lamp of the short arc type of the invention with the same arrangement as lamp A was produced, aside from the use of a cathode with the arrangement described below (see
A discharge lamp of the short arc type was produced for comparison purposes with the same arrangement as lamp A, aside from the use of a cathode with the arrangement described in
A discharge lamp of the short arc type was produced for comparison purposes with the same arrangement as lamp A, aside from the use of a cathode for the lamp A obtained in the above described production example 1 with an arrangement in which there is no area with different diameters. This discharge lamp of the short arc type is called “lamp D” below. The dimensions of the tapering part and the dimensions of the body part of the cathode in this lamp D are identical to the size of the lamp A.
A test in which the above described lamps A to D are each operated for six hours without interruption and are turned off afterwards for two hours, was repeated 150 times. At the instant at which this test had been run for the 50th time, at the instant at which this test had been run for the 100th time, and at the instant at which this test had been run for the 150th time, the frequency of formation of the fluctuation phenomenon of the arc when the lamp was started was visually confirmed. Moreover, at the instant at which this test had been run for the 50th time, at the instant at which this test had been run for the 100th time, and at the instant at which this test had been run for the 150th time, it was visually confirmed whether devitrification of the arc tube had occurred or not. The result is shown below using Table 1. Here, the phrase “frequency of formation of the fluctuation phenomenon of the arc” is defined as the counted frequency with which the start point of the arc has moved from the tip surface of the cathode to the surface position of the bottom part of the cathode when the lamp is started (for example, the frequency with which the state shown in
As was described above, for the lamps a and b in accordance with the invention the following was confirmed:
For comparison purposes, conversely, the following was confirmed in the lamps C and D:
Number | Date | Country | Kind |
---|---|---|---|
2004-057757 | Mar 2004 | JP | national |