Discharge vacuum relief valve for safety vacuum release system

Information

  • Patent Grant
  • 9568005
  • Patent Number
    9,568,005
  • Date Filed
    Friday, December 18, 2015
    8 years ago
  • Date Issued
    Tuesday, February 14, 2017
    7 years ago
Abstract
A discharge vacuum relief valve kit to provide vacuum relief for a SVRS pump in a hydraulic system is provided. The discharge vacuum relief valve kit includes a vacuum vent tube including a first end and a second end, a discharge vacuum relief valve coupled to the first end of the vacuum vent tube, and a vacuum vent screen coupled to the second end of the vacuum vent tube. The discharge vacuum relief valve is coupled to a drain plug opening of the SVRS pump.
Description
BACKGROUND

In swimming pools and spas, safety vacuum release systems (SVRS) have been developed for the removal of suction in a line of the circulation system between the pump and a blocked outlet. SVRS devices can shut down the pump when a blockage is detected at a pool drain and the suction side of the pump in order to relieve suction and prevent body entrapment. If a check valve is installed on a discharge side of the circulation system, for example to prevent the backflow of water, it can also prevent or slow the relief of the suction. As a result, vacuum forces, such as those entrapping a swimmer against a drain of the swimming pool, may remain in place longer than current standards allow. In some swimming pools, the presence of a check valve can render an SVRS device ineffective.


SUMMARY

Some embodiments provide a discharge vacuum relief valve kit to provide vacuum relief for a SVRS pump in a hydraulic system. The discharge vacuum relief valve kit includes a vacuum vent tube including a first end and a second end, a discharge vacuum relief valve coupled to the first end of the vacuum vent tube, and a vacuum vent screen coupled to the second end of the vacuum vent tube. The discharge vacuum relief valve is coupled to a drain plug opening of the SVRS pump.


Some embodiments provide a method of providing discharge vacuum relief for a safety vacuum release system pump in a hydraulic system with discharge check valves. The method includes the steps of providing a discharge vacuum relief valve kit including a vacuum vent tube with a first end and a second end, a discharge vacuum relief valve coupled to the first end of the vacuum vent tube, and a vacuum vent screen coupled to the second end of the vacuum vent tube. Input power to the safety vacuum release system pump is monitored to detect a vacuum event on a suction side of the safety vacuum release system pump. The safety vacuum release system pump is shut down when the vacuum event is detected on the suction side in order to relieve the vacuum event. Pressure is monitored on a discharge side of the safety vacuum release system pump and the discharge side of the safety vacuum release system pump is vented when a vacuum is detected on the discharge side to prevent delayed response time in relieving the vacuum event on the suction side.


Some embodiments provide a method of providing discharge vacuum relief for a safety vacuum release system pump in a hydraulic system with discharge check valves. A vacuum vent tube with a first end and a second end is provided. A discharge vacuum relief valve is coupled to the first end of the vacuum vent tube. The vacuum vent tube is routed upward from its first end. A vacuum vent screen is coupled to the second end of the vacuum vent tube and the safety vacuum release system pump is vented when a vacuum is detected.





DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic view of a hydraulic system with a discharge vacuum relief valve according to one embodiment of the invention.



FIG. 2 is a perspective view of a safety vacuum release system (SVRS) pump for use with the system of FIG. 1.



FIG. 3 is a schematic view of a discharge vacuum relief valve kit coupled to a SVRS pump according to one embodiment of the invention.



FIG. 4 is a perspective view of a discharge vacuum relief valve according to one embodiment of the invention.



FIG. 5 is a partial perspective view of the discharge vacuum relief valve of FIG. 4 coupled to a SVRS pump.



FIG. 6 is a discharge vacuum relief valve kit according to one embodiment of the invention.



FIGS. 7A-7C are front, side, and rear views, respectively, and example dimensions of a discharge vacuum relief valve for use with the discharge vacuum relief valve kit of FIG. 6.



FIGS. 8A-8C are perspective, side, and rear views, respectively, and example dimensions of a vacuum vent screen for use with the discharge vacuum relief valve kit of FIG. 6.



FIGS. 9A and 9B are graphs illustrating time and pressure measurements of a SVRS pump with a discharge vacuum relief valve, in accordance with one embodiment of the invention, and a pump without a discharge vacuum relief valve, respectively.





DETAILED DESCRIPTION

Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.


The following discussion is presented to enable a person skilled in the art to make and use embodiments of the invention. Various modifications to the illustrated embodiments will be readily apparent to those skilled in the art, and the generic principles herein can be applied to other embodiments and applications without departing from embodiments of the invention. Thus, embodiments of the invention are not intended to be limited to embodiments shown, but are to be accorded the widest scope consistent with the principles and features disclosed herein. The following detailed description is to be read with reference to the figures, in which like elements in different figures have like reference numerals. The figures, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of embodiments of the invention. Skilled artisans will recognize the examples provided herein have many useful alternatives and fall within the scope of embodiments of the invention.


Some embodiments of the invention provide a hydraulic system including a pump with a SVRS, discharge check valves, and a discharge vacuum relief valve. The discharge vacuum relief valve can help prevent a vacuum on a suction side of the hydraulic system from being transferred to a discharge side of the hydraulic system, affecting the discharge check valves and interfering with suction relief generated by the SVRS. As a result, the SVRS can react to suction events, such as body entrapment, virtually undisturbed by the presence of the discharge check valves.



FIG. 1 illustrates a hydraulic system 10 in which embodiments of the invention can be used. The hydraulic system 10 can include a swimming pool 12 and/or other water features, such as a waterfall 14. In some embodiments, the hydraulic system 10 can also include a spa (not shown). The hydraulic system 10 can include a main pump 16 and other components such as a filter 18, a solar heating system 20 with a solar pump 22, a heater 24, a chlorine generator 26, a cleaner pump 28 for a pool cleaner 30, a pool light 32, sensors 34, etc. A controller load center 36, including a wired control panel 38 and/or a wireless control panel 40 and a wireless transceiver 42, can control the components of the hydraulic system 10. In other embodiments, the hydraulic system 10 can include more or less components than those shown in FIG. 1.


Water can be directed through the hydraulic system 10 by the pumps 16, 22, 28 and a series of multi-port valves 44. For example, water can be drained from the swimming pool 12 through a main drain 46 and/or a skimmer 48, can be filtered, heated, and/or chlorinated, and then supplied back to the swimming pool 12 through the pool cleaner 30, discharge outlets 50, and/or the waterfall 14. The hydraulic system 10 can also include one or more discharge check valves 52 located at one or more locations along a discharge side of the hydraulic system 10 (e.g., on a discharge or pressure side of the main pump 16, as opposed to a supply or suction side). The discharge check valves 52 can prevent water from draining from the plumbing and equipment located on the discharge side of the hydraulic system 10. For example, the discharge check valve 52 between the heater 24 and the chlorine generator 26 can prevent the backflow of chlorine into the heater 24. In another example, the discharge check valve 52 between the solar heating system 20 and the heater 24 can prevent the backflow of water into the solar heating system 20 when it is not in use.


In some embodiments, the main pump 16 can be a variable speed, SVRS (SVRS) pump, as shown in FIG. 2. The main pump 16 can include a housing 54, a variable speed motor 56, and an on-board controller 58. In one embodiment, the motor 56 can be driven at four or more different speeds. The housing 54 can include an inlet 60, an outlet 62, one or more drain plugs 63, a basket 64, a lid 66, and a stand 68. The stand 68 can support the motor 56 and can be used to mount the main pump 16 on a suitable surface (not shown).


In some embodiments, the on-board controller 58 can be enclosed in a case 70. The case 70 can include a field wiring compartment 72 and a cover 74. The cover 74 can be opened and closed to allow access to the on-board controller 58 and protect it from moisture, dust, and other environmental influences. The case 70 can be mounted on the motor 56. In some embodiments, the field wiring compartment 72 is capable of being coupled to a power supply to provide power to the motor 56 and the on-board controller 58.


In some embodiments, the motor 56 can include a coupling (not shown) to connect to the on-board controller 58. In some embodiments, the on-board controller 58 can automatically operate the main pump 16 according to at least one schedule. In some embodiments, the on-board controller 58 can allow a manual operation of the main pump 16. For example, in some embodiments, the on-board controller 58 can include a manual override. The manual override can interrupt the scheduled and/or manual operation of the main pump 16 to allow for, e.g., cleaning and maintenance procedures.


In some embodiments, the on-board controller 58 can monitor the operation of the main pump 16 and can indicate abnormal conditions of the main pump 16. For example, the on-board controller 58 (e.g., internal software of the on-board controller 58) can include the SVRS in order to stop or shut down the main pump 16 when a vacuum is detected (e.g., due to a blockage such as body entrapment) in order to relieve the vacuum. The SVRS can be used as a protective device to prevent a body entrapment event on suction fittings like the main drain 46 of the swimming pool 12 or a spa. In one embodiment, a vacuum event can be detected by monitoring changes in input power to the motor 56.


In conventional hydraulic systems, when discharge check valves are used in conjunction with a SVRS, they can reduce the reaction time on the SVRS to the point that the release system will not pass the closure times required by pool operating standards and regulations (i.e., the discharge check valves can slow the response time of the SVRS). For example, a typical body entrapment event causes a vacuum level on the suction side of the system to increase very quickly. That vacuum can transfer into the pressure side of the system (i.e., the discharge side) and, when the system is equipped with discharge check valves, that vacuum can increase the sealing force on the discharge check valves and delay the SVRS from recognizing the presence of the body entrapment event and shutting down the pump to relieve the vacuum.


In some embodiments, as shown in FIGS. 1 and 3-7C, the hydraulic system 10 can include a discharge vacuum relief valve 76. The discharge vacuum relief valve 76 can allow the SVRS to function normally despite use of the discharge check valves 52 in the hydraulic system 10. The discharge vacuum relief valve 76 can be a vacuum sensing valve (e.g., a spring-loaded check valve) positioned on the discharge side of the hydraulic system 10. When the discharge vacuum relief valve 76 recognizes a vacuum level, it can open (i.e., provide a vent) in order to let air into the discharge side of the main pump 16, preventing the vacuum from transferring over to the discharge side and delaying detection by the SVRS of the main pump 16. As a result, the SVRS can react undisturbed by the presence of the discharge check valves 52 in the hydraulic system 10.


In some embodiments as shown in FIGS. 3 and 5, the discharge vacuum relief valve 76 can be coupled to a drain plug opening 78 of the main pump 16 (e.g., by removing one of the drain plugs 63). The drain plug opening 78 and the discharge vacuum relief valve 76 can be coupled together via threading on the drain plug opening 78 and threading 75 (as shown in FIGS. 4 and 7B) on the discharge vacuum relief valve 76. As shown in FIGS. 3, 5, and 6, a vacuum vent tube 80 can be coupled to an end 77 of the discharge vacuum relief valve 76 by a compression fit (e.g., with a compression fitting such as a collar 81, a metal ring, a sleeve, or another suitable fitting). The vacuum vent tube 80 can be routed upward from its first end 79 coupled to the discharge vacuum relief valve 76 so that its second, free end 81 is above all bodies of water connected to the main pump 16, as shown in FIG. 3, or at least so that its free end 81 is above a maximum water level in all bodies of water in the hydraulic system 10. In addition, a vacuum vent screen 82 can be coupled to the free end 81 of the vacuum vent tube 80 to protect the discharge vacuum relief valve 76 and the vacuum vent tube 80 from dirt, insects, and other contaminants that could interfere with operation of the discharge vacuum relief valve 76.


In some embodiments, as shown in FIG. 6, the discharge vacuum relief valve 76, the vacuum vent tube 80, and the vacuum vent screen 82 can be provided as a discharge vacuum relief kit 84 to be coupled to a SVRS pump 16 being installed in existing hydraulic systems 10 with discharge check valves 52. For example, in discharge vacuum relief kit 84 of FIG. 6, the vacuum vent tube 80 can be a ⅜-inch thick tube, the vacuum relief valve can include the dimensions shown in FIGS. 7A and 7C, and the vacuum vent screen 82 can include the dimensions shown in FIGS. 8B and 8C. In one embodiment, the vacuum vent screen 82 can include a polyvinyl chloride (PVC) base 86 and a stainless steel mesh screen 88.


In some embodiments, characteristics of the discharge vacuum relief valve 76, such as allowed air flow (e.g., in cubic feet per minute) and pressure rating (e.g., in pounds per square inch) can be selected based on the type of swimming pool and/or spa application or, more generally, on the types of bodies of water in the hydraulic system 10. In one embodiment, the discharge vacuum relief valve 76 can have a pressure vent rating of about 1.5 pounds per square inch.



FIGS. 9A and 9B illustrate discharge pressure and vacuum pressure measured in a SVRS pump 16 with a discharge vacuum relief valve 76 and a SVRS pump without a discharge vacuum relief valve, respectively. As shown in FIGS. 9A and 9B, a vacuum event occurs at time T1, causing both the suction pressure and the discharge pressure to drop. As shown in FIG. 9A, the discharge vacuum relief valve 76 is triggered (i.e., around time T2), relieving the vacuum and causing both the discharge pressure and the suction pressure to ramp upward to about zero. As shown in FIG. 9B, without the presence of the discharge vacuum relieve valve 76, both the discharge pressure and the suction pressure continue to stay in a vacuum state (i.e., are maintained at negative pressures).


It will be appreciated by those skilled in the art that while the invention has been described above in connection with particular embodiments and examples, the invention is not necessarily so limited, and that numerous other embodiments, examples, uses, modifications and departures from the embodiments, examples and uses are intended to be encompassed by the claims attached hereto. The entire disclosure of each patent and publication cited herein is incorporated by reference, as if each such patent or publication were individually incorporated by reference herein. Various features and advantages of the invention are set forth in the following claims.

Claims
  • 1. A method of providing discharge vacuum relief for a safety vacuum release system pump in a hydraulic system with discharge check valves, the method comprising: providing a discharge vacuum relief valve kit including a vacuum vent tube with a first end and a second end, a discharge vacuum relief valve coupled to the first end of the vacuum vent tube, and a vacuum vent screen coupled to the second end of the vacuum vent tube;coupling the discharge vacuum relief valve to a drain plug opening of the safety vacuum release system pump;monitoring input power to the safety vacuum release system pump to detect a vacuum event on a suction side of the safety vacuum release system pump;shutting down the safety vacuum release system pump when the vacuum event is detected on the suction side in order to relieve the vacuum event;monitoring pressure on a discharge side of the safety vacuum release system pump; andventing the discharge side of the safety vacuum release system pump when a vacuum is detected on the discharge side to prevent delayed response time in relieving the vacuum event on the suction side.
  • 2. The method of claim 1 further comprising detecting a vacuum on the discharge side when the monitored pressure is about 1.5 pounds per square inch.
  • 3. The method of claim 1 further comprising monitoring the pressure with the discharge vacuum relief valve and opening the discharge vacuum relief valve when the vacuum is detected in order to vent the discharge side.
  • 4. The method of claim 1 further comprising positioning a free end of the vacuum vent tube above all bodies of water in the hydraulic system.
  • 5. The method of claim 1, wherein the vacuum vent screen includes a polyvinyl chloride base and a stainless steel mesh screen.
  • 6. The method of claim 1, wherein the step of monitoring at least input power to the safety vacuum release system pump to detect a vacuum event includes monitoring a change in input power.
  • 7. A method of providing discharge vacuum relief for a safety vacuum release system pump in a hydraulic system with discharge check valves, the method comprising: providing a vacuum vent tube with a first end and a second, free end;coupling a discharge vacuum relief valve to the first end of the vacuum vent tube;routing the vacuum vent tube upward from its first end so that its second, free end is above a maximum water level in all bodies of water in the hydraulic system;coupling a vacuum vent screen to the second end of the vacuum vent tube; andventing the safety vacuum release system pump when a vacuum is detected.
  • 8. The method of claim 7, wherein the discharge vacuum relief valve is coupled to the first end of the vacuum vent tube by a compression fit.
  • 9. The method of claim 7, wherein the vacuum vent tube is routed upward from its first end so that its second end is above all bodies of water connected to the pump.
  • 10. The method of claim 7 further comprising coupling the discharge vacuum relief valve to a drain plug opening of the safety vacuum release system pump.
  • 11. The method of claim 7 further including the steps of monitoring input power to the safety vacuum release system pump to detect a vacuum event on a suction side of the safety vacuum release system pump, shutting down the safety vacuum release system pump when the vacuum event is detected on the suction side in order to relieve the vacuum event, monitoring pressure on a discharge side of the safety vacuum release system pump, and venting the discharge side of the safety vacuum release system pump when a vacuum is detected on the discharge side to prevent delayed response time in relieving the vacuum event on the suction side.
  • 12. The method of claim 11, wherein the step of monitoring at least input power to the safety vacuum release system pump to detect a vacuum event includes monitoring a change in input power.
  • 13. A method of providing discharge vacuum relief for a safety vacuum release system pump in a hydraulic system with discharge check valves, the method comprising: providing a vacuum vent tube with a first end, a second, free end, and a discharge vacuum relief valve coupled to the first end of the vacuum vent tube;routing the vacuum vent tube upward from its first end so that its second, free end is above a maximum water level in all bodies of water in the hydraulic system; andventing the safety vacuum release system pump when a vacuum is detected.
  • 14. The method of claim 13, wherein the discharge vacuum relief valve is coupled to the first end of the vacuum vent tube by a compression fit.
  • 15. The method of claim 13, wherein the vacuum vent tube is routed upward from its first end so that its second end is above all bodies of water connected to the pump.
  • 16. The method of claim 13, further comprising the step of coupling the discharge vacuum relief valve to a drain plug opening of the safety vacuum release system pump.
  • 17. The method of claim 13, further including the steps of monitoring input power to the safety vacuum release system pump to detect a vacuum event on a suction side of the safety vacuum release system pump, shutting down the safety vacuum release system pump when the vacuum event is detected on the suction side in order to relieve the vacuum event, monitoring pressure on a discharge side of the safety vacuum release system pump, and venting the discharge side of the safety vacuum release system pump when a vacuum is detected on the discharge side to prevent delayed response time in relieving the vacuum event on the suction side.
  • 18. The method of claim 17, wherein the step of monitoring at least input power to the safety vacuum release system pump to detect a vacuum event includes monitoring a change in input power.
RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application No. 61/421,069 filed on Dec. 8, 2010, and U.S. patent application Ser. No. 13/314,798 filed on Dec. 8, 2011, the entire contents of which are incorporated herein by reference.

US Referenced Citations (913)
Number Name Date Kind
981213 Mollitor Jan 1911 A
1993267 Ferguson Mar 1935 A
2238597 Page Apr 1941 A
2458006 Kilgore Jan 1949 A
2488365 Abbott et al. Nov 1949 A
2494200 Ramqvist Jan 1950 A
2615937 Ludwig Oct 1952 A
2716195 Anderson Aug 1955 A
2767277 Wirth Oct 1956 A
2778958 Hamm et al. Jan 1957 A
2881337 Wall Apr 1959 A
3116445 Wright Dec 1963 A
3191935 Uecker Jun 1965 A
3204423 Resh, Jr. Sep 1965 A
3213304 Landerg et al. Oct 1965 A
3226620 Elliott et al. Dec 1965 A
3227808 Morris Jan 1966 A
3291058 McFarlin Dec 1966 A
3316843 Vaughan May 1967 A
3481973 Wygant Dec 1969 A
3530348 Connor Sep 1970 A
3558910 Dale et al. Jan 1971 A
3559731 Stafford Feb 1971 A
3562614 Gramkow Feb 1971 A
3566225 Paulson Feb 1971 A
3573579 Lewus Apr 1971 A
3581895 Howard et al. Jun 1971 A
3593081 Forst Jul 1971 A
3594623 LaMaster Jul 1971 A
3596158 Watrous Jul 1971 A
3613805 Lindstad Oct 1971 A
3624470 Johnson Nov 1971 A
3634842 Niedermeyer Jan 1972 A
3652912 Bordonaro Mar 1972 A
3671830 Kruger Jun 1972 A
3726606 Peters Apr 1973 A
1061919 Miller May 1973 A
3735233 Ringle May 1973 A
3737749 Schmit Jun 1973 A
3753072 Jurgens Aug 1973 A
3761750 Green Sep 1973 A
3761792 Whitney Sep 1973 A
3777232 Woods et al. Dec 1973 A
3778804 Adair Dec 1973 A
3780759 Yahle et al. Dec 1973 A
3781925 Curtis Jan 1974 A
3787882 Fillmore Jan 1974 A
3792324 Suarez Feb 1974 A
3800205 Zalar Mar 1974 A
3814544 Roberts et al. Jun 1974 A
3838597 Montgomery et al. Oct 1974 A
3867071 Hartley Feb 1975 A
3882364 Wright May 1975 A
3902369 Metz Sep 1975 A
3910725 Rule Oct 1975 A
3913342 Barry Oct 1975 A
3916274 Lewus Oct 1975 A
3941507 Niedermeyer Mar 1976 A
3949782 Athey et al. Apr 1976 A
3953777 McKee Apr 1976 A
3956760 Edwards May 1976 A
3963375 Curtis Jun 1976 A
3972647 Niedermeyer Aug 1976 A
3976919 Vandevier Aug 1976 A
3987240 Schultz Oct 1976 A
4000446 Vandevier Dec 1976 A
4021700 Ellis-Anwyl May 1977 A
4041470 Slane et al. Aug 1977 A
4061442 Clark et al. Dec 1977 A
4087204 Niedermeyer May 1978 A
4108574 Bartley et al. Aug 1978 A
4123792 Gephart et al. Oct 1978 A
4133058 Baker Jan 1979 A
4142415 Jung et al. Mar 1979 A
4151080 Zuckerman et al. Apr 1979 A
4168413 Halpine Sep 1979 A
4169377 Scheib Oct 1979 A
4182363 Fuller et al. Jan 1980 A
4185187 Rogers Jan 1980 A
4187503 Walton Feb 1980 A
4206634 Taylor Jun 1980 A
4215975 Niedermeyer Aug 1980 A
4222711 Mayer Sep 1980 A
4225290 Allington Sep 1980 A
4228427 Niedermeyer Oct 1980 A
4233553 Prince Nov 1980 A
4241299 Bertone Dec 1980 A
4255747 Bunia Mar 1981 A
4263535 Jones Apr 1981 A
4276454 Zathan Jun 1981 A
4286303 Genheimer et al. Aug 1981 A
4303203 Avery Dec 1981 A
4307327 Streater et al. Dec 1981 A
4309157 Niedermeyer Jan 1982 A
4314478 Beaman Feb 1982 A
4319712 Bar Mar 1982 A
4322297 Bajka Mar 1982 A
4330412 Frederick May 1982 A
4353220 Curwein Oct 1982 A
4366426 Turlej Dec 1982 A
4369438 Wilhelmi Jan 1983 A
4370098 McClain et al. Jan 1983 A
4370690 Baker Jan 1983 A
4371315 Shikasho Feb 1983 A
4375613 Fuller et al. Mar 1983 A
4384825 Thomas et al. May 1983 A
4399394 Ballman Aug 1983 A
4402094 Sanders Sep 1983 A
4409532 Hollenbeck Oct 1983 A
4419625 Bejot et al. Dec 1983 A
4420787 Tibbits et al. Dec 1983 A
4421643 Frederick Dec 1983 A
4425836 Pickrell Jan 1984 A
4427545 Arguilez Jan 1984 A
4428434 Gelaude Jan 1984 A
4429343 Freud Jan 1984 A
4437133 Rueckert Mar 1984 A
4448072 Tward May 1984 A
4449260 Whitaker May 1984 A
4453118 Phillips Jun 1984 A
4456432 Mannino Jun 1984 A
4462758 Speed Jul 1984 A
4463304 Miller Jul 1984 A
4468604 Zaderej Aug 1984 A
4470092 Lombardi Sep 1984 A
4473338 Garmong Sep 1984 A
4494180 Streater Jan 1985 A
4496895 Kawate et al. Jan 1985 A
4504773 Suzuki et al. Mar 1985 A
4505643 Millis et al. Mar 1985 A
D278529 Hoogner Apr 1985 S
4514989 Mount May 1985 A
4520303 Ward May 1985 A
4529359 Sloan Jul 1985 A
4541029 Ohyama Sep 1985 A
4545906 Frederick Oct 1985 A
4552512 Gallup et al. Nov 1985 A
4564041 Kramer Jan 1986 A
4564882 Baxter Jan 1986 A
4581900 Lowe Apr 1986 A
4604563 Min Aug 1986 A
4605888 Kim Aug 1986 A
4610605 Hartley Sep 1986 A
4620835 Bell Nov 1986 A
4622506 Shemanske Nov 1986 A
4635441 Ebbing et al. Jan 1987 A
4647825 Profio et al. Mar 1987 A
4651077 Woyski Mar 1987 A
4652802 Johnston Mar 1987 A
4658195 Min Apr 1987 A
4658203 Freymuth Apr 1987 A
4668902 Zeller, Jr. May 1987 A
4670697 Wrege Jun 1987 A
4676914 Mills et al. Jun 1987 A
4678404 Lorett et al. Jul 1987 A
4678409 Kurokawa Jul 1987 A
4686439 Cunningham Aug 1987 A
4695779 Yates Sep 1987 A
4697464 Martin Oct 1987 A
4703387 Mller Oct 1987 A
4705629 Weir Nov 1987 A
4716605 Shepherd Jan 1988 A
4719399 Wrege Jan 1988 A
4728882 Stanbro Mar 1988 A
4751449 Chmiel Jun 1988 A
4751450 Lorenz Jun 1988 A
4758697 Jeuneu Jul 1988 A
4761601 Zaderej Aug 1988 A
4764417 Gulya Aug 1988 A
4764714 Alley Aug 1988 A
4766329 Santiago Aug 1988 A
4767280 Markuson Aug 1988 A
4780050 Caine et al. Oct 1988 A
4781525 Hubbard Nov 1988 A
4782278 Bossi Nov 1988 A
4786850 Chmiel Nov 1988 A
4789307 Sloan Dec 1988 A
4795314 Prybella et al. Jan 1989 A
4801858 Min Jan 1989 A
4804901 Pertessis Feb 1989 A
4806457 Yanagisawa Feb 1989 A
4820964 Kadah Apr 1989 A
4827197 Giebler May 1989 A
4834624 Jensen May 1989 A
4837656 Barnes Jun 1989 A
4839571 Farnham Jun 1989 A
4841404 Marshall et al. Jun 1989 A
4843295 Thompson Jun 1989 A
4862053 Jordan Aug 1989 A
4864287 Kierstead Sep 1989 A
4885655 Springer et al. Dec 1989 A
4891569 Light Jan 1990 A
4896101 Cobb Jan 1990 A
4907610 Meincke Mar 1990 A
4912936 Denpou Apr 1990 A
4913625 Gerlowski Apr 1990 A
4949748 Chatrathi Aug 1990 A
4958118 Pottebaum Sep 1990 A
4963778 Jensen Oct 1990 A
4967131 Kim Oct 1990 A
4971522 Butlin Nov 1990 A
4975798 Edwards et al. Dec 1990 A
4977394 Manson et al. Dec 1990 A
4985181 Strada et al. Jan 1991 A
4986919 Allington Jan 1991 A
4996646 Farrington Feb 1991 A
D315315 Stairs, Jr. Mar 1991 S
4998097 Noth et al. Mar 1991 A
5015151 Snyder, Jr. et al. May 1991 A
5015152 Greene May 1991 A
5017853 Chmiel May 1991 A
5026256 Kuwabara Jun 1991 A
5041771 Min Aug 1991 A
5051068 Wong Sep 1991 A
5051681 Schwarz Sep 1991 A
5076761 Krohn Dec 1991 A
5076763 Anastos et al. Dec 1991 A
5079784 Rist et al. Jan 1992 A
5091817 Alley Feb 1992 A
5098023 Burke Mar 1992 A
5099181 Canon Mar 1992 A
5100298 Shibata Mar 1992 A
RE33874 Miller Apr 1992 E
5103154 Dropps Apr 1992 A
5117233 Hamos et al. May 1992 A
5123080 Gillett Jun 1992 A
5129264 Lorenc Jul 1992 A
5135359 Dufresne Aug 1992 A
5145323 Farr Sep 1992 A
5151017 Sears et al. Sep 1992 A
5154821 Reid Oct 1992 A
5156535 Budris Oct 1992 A
5158436 Jensen Oct 1992 A
5159713 Gaskell Oct 1992 A
5164651 Hu Nov 1992 A
5166595 Leverich Nov 1992 A
5167041 Burkitt Dec 1992 A
5172089 Wright et al. Dec 1992 A
D334542 Lowe Apr 1993 S
5206573 McCleer et al. Apr 1993 A
5222867 Walker, Sr. et al. Jun 1993 A
5234286 Wagner Aug 1993 A
5234319 Wilder Aug 1993 A
5235235 Martin Aug 1993 A
5238369 Farr Aug 1993 A
5240380 Mabe Aug 1993 A
5245272 Herbert Sep 1993 A
5247236 Schroeder Sep 1993 A
5255148 Yeh Oct 1993 A
5272933 Collier Dec 1993 A
5295790 Bossart et al. Mar 1994 A
5295857 Toly Mar 1994 A
5296795 Dropps Mar 1994 A
5302885 Schwarz Apr 1994 A
5319298 Wanzong et al. Jun 1994 A
5324170 Anastos et al. Jun 1994 A
5327036 Carey Jul 1994 A
5342176 Redlich Aug 1994 A
5347664 Hamza et al. Sep 1994 A
5349281 Bugaj Sep 1994 A
5351709 Vos Oct 1994 A
5351714 Barnowski Oct 1994 A
5352969 Gilmore et al. Oct 1994 A
5361215 Tompkins Nov 1994 A
5363912 Wolcott Nov 1994 A
5394748 McCarthy Mar 1995 A
5418984 Livingston, Jr. May 1995 A
D359458 Pierret Jun 1995 S
5422014 Allen et al. Jun 1995 A
5423214 Lee Jun 1995 A
5425624 Williams Jun 1995 A
5443368 Weeks et al. Aug 1995 A
5444354 Takahashi Aug 1995 A
5449274 Kochan, Jr. Sep 1995 A
5449997 Gilmore et al. Sep 1995 A
5450316 Gaudet et al. Sep 1995 A
D363060 Hunger Oct 1995 S
5457373 Heppe et al. Oct 1995 A
5471125 Wu Nov 1995 A
5473497 Beatty Dec 1995 A
5483229 Tamura et al. Jan 1996 A
5495161 Hunter Feb 1996 A
5499902 Rockwood Mar 1996 A
5511397 Makino et al. Apr 1996 A
5512809 Banks et al. Apr 1996 A
5512883 Lane Apr 1996 A
5518371 Wellstein May 1996 A
5519848 Wloka May 1996 A
5520517 Sipin May 1996 A
5522707 Potter Jun 1996 A
5528120 Brodetsky Jun 1996 A
5529462 Hawes Jun 1996 A
5532635 Watrous Jul 1996 A
5540555 Corso et al. Jul 1996 A
D372719 Jensen Aug 1996 S
5545012 Anastos et al. Aug 1996 A
5548854 Bloemer et al. Aug 1996 A
5549456 Burrill Aug 1996 A
5550497 Carobolante Aug 1996 A
5550753 Tompkins et al. Aug 1996 A
5559418 Burkhart Sep 1996 A
5559720 Tompkins Sep 1996 A
5559762 Sakamoto Sep 1996 A
5561357 Schroeder Oct 1996 A
5562422 Ganzon et al. Oct 1996 A
5563759 Nadd Oct 1996 A
D375908 Schumaker Nov 1996 S
5570481 Mathis et al. Nov 1996 A
5571000 Zimmerman Nov 1996 A
5577890 Nielson et al. Nov 1996 A
5580221 Triezenberg Dec 1996 A
5582017 Noji et al. Dec 1996 A
5589753 Kadah Dec 1996 A
5592062 Bach Jan 1997 A
5598080 Jensen Jan 1997 A
5601413 Langley Feb 1997 A
5604491 Coonley et al. Feb 1997 A
5614812 Wagoner Mar 1997 A
5616239 Wandell et al. Apr 1997 A
5618460 Fowler Apr 1997 A
5622223 Vasquez Apr 1997 A
5624237 Prescott et al. Apr 1997 A
5626464 Schoenmeyr May 1997 A
5628896 Klingenberger May 1997 A
5629601 Feldstein May 1997 A
5632468 Schoenmeyr May 1997 A
5633540 Moan May 1997 A
5640078 Kou et al. Jun 1997 A
5654504 Smith et al. Aug 1997 A
5654620 Langhorst Aug 1997 A
5669323 Pritchard Sep 1997 A
5672050 Webber et al. Sep 1997 A
5682624 Ciochetti Nov 1997 A
5690476 Miller Nov 1997 A
5708348 Frey et al. Jan 1998 A
5711483 Hays Jan 1998 A
5712795 Layman et al. Jan 1998 A
5713320 Pfaff et al. Feb 1998 A
5727933 Laskaris et al. Mar 1998 A
5730861 Sterghos Mar 1998 A
5731673 Gilmore Mar 1998 A
5736884 Ettes et al. Apr 1998 A
5739648 Ellis et al. Apr 1998 A
5744921 Makaran Apr 1998 A
5754036 Walker May 1998 A
5754421 Nystrom May 1998 A
5767606 Bresolin Jun 1998 A
5775592 Goldsmith Jul 1998 A
5777833 Romillon Jul 1998 A
5780992 Beard Jul 1998 A
5791882 Stucker Aug 1998 A
5796234 Vrionis Aug 1998 A
5802910 Krahn et al. Sep 1998 A
5804080 Klingenberger Sep 1998 A
5808441 Nehring Sep 1998 A
5814966 Williamson Sep 1998 A
5818708 Wong Oct 1998 A
5818714 Zou Oct 1998 A
5819848 Ramusson Oct 1998 A
5820350 Mantey et al. Oct 1998 A
5828200 Ligman et al. Oct 1998 A
5833437 Kurth et al. Nov 1998 A
5836271 Saski Nov 1998 A
5845225 Mosher Dec 1998 A
5856783 Gibb Jan 1999 A
5863185 Cochimin et al. Jan 1999 A
5883489 Konrad Mar 1999 A
5892349 Bogwicz Apr 1999 A
5894609 Barnett Apr 1999 A
5898958 Hall May 1999 A
5906479 Hawes May 1999 A
5907281 Miller, Jr. et al. May 1999 A
5909352 Klabunde et al. Jun 1999 A
5909372 Thybo Jun 1999 A
5914881 Trachier Jun 1999 A
5920264 Kim et al. Jul 1999 A
5930092 Nystrom Jul 1999 A
5941690 Lin Aug 1999 A
5944444 Motz et al. Aug 1999 A
5945802 Konrad Aug 1999 A
5946469 Chidester Aug 1999 A
5947689 Schick Sep 1999 A
5947700 McKain et al. Sep 1999 A
5959534 Campbell Sep 1999 A
5961291 Sakagami et al. Oct 1999 A
5969958 Nielsen Oct 1999 A
5973465 Rayner Oct 1999 A
5973473 Anderson Oct 1999 A
5977732 Matsumoto Nov 1999 A
5983146 Sarbach Nov 1999 A
5986433 Peele et al. Nov 1999 A
5987105 Jenkins et al. Nov 1999 A
5991939 Mulvey Nov 1999 A
6030180 Clarey et al. Feb 2000 A
6037742 Rasmussen Mar 2000 A
6043461 Holling et al. Mar 2000 A
6045331 Gehm et al. Apr 2000 A
6045333 Breit Apr 2000 A
6046492 Machida Apr 2000 A
6048183 Meza Apr 2000 A
6056008 Adams et al. May 2000 A
6059536 Stingl May 2000 A
6065946 Lathrop May 2000 A
6072291 Pedersen Jun 2000 A
6081751 Luo Jun 2000 A
6091604 Plougsgaard Jul 2000 A
6092992 Imblum Jul 2000 A
D429699 Davis Aug 2000 S
D429700 Liebig Aug 2000 S
6094764 Veloskey et al. Aug 2000 A
6098654 Cohen et al. Aug 2000 A
6102665 Centers et al. Aug 2000 A
6110322 Teoh et al. Aug 2000 A
6116040 Stark Sep 2000 A
6121746 Fishers Sep 2000 A
6121749 Wills et al. Sep 2000 A
6125481 Sicilano Oct 2000 A
6125883 Creps et al. Oct 2000 A
6142741 Nishihata Nov 2000 A
6146108 Mullendore Nov 2000 A
6150776 Potter et al. Nov 2000 A
6157304 Bennett et al. Dec 2000 A
6164132 Matulek Dec 2000 A
6171073 McKain et al. Jan 2001 B1
6178393 Irvin Jan 2001 B1
6184650 Gelbman Feb 2001 B1
6188200 Maiorano Feb 2001 B1
6198257 Belehradek et al. Mar 2001 B1
6199224 Versland Mar 2001 B1
6203282 Morin Mar 2001 B1
6208112 Jensen et al. Mar 2001 B1
6212956 Donald Apr 2001 B1
6213724 Haugen Apr 2001 B1
6216814 Fujita et al. Apr 2001 B1
6222355 Ohshima Apr 2001 B1
6227808 McDonough May 2001 B1
6232742 Wachnov May 2001 B1
6236177 Zick May 2001 B1
6238188 Lifson May 2001 B1
6247429 Hara Jun 2001 B1
6249435 Vicente et al. Jun 2001 B1
6251285 Clochetti Jun 2001 B1
6253227 Tompkins et al. Jun 2001 B1
D445405 Schneider Jul 2001 S
6254353 Polo Jul 2001 B1
6257304 Jacobs et al. Jul 2001 B1
6257833 Bates Jul 2001 B1
6259617 Wu Jul 2001 B1
6264431 Trizenberg Jul 2001 B1
6264432 Kilayko et al. Jul 2001 B1
6280611 Henkin et al. Aug 2001 B1
6282370 Cline et al. Aug 2001 B1
6298721 Schuppe et al. Oct 2001 B1
6299414 Schoenmeyr Oct 2001 B1
6299699 Porat et al. Oct 2001 B1
6318093 Gaudet et al. Nov 2001 B2
6320348 Kadah Nov 2001 B1
6326752 Jensen et al. Dec 2001 B1
6329784 Puppin Dec 2001 B1
6330525 Hays Dec 2001 B1
6342841 Stingl Jan 2002 B1
6349268 Ketonen et al. Feb 2002 B1
6350105 Kobayashi et al. Feb 2002 B1
6351359 Jager Feb 2002 B1
6354805 Moeller Mar 2002 B1
6356464 Balakrishnan Mar 2002 B1
6356853 Sullivan Mar 2002 B1
6362591 Moberg Mar 2002 B1
6364620 Fletcher et al. Apr 2002 B1
6364621 Yamauchi Apr 2002 B1
6366053 Belehradek Apr 2002 B1
6366481 Balakrishnan Apr 2002 B1
6369463 Maiorano Apr 2002 B1
6373204 Peterson Apr 2002 B1
6373728 Aarestrup Apr 2002 B1
6374854 Acosta Apr 2002 B1
6375430 Eckert et al. Apr 2002 B1
6380707 Rosholm Apr 2002 B1
6388642 Cotis May 2002 B1
6390781 McDonough May 2002 B1
6406265 Hahn Jun 2002 B1
6411481 Seubert Jun 2002 B1
6415808 Joshi Jul 2002 B2
6416295 Nagai Jul 2002 B1
6426633 Thybo Jul 2002 B1
6443715 Mayleben et al. Sep 2002 B1
6445565 Toyoda et al. Sep 2002 B1
6447446 Smith et al. Sep 2002 B1
6448713 Farkas et al. Sep 2002 B1
6450771 Centers Sep 2002 B1
6462971 Balakrishnan et al. Oct 2002 B1
6464464 Sabini Oct 2002 B2
6468042 Moller Oct 2002 B2
6468052 McKain et al. Oct 2002 B2
6474949 Arai Nov 2002 B1
6481973 Struthers Nov 2002 B1
6483278 Harvest Nov 2002 B2
6483378 Blodgett Nov 2002 B2
6490920 Netzer Dec 2002 B1
6493227 Nielson et al. Dec 2002 B2
6496392 Odel Dec 2002 B2
6499961 Wyatt Dec 2002 B1
6501629 Mariott Dec 2002 B1
6503063 Brunsell Jan 2003 B1
6504338 Eichorn Jan 2003 B1
6520010 Bergveld Feb 2003 B1
6522034 Nakayama Feb 2003 B1
6523091 Tirumala Feb 2003 B2
6527518 Ostrowski Mar 2003 B2
6534940 Bell et al. Mar 2003 B2
6534947 Johnson Mar 2003 B2
6537032 Horiuchi Mar 2003 B1
6538908 Balakrishnan et al. Mar 2003 B2
6539797 Livingston Apr 2003 B2
6543940 Chu Apr 2003 B2
6548976 Jensen Apr 2003 B2
6564627 Sabini May 2003 B1
6570778 Lipo et al. May 2003 B2
6571807 Jones Jun 2003 B2
6590188 Cline Jul 2003 B2
6591697 Henyan Jul 2003 B2
6591863 Ruschell Jul 2003 B2
6595051 Chandler, Jr. Jul 2003 B1
6595762 Khanwilkar et al. Jul 2003 B2
6604909 Schoenmeyr Aug 2003 B2
6607360 Fong Aug 2003 B2
6616413 Humphries Sep 2003 B2
6623245 Meza et al. Sep 2003 B2
6626840 Drzewiecki Sep 2003 B2
6628501 Toyoda Sep 2003 B2
6632072 Lipscomb et al. Oct 2003 B2
6636135 Vetter Oct 2003 B1
6638023 Scott Oct 2003 B2
D482664 Hunt Nov 2003 S
6643153 Balakrishnan Nov 2003 B2
6651900 Yoshida Nov 2003 B1
6663349 Discenzo et al. Dec 2003 B1
6665200 Goto Dec 2003 B2
6672147 Mazet Jan 2004 B1
6675912 Carrier Jan 2004 B2
6676382 Leighton et al. Jan 2004 B2
6676831 Wolfe Jan 2004 B2
6687141 Odell Feb 2004 B2
6687923 Dick Feb 2004 B2
6690250 Moller Feb 2004 B2
6696676 Graves et al. Feb 2004 B1
6700333 Hirshi et al. Mar 2004 B1
6709240 Schmalz Mar 2004 B1
6709241 Sabini Mar 2004 B2
6709575 Verdegan Mar 2004 B1
6715996 Moeller Apr 2004 B2
6717318 Mathiasssen Apr 2004 B1
6732387 Waldron May 2004 B1
6737905 Noda May 2004 B1
D490726 Eungprabhanth Jun 2004 S
6742387 Hamamoto Jun 2004 B2
6747367 Cline et al. Jun 2004 B2
6761067 Capano Jul 2004 B1
6768279 Skinner Jul 2004 B1
6770043 Kahn Aug 2004 B1
6774664 Godbersen Aug 2004 B2
6776038 Horton et al. Aug 2004 B1
6776584 Sabini et al. Aug 2004 B2
6778868 Imamura et al. Aug 2004 B2
6779205 Mulvey Aug 2004 B2
6782309 Laflamme Aug 2004 B2
6783328 Lucke Aug 2004 B2
6789024 Kochan, Jr. et al. Sep 2004 B1
6794921 Abe Sep 2004 B2
6797164 Leaverton Sep 2004 B2
6798271 Swize Sep 2004 B2
6799950 Meier et al. Oct 2004 B2
6806677 Kelly et al. Oct 2004 B2
6833072 Krestine Dec 2004 B1
6837688 Kimberlin et al. Jan 2005 B2
6842117 Keown Jan 2005 B2
6847130 Belehradek et al. Jan 2005 B1
6847854 Discenzo Jan 2005 B2
6854479 Harwood Feb 2005 B2
6863502 Bishop et al. Mar 2005 B2
6867383 Currier Mar 2005 B1
6875961 Collins Apr 2005 B1
6882165 Ogura Apr 2005 B2
6884022 Albright Apr 2005 B2
D504900 Wang May 2005 S
D505429 Wang May 2005 S
6888537 Benson et al. May 2005 B2
6895608 Goettl May 2005 B2
6900736 Crumb May 2005 B2
6906482 Shimizu Jun 2005 B2
D507243 Miller Jul 2005 S
6914793 Balakrishnan Jul 2005 B2
6922348 Nakajima Jul 2005 B2
6925823 Lifson Aug 2005 B2
6933693 Schuchmann Aug 2005 B2
6941785 Haynes et al. Sep 2005 B2
6943325 Pittman Sep 2005 B2
D511530 Wang Nov 2005 S
D512026 Nurmi Nov 2005 S
6965815 Tompkins et al. Nov 2005 B1
6966967 Curry Nov 2005 B2
D512440 Wang Dec 2005 S
6973794 Street Dec 2005 B2
6973974 McLoughlin et al. Dec 2005 B2
6976052 Tompkins et al. Dec 2005 B2
D513737 Riley Jan 2006 S
6981399 Nybo et al. Jan 2006 B1
6981402 Bristol Jan 2006 B2
6984158 Satoh Jan 2006 B2
6989649 Mehlhorn Jan 2006 B2
6993414 Shah Jan 2006 B2
6998807 Phillips Feb 2006 B2
6998977 Gregori et al. Feb 2006 B2
7005818 Jensen Feb 2006 B2
7012394 Moore et al. Mar 2006 B2
7015599 Gull et al. Mar 2006 B2
7040107 Lee et al. May 2006 B2
7042192 Mehlhorn May 2006 B2
7050278 Poulsen May 2006 B2
7055189 Goettl Jun 2006 B2
7070134 Hoyer Jul 2006 B1
7077781 Ishikawa Jul 2006 B2
7080508 Stavale Jul 2006 B2
7081728 Kemp Jul 2006 B2
7083392 Meza et al. Aug 2006 B2
7089607 Barnes et al. Aug 2006 B2
7100632 Harwood Sep 2006 B2
7102505 Kates Sep 2006 B2
7112037 Sabini et al. Sep 2006 B2
7114926 Oshita Oct 2006 B2
7117120 Beck et al. Oct 2006 B2
7141210 Bell Nov 2006 B2
7142932 Spria et al. Nov 2006 B2
D533512 Nakashima Dec 2006 S
7163380 Jones Jan 2007 B2
7172366 Bishop, Jr. Feb 2007 B1
7178179 Barnes Feb 2007 B2
7183741 Mehlhorn Feb 2007 B2
7195462 Nybo et al. Mar 2007 B2
7201563 Studebaker Apr 2007 B2
7221121 Skaug May 2007 B2
7244106 Kallaman Jul 2007 B2
7245105 Joo Jul 2007 B2
7259533 Yang et al. Aug 2007 B2
7264449 Harned et al. Sep 2007 B1
7281958 Schuttler et al. Oct 2007 B2
7292898 Clark et al. Nov 2007 B2
7307538 Kochan, Jr. Dec 2007 B2
7309216 Spadola et al. Dec 2007 B1
7318344 Heger Jan 2008 B2
D562349 Butler Feb 2008 S
7327275 Brochu Feb 2008 B2
7339126 Niedermeyer Mar 2008 B1
D567189 Stiles, Jr. Apr 2008 S
7352550 Mladenik Apr 2008 B2
7375940 Bertrand May 2008 B1
7388348 Mattichak Jun 2008 B2
7407371 Leone Aug 2008 B2
7427844 Mehlhorn Sep 2008 B2
7429842 Schulman et al. Sep 2008 B2
7437215 Anderson et al. Oct 2008 B2
D582797 Fraser Dec 2008 S
D583828 Li Dec 2008 S
7458782 Spadola et al. Dec 2008 B1
7459886 Potanin et al. Dec 2008 B1
7484938 Allen Feb 2009 B2
7516106 Ehlers Apr 2009 B2
7525280 Fagan et al. Apr 2009 B2
7528579 Pacholok et al. May 2009 B2
7542251 Ivankovic Jun 2009 B2
7542252 Chan et al. Jun 2009 B2
7572108 Koehl Aug 2009 B2
7612510 Koehl Nov 2009 B2
7612529 Kochan, Jr. Nov 2009 B2
7623986 Miller Nov 2009 B2
7641449 Iimura et al. Jan 2010 B2
7652441 Ho Jan 2010 B2
7686587 Koehl Mar 2010 B2
7686589 Stiles et al. Mar 2010 B2
7690897 Branecky Apr 2010 B2
7700887 Niedermeyer Apr 2010 B2
7704051 Koehl Apr 2010 B2
7727181 Rush Jun 2010 B2
7739733 Szydlo Jun 2010 B2
7746063 Sabini et al. Jun 2010 B2
7751159 Koehl Jul 2010 B2
7755318 Panosh Jul 2010 B1
7775327 Abraham Aug 2010 B2
7777435 Aguilar Aug 2010 B2
7788877 Andras Sep 2010 B2
7795824 Shen et al. Sep 2010 B2
7808211 Pacholok et al. Oct 2010 B2
7815420 Koehl Oct 2010 B2
7821215 Koehl Oct 2010 B2
7845913 Stiles et al. Dec 2010 B2
7854597 Stiles et al. Dec 2010 B2
7857600 Koehl Dec 2010 B2
7874808 Stiles Jan 2011 B2
7878766 Meza Feb 2011 B2
7900308 Erlich Mar 2011 B2
7925385 Stavale et al. Apr 2011 B2
7931447 Levin et al. Apr 2011 B2
7945411 Kernan et al. May 2011 B2
7976284 Koehl Jul 2011 B2
7983877 Koehl Jul 2011 B2
7990091 Koehl Aug 2011 B2
8011895 Ruffo Sep 2011 B2
8019479 Stiles Sep 2011 B2
8032256 Wolf et al. Oct 2011 B1
8043070 Stiles Oct 2011 B2
8049464 Muntermann Nov 2011 B2
8098048 Hoff Jan 2012 B2
8104110 Caudill et al. Jan 2012 B2
8126574 Discenzo et al. Feb 2012 B2
8133034 Mehlhorn et al. Mar 2012 B2
8134336 Michalske et al. Mar 2012 B2
8177520 Mehlhorn May 2012 B2
8281425 Cohen Oct 2012 B2
8303260 Stavale et al. Nov 2012 B2
8313306 Stiles et al. Nov 2012 B2
8316152 Geltner et al. Nov 2012 B2
8317485 Meza et al. Nov 2012 B2
8337166 Meza et al. Dec 2012 B2
8380355 Mayleben et al. Feb 2013 B2
8405346 Trigiani Mar 2013 B2
8405361 Richards et al. Mar 2013 B2
8444394 Koehl May 2013 B2
8465262 Stiles et al. Jun 2013 B2
8469675 Stiles et al. Jun 2013 B2
8480373 Stiles et al. Jul 2013 B2
8500413 Stiles et al. Aug 2013 B2
8540493 Koehl Sep 2013 B2
8547065 Trigiani Oct 2013 B2
8573952 Stiles et al. Nov 2013 B2
8579600 Vijayakumar et al. Nov 2013 B2
8602745 Stiles Dec 2013 B2
8641383 Meza Feb 2014 B2
8641385 Koehl Feb 2014 B2
8669494 Tran Mar 2014 B2
8756991 Edwards Jun 2014 B2
8763315 Hartman Jul 2014 B2
8774972 Rusnak Jul 2014 B2
20010002238 McKain May 2001 A1
20010029407 Tompkins Oct 2001 A1
20010041139 Sabini et al. Nov 2001 A1
20020000789 Haba Jan 2002 A1
20020002989 Jones Jan 2002 A1
20020010839 Tirumalal et al. Jan 2002 A1
20020018721 Kobayashi Feb 2002 A1
20020032491 Imamura et al. Mar 2002 A1
20020035403 Clark et al. Mar 2002 A1
20020050490 Pittman et al. May 2002 A1
20020070611 Cline et al. Jun 2002 A1
20020070875 Crumb Jun 2002 A1
20020082727 Laflamme et al. Jun 2002 A1
20020089236 Cline et al. Jul 2002 A1
20020093306 Johnson Jul 2002 A1
20020101193 Farkas Aug 2002 A1
20020111554 Drzewiecki Aug 2002 A1
20020131866 Phillips Sep 2002 A1
20020136642 Moller Sep 2002 A1
20020150476 Lucke Oct 2002 A1
20020163821 Odell Nov 2002 A1
20020172055 Balakrishnan Nov 2002 A1
20020176783 Moeller Nov 2002 A1
20020190687 Bell et al. Dec 2002 A1
20030000303 Livingston Jan 2003 A1
20030017055 Fong Jan 2003 A1
20030030954 Bax et al. Feb 2003 A1
20030034284 Wolfe Feb 2003 A1
20030034761 Goto Feb 2003 A1
20030048646 Odell Mar 2003 A1
20030061004 Discenzo Mar 2003 A1
20030063900 Wang et al. Apr 2003 A1
20030099548 Meza May 2003 A1
20030106147 Cohen et al. Jun 2003 A1
20030174450 Nakajima et al. Sep 2003 A1
20030186453 Bell Oct 2003 A1
20030196942 Jones Oct 2003 A1
20040000525 Hornsby Jan 2004 A1
20040006486 Schmidt et al. Jan 2004 A1
20040009075 Meza Jan 2004 A1
20040013531 Curry et al. Jan 2004 A1
20040016241 Street et al. Jan 2004 A1
20040025244 Lloyd et al. Feb 2004 A1
20040055363 Bristol Mar 2004 A1
20040062658 Beck et al. Apr 2004 A1
20040064292 Beck Apr 2004 A1
20040071001 Balakrishnan Apr 2004 A1
20040080325 Ogura Apr 2004 A1
20040080352 Noda Apr 2004 A1
20040090197 Schuchmann May 2004 A1
20040095183 Swize May 2004 A1
20040116241 Ishikawa Jun 2004 A1
20040117330 Ehlers et al. Jun 2004 A1
20040118203 Heger Jun 2004 A1
20040149666 Leaverton Aug 2004 A1
20040205886 Goettel Oct 2004 A1
20040213676 Phillips Oct 2004 A1
20040265134 Iimura et al. Dec 2004 A1
20050050908 Lee et al. Mar 2005 A1
20050086957 Lifson Apr 2005 A1
20050095150 Leone et al. May 2005 A1
20050097665 Goettel May 2005 A1
20050123408 Koehl Jun 2005 A1
20050133088 Bologeorges Jun 2005 A1
20050137720 Spira et al. Jun 2005 A1
20050156568 Yueh Jul 2005 A1
20050158177 Mehlhorn Jul 2005 A1
20050167345 De Wet et al. Aug 2005 A1
20050170936 Quinn Aug 2005 A1
20050180868 Miller Aug 2005 A1
20050190094 Andersen Sep 2005 A1
20050193485 Wolfe Sep 2005 A1
20050195545 Mladenik Sep 2005 A1
20050226731 Mehlhorn Oct 2005 A1
20050235732 Rush Oct 2005 A1
20050248310 Fagan et al. Nov 2005 A1
20050260079 Allen Nov 2005 A1
20050281679 Niedermeyer Dec 2005 A1
20050281681 Anderson Dec 2005 A1
20060045750 Stiles Mar 2006 A1
20060045751 Beckman et al. Mar 2006 A1
20060078435 Burza Apr 2006 A1
20060078444 Sacher Apr 2006 A1
20060090255 Cohen May 2006 A1
20060093492 Janesky May 2006 A1
20060112480 Sisk Jun 2006 A1
20060127227 Mehlhorn Jun 2006 A1
20060138033 Hoal et al. Jun 2006 A1
20060146462 McMillian et al. Jul 2006 A1
20060169322 Torkelson Aug 2006 A1
20060204367 Meza Sep 2006 A1
20060226997 Kochan, Jr. Oct 2006 A1
20060235573 Guion Oct 2006 A1
20060269426 Llewellyn Nov 2006 A1
20070001635 Ho Jan 2007 A1
20070041845 Freudenberger Feb 2007 A1
20070061051 Maddox Mar 2007 A1
20070080660 Fagan et al. Apr 2007 A1
20070113647 Mehlhorn May 2007 A1
20070114162 Stiles et al. May 2007 A1
20070124321 Szydlo May 2007 A1
20070154319 Stiles Jul 2007 A1
20070154320 Stiles Jul 2007 A1
20070154321 Stiles Jul 2007 A1
20070154322 Stiles Jul 2007 A1
20070154323 Stiles Jul 2007 A1
20070160480 Ruffo Jul 2007 A1
20070163929 Stiles Jul 2007 A1
20070183902 Stiles Aug 2007 A1
20070187185 Abraham et al. Aug 2007 A1
20070188129 Kochan, Jr. Aug 2007 A1
20070212210 Kernan et al. Sep 2007 A1
20070212229 Stavale et al. Sep 2007 A1
20070212230 Stavale et al. Sep 2007 A1
20070258827 Gierke Nov 2007 A1
20070261823 Masters Nov 2007 A1
20080003114 Levin et al. Jan 2008 A1
20080031751 Littwin et al. Feb 2008 A1
20080031752 Littwin et al. Feb 2008 A1
20080039977 Clark et al. Feb 2008 A1
20080041839 Tran Feb 2008 A1
20080063535 Koehl Mar 2008 A1
20080095638 Branecky Apr 2008 A1
20080095639 Bartos Apr 2008 A1
20080131286 Koehl Jun 2008 A1
20080131289 Koehl Jun 2008 A1
20080131291 Koehl Jun 2008 A1
20080131294 Koehl Jun 2008 A1
20080131295 Koehl Jun 2008 A1
20080131296 Koehl Jun 2008 A1
20080140353 Koehl Jun 2008 A1
20080152508 Meza Jun 2008 A1
20080168599 Caudill Jul 2008 A1
20080181785 Koehl Jul 2008 A1
20080181786 Meza Jul 2008 A1
20080181787 Koehl Jul 2008 A1
20080181788 Meza Jul 2008 A1
20080181789 Koehl Jul 2008 A1
20080181790 Meza Jul 2008 A1
20080189885 Erlich Aug 2008 A1
20080229819 Mayleben et al. Sep 2008 A1
20080260540 Koehl Oct 2008 A1
20080288115 Rusnak et al. Nov 2008 A1
20080298978 Schulman et al. Dec 2008 A1
20090014044 Hartman Jan 2009 A1
20090038696 Levin et al. Feb 2009 A1
20090052281 Nybo Feb 2009 A1
20090104044 Koehl Apr 2009 A1
20090126806 Hamza May 2009 A1
20090143917 Uy et al. Jun 2009 A1
20090204237 Sustaeta et al. Aug 2009 A1
20090204267 Sustaeta et al. Aug 2009 A1
20090208345 Moore et al. Aug 2009 A1
20090210081 Sustaeta et al. Aug 2009 A1
20090269217 Vijayakumar Oct 2009 A1
20100154534 Hampton Jun 2010 A1
20100166570 Hampton Jul 2010 A1
20100197364 Lee Aug 2010 A1
20100303654 Petersen et al. Dec 2010 A1
20100306001 Discenzo Dec 2010 A1
20100312398 Kidd et al. Dec 2010 A1
20110036164 Burdi Feb 2011 A1
20110044823 Stiles Feb 2011 A1
20110052416 Stiles Mar 2011 A1
20110077875 Tran Mar 2011 A1
20110084650 Kaiser et al. Apr 2011 A1
20110110794 Mayleben et al. May 2011 A1
20110280744 Ortiz et al. Nov 2011 A1
20110311370 Sloss et al. Dec 2011 A1
20120020810 Stiles, Jr. et al. Jan 2012 A1
20120100010 Stiles et al. Apr 2012 A1
Foreign Referenced Citations (76)
Number Date Country
3940997 Feb 1998 AU
2005204246 Mar 2006 AU
2007332716 Jun 2008 AU
2007332769 Jun 2008 AU
2548437 Jun 2005 CA
2731482 Jun 2005 CA
2517040 Feb 2006 CA
2528580 May 2007 CA
2672410 Jun 2008 CA
2672459 Jun 2008 CA
1821574 Aug 2006 CN
101165352 Apr 2008 CN
3023463 Feb 1981 DE
2946049 May 1981 DE
29612980 Oct 1996 DE
19736079 Aug 1997 DE
19645129 May 1998 DE
29724347 Nov 2000 DE
10231773 Feb 2004 DE
19938490 Apr 2005 DE
0150068 Jul 1985 EP
0226858 Jul 1987 EP
0246769 Nov 1987 EP
0306814 Mar 1989 EP
0314249 Mar 1989 EP
0709575 May 1996 EP
0735273 Oct 1996 EP
0833436 Apr 1998 EP
0831188 Feb 1999 EP
0978657 Feb 2000 EP
1134421 Sep 2001 EP
0916026 May 2002 EP
1315929 Jun 2003 EP
1585205 Oct 2005 EP
1630422 Mar 2006 EP
1698815 Sep 2006 EP
1790858 May 2007 EP
1995462 Nov 2008 EP
2102503 Sep 2009 EP
2122171 Nov 2009 EP
2122172 Nov 2009 EP
2273125 Jan 2011 EP
2529965 Jan 1984 FR
2703409 Oct 1994 FR
2124304 Feb 1984 GB
55072678 May 1980 JP
5010270 Jan 1993 JP
2009006258 Dec 2009 MX
9804835 Feb 1998 WO
0042339 Jul 2000 WO
0127508 Apr 2001 WO
0147099 Jun 2001 WO
0218826 Mar 2002 WO
03025442 Mar 2003 WO
03099705 Dec 2003 WO
2004006416 Jan 2004 WO
2004073772 Sep 2004 WO
2004088694 Oct 2004 WO
2005011473 Feb 2005 WO
2005011473 Feb 2005 WO
2005055694 Jun 2005 WO
2005111473 Nov 2005 WO
2006069568 Jul 2006 WO
2008073329 Jun 2008 WO
2008073330 Jun 2008 WO
2008073386 Jun 2008 WO
2008073413 Jun 2008 WO
2008073418 Jun 2008 WO
2008073433 Jun 2008 WO
2008073436 Jun 2008 WO
2011100067 Aug 2011 WO
200506869 May 2006 ZA
200509691 Nov 2006 ZA
200904747 Jul 2010 ZA
200904849 Jul 2010 ZA
200904850 Jul 2010 ZA
Non-Patent Literature Citations (168)
Entry
9PX-42—Hayward Pool Systems; “Hayward EcoStar & EcoStar SVRS Variable Speed Pumps Brochure;” Civil Action 5:11-cv-00459D; 2010.
205-24-Exh23—Piaintiff's Preliminary Disclosure of Asserted Claims and Preliminary Infringement Contentions; cited in Civil Action 5:11-cv-00459; Feb. 21, 2012.
PX-34—Pentair; “IntelliTouch Pool & Spa Control System User's Guide”; pp. 1-129; 2011; cited in Civil Action 5:11-cv-00459; 2011.
PX-138—Deposition of Dr. Douglas C. Hopkins; pp. 1-391; 2011; taken in Civil Action 10-cv-1662.
PX-141—Danfoss; “Whitepaper Automatic Energy Optimization;” pp. 1-4; 2011; cited in Civil Action 5:11-cv-00459.
9PX10—Pentair; “IntelliPro VS+SVRS Intelligent Variable Speed Pump;” 2011; pp. 1-6; cited in Civil Action 5:11-cv-00459D.
9PX11—Pentair; “IntelliTouch Pool & Spa Control Control Systems;” 2011; pp. 1-5; cited in Civil Action 5:11-cv-004590.
Robert S. Carrow; “Electrician's Technical Reference—Variable Frequency Drives;” 2001; pp. 1-194.
Baldor; “Balder Motors and Drives Series 14 Vector Drive Control Operating & Technical Manual;” Mar. 22, 1992; pp. 1-92.
Commander; “Commander SE Advanced User Guide;” Nov. 2002; pp. 1-118.
Baldor; “Baldor Series 10 Inverter Control: Installation and Operating Manual”; Feb. 2000; pp. 1-74.
Dinverter; “Dinverter 28 User Guide;” Nov. 1998; pp. 1-94.
Pentair Pool Products, “IntelliFlo 4x160 a Breakthrough Energy-Efficiency and Service Life;” pp. 1-4; Nov. 2005; www.pentairpool.com.
Pentair Water and Spa, Inc. “The Pool Pro's guide to Breakthrough Efficiency, Convenience & Profitability,” pp. 1-8, Mar. 2006; www.pentairpool.com.
Danfoss; “VLT8000 Aqua Instruction Manual;” Apr. 16, 2004; pp. 1-71.
“Product Focus—New AC Drive Series Target Water, Wastewater Applications;” WaterWorld Articles; Jul. 2002; pp. 1-2.
Pentair, “Pentair RS-485 Pool Controller Adapter” Published Advertisement; Mar. 22, 2002; pp. 1-2.
Compool; “Compool CP3800 Pool-Spa Control System Installation and Operating Instructions;” Nov. 7, 1997; pp. 1-45.
Hayward; “Hayward Pro-Series High-Rate Sand Filter Owner's Guide,” 2002; pp. 1-4.
Danfoss; “Danfoss VLT 6000 Series Adjustable Frequency Drive Installation, Operation and Maintenance Manual;” Mar. 2000; pp. 1-118.
Brochure entitled “Constant Pressure Water for Private Well Systems,” for Myers Pentair Pump Group, Jun. 28, 2000.
Brochure for AMTROL, Inc. entitled “AMTROL unearths the facts about variable speed pumps and constant pressure valves,” Mar. 2002.
Undated Goulds Pumps “Balanced Flow Systems” Installation Record.
Texas Instruments, Digital Signal Processing Solution for AC Induction Motor, Application Note, BPRA043 (1996).
Texas Instruments, Zhenyu Yu and David Figoli, DSP Digital Control System Applications—AC Induction Motor Control Using Constant V/Hz Principle and Space Vector PWM Technique with TMS320C240, Application Report No. SPRA284A (Apr. 1998).
Texas Instruments, TMS320F/C240 DSP Controllers Reference Guide Peripheral Library and Specific Devices, Literature No. SPRU 161D (Nov. 2002).
Texas Instruments, MSP430x33x—Mixed Signal Microcontrollers, SLAS 163 (Feb. 1998).
Microchip Technology, Inc., PICMicro Mid-Range MCU Family Reference Manual (Dec. 1997).
7—Motion for Preliminary Injunction by Danfoss Drives A/S & Pentair Water Pool & Spa, Inc. with respect to Civil Action No. 5:11-cv-00459D.
540X48—Hopkins; “Partitioning Oigitally . . . Applications to Ballasts;” pp. 1-6; cited in Civil Action 5:11-cv-00459D.
Load Controls Incorporated, product web pages including Affidavit of Christopher Butler of Internet Archive attesting to the authenticity of the web pages, dated Apr. 17, 2013, 19 pages.
Cliff Wyatt, “Monitoring Pumps,” World Pumps, vol. 2004, Issue 459, Dec. 2004, pp. 17-21.
Wen Technology, Inc., Unipower® HPL110 Digital Power Monitor Installation and Operation, copyright 1999, pp. 1-20, Raleigh, North Carolina.
Wen Technology, Inc., Unipower® HPL110, HPL420 Programming Suggestions for Centrifugal Pumps, copyright 1999, 4 pages, Raleigh, North Carolina.
Danfoss, VLT® AQUA Drive, “The ultimate solution for Water, Wastewater, & Irrigation”, May 2007, pp. 1-16.
Danfoss, SALT Drive Systems, “Increase oil & gas production, Minimize energy consumption”, copyright 2011, pp. 1-16.
Schlumberger Limited, Oilfield Glossary, website Search Results for “pump-off”, copyright 2014, 1 page.
45—Piaintiffs' Reply to Defendants' Answer to Complaint & Counterclaim for Civil Action 5:11-cv-00459D.
50—Amended Answer to Complaint & Counterclaim by Defendants for Civil Action 5:11-cv-00459D.
54DX32—Hopkins; “High-Temperature, High-Density . . . Embedded Operation;” pp. 1-8; cited in Civil Action 5:11-cv-00459D.
Pent Air; “Pentair IntelliTouch Operating Manual;” May 22, 2003; pp. 1-60.
USPTO Patent Trial and Appeal Board, Paper 43—Final Written Decision, Case IPR2013-00287, U.S. Pat. No. 7,704,051 B2, Nov. 19, 2014, 28 pages.
Danfoss, VLT 8000 AQUA Operating Instructions, coded MG.80.A2.02 in the footer, 181 pages.
Per Brath—Danfoss Drives A/S, Towards Autonomous Control of HVAC Systems, thesis with translation of Introduction, Sep. 1999, 216 pages.
Karl Johan Åström and Björn Wittenmark—Lund Institute of Technology, Adaptive Control—Second Edition, book, Copyright 1995, 589 pages, Addison-Wesley Publishing Company, United States and Canada.
Bimal K. Bose—The University of Tennessee, Knoxville, Modem Power Electronics and AC Drives, book, Copyright 2002, 728 pages, Prentice-Hall, Inc., Upper Saddle River, New Jersey.
Waterworld, New AC Drive Series Targets Water, Wastewater Applications, magazine, Jul. 2002, 5 pages, vol. 18, Issue 7.
Texas Instruments, TMS320F/C240 DSP Controllers Peripheral Library and Specific Devices, Reference Guide, Nov. 2002, 485 pages, printed in U.S.A.
Microchip Technology Inc., PICmicro® Advanced Analog Microcontrollers for 12-Bit ADC on 8-Bit MCUs, convert to Microchip, brochure, Dec. 2000, 6 pages, Chandler, Arizona.
W.K. Ho, S.K. Panda, K.W. Lim, F.S. Huang—Department of Electrical Engineering, National University of Singapore, Gain-scheduling control of the Switched Reluctance Motor, Control Engineering Practice 6, copyright 1998, pp. 181-189, Elsevier Science Ltd.
Jan Eric Thorsen—Danfoss, Technical Paper—Dynamic simulation of DH House Stations, presented by 7. Dresdner Femwärme-Kolloquium Sep. 2002, 10 pages, published in Euro Heat & Power Jun. 2003.
Texas Instruments, TMS320F/C240 DSP Controllers Reference Guide, Peripheral Library and Specific Devices, Jun. 1999, 474 pages.
Rajwardhan Patil, et al., A Multi-Disciplinary Mechatronics Course with Assessment—Integrating Theory and Application through Laboratory Activities, International Journal of Engineering Education, copyright 2012, pp. 1141-1149, vol. 28, No. 5, TEMPUS Publications, Great Britain.
James Shirley, et al., A mechatronics and material handling systems laboratory: experiments and case studies, International Journal of Electrical Engineering Education 48/1, pp. 92-103.
Board Decision for Appeal 2015-007909, Reexamination Control 95/002,008, U.S. Pat. No. 7,686,587B2 dated Apr. 1, 2016.
Flotec Owner's Manual, dated 2004. 44 pages.
Glentronics Home Page, dated 2007. 2 pages.
Goulds Pumps SPBB Battery Back-Up Pump Brochure, dated 2008. 2 pages.
Goulds Pumps SPBB/SPBB2 Battery Backup Sump Pumps, dated 2007.
ITT Red Jacket Water Products Installation, Operation and Parts Manual, dated 2009. 8 pages.
Liberty Pumps PC-Series Brochure, dated 2010. 2 pages.
“Lift Station Level Control” by Joe Evans PhD, www.pumped101.com, dated Sep. 2007. 5 pages.
The Basement Watchdog A/C-D/C Battery Backup Sump Pump System Instruction Manual and Safety Warnings, dated 2010. 20 pages.
The Basement Watchdog Computer Controlled A/C-D/C Sump Pump System Instruction Manual, dated 2010. 17 pages.
Pentair Water Ace Pump Catalog, dated 2007, 44 pages.
ITT Red Jacket Water Products RJBB/RJBB2 Battery Backup Sump Pumps; May 2007, 2 pages.
Allen-Bradley; “1336 Plus II Adjustable Frequency AC Drive with Sensorless Vector User Manual;” Sep. 2005; pp. 1-212.
51—Response by Defendants in Opposition to Motion for Preliminary Injunction for Civil Action 5:11-cv-00459D; Dec. 2, 2011.
Amended Complaint Filed by Pentair Water Pool & Spa, Inc. and Danfoss Drives A/S with respect to Civil Action No. 5:11-cv-00459, adding U.S. Pat. No. 8,043,070.
53—Declaration of Douglas C. Hopkins & Exhibits re Response Opposing Motion for Preliminary Injunction for Civil Action 5:11-cv-00459D; Dec. 2, 2011.
89—Reply to Response to Motion for Preliminary Injunction Filed by Danfoss Drives A/S & Pentair Water Pool & Spa, Inc. for Civil Action 5:11-cv-004590; Jan. 3, 2012.
105—Declaration re Memorandum in Opposition, Declaration of Lars Hoffmann Berthelsen for Civil Action 5:11-cv-00459D; Jan. 11, 2012.
112—Amended Complaint Against All Defendants, with Exhibits for Civil Action 5:11-cv-00459D; Jan. 17, 2012.
119—0rder Denying Motion for Preliminary Injunction for Civil Action 5:11-cv-00459D; Jan. 23, 2012.
123—Answer to Amended Complaint, Counterclaim Against Danfoss Drives A/S, Pentair Water Pool & Spa, Inc. for Civil Action 5:11-cv-00459D; Jan. 27, 2012.
152—0rder Denying Motion for Reconsideration for Civil Action 5:11-cv-00459D; Apr. 4, 2012.
168—Amended Motion to Stay Action Pending Reexamination of Asserted Patents by Defendants for Civil Action 5:11-cv-004590; Jun. 13, 2012.
174—Notice and Attachments re Joint Claim Construction Statement for Civil Action 5:11-cv-00459D; Jun. 5, 2012.
186—0rder Setting Hearings—Notice of Markman Hearing Set for Oct. 17, 2012 for Civil Action 5:11-cv-00459D; Jul. 12, 2012.
204—Response by Plaintiffs Opposing Amended Motion to Stay Action Pending Reexamination of Asserted Patents for Civil Action 5:11-cv-004590; Jul. 2012.
210—0rder Granting Joint Motion for Leave to Enlarge Page Limit for Civil Action 5:11-cv-004590; Jul. 2012.
218—Notice re Plaintiffs re Order on Motion for Leave to File Excess Pages re Amended Joint Claim Construction Statement for Civil Action 5:11-cv-004590; Aug. 2012.
54DX16—Hayward EcoStar Technical Guide (Version2); 2011; pp. 1-51; cited in Civil Action 5:11-cv-004590.
54DX17—Hayward ProLogic Automation & Chlorination Operation Manual (Rev. F); pp. 1-27; Elizabeth, NJ; cited in Civil Action 5:11-cv-004590; Dec. 2, 2011.
54DX18—STMicroelectronics; “AN1946—Sensorless BLOC Motor Control & BEMF Sampling Methods with ST7MC;” 2007; pp. 1-35; Civil Action 5:11-cv-004590.
54DX19—STMicroelectronics; “AN1276 BLOC Motor Start Routine for ST72141 Microcontroller;” 2000; pp. 1-18; cited in Civil Action 5:11-cv-004590.
54DX21—Danfoss; “VLT 8000 Aqua Instruction Manual;” Apr. 2004; 1-210; Cited in Civil Action 5:11-cv-004590.
54DX22—Danfoss; “VLT 8000 Aqua Instruction Manual;” pp. 1-35; cited in Civil Action 5:11-cv-004590; Dec. 2, 2011.
54DX23—Commander; “Commander SE Advanced User Guide;” Nov. 2002; pp. 1-190; cited in Civil Action 5:11-cv-004590.
540X30—Sabbagh et al.; “A Model for OptimaL.Control of Pumping Stations in Irrigation Systems;” Jul. 1988; NL pp. 119-133; Civil Action 5:11-cv-004590.
540X31—0anfoss; “VLT 5000 FLUX Aqua OeviceNet Instruction Manual;” Apr. 28, 2003; pp. 1-39; cited in Civil Action 5:11-cv-004590.
540X32—0anfoss; “VLT 5000 FLUX Aqua Profibus Operating Instructions;” May 22, 2003; 1-64; cited in Civil Action 5:11-cv-004590.
540X33—Pentair; “IntelliTouch Owner's Manual Set-Up & Programming;” May 22, 2003; Sanford, NC; pp. 1-61; cited in Civil Action 5:11-cv-004590.
540X34—Pentair; “Compool3800 Pool-Spa Control System Installation & Operating Instructions;” Nov. 7, 1997; pp. 1-45; cited in Civil Action 5:11-cv-004590.
540X35—Pentair Advertisement in “Pool & Spa News;” Mar. 22, 2002; pp. 1-3; cited in Civil Action 5:11-cv-004590.
5540X36—Hayward; “Pro-Series High-Rate Sand Filter Owner's Guide;” 2002; Elizabeth, NJ; pp. 1-5; cited in Civil Action 5:11-cv-00459D.
540X37—Danfoss; “VLT 8000 Aqua Fact Sheet;” Jan. 2002; pp. 1-3; cited in Civil Action 5:11-cv-004590.
540X38—0anfoss; “VLT 6000 Series Installation, Operation & Maintenance Manual;” Mar. 2000; pp. 1-118; cited in Civil Action 5:11-cv-004590.
540X45—Hopkins; “Synthesis of New Class of Converters that Utilize Energy Recirculation;” pp. 1-7; cited in Civil Action 5:11-cv-004590; 1994.
540X46—Hopkins; “High-Temperature, High-Oensity . . . Embedded Operation;” pp. 1-8; cited in Civil Action 5:11-cv-004590; Mar. 2006.
540X47—Hopkins; “Optimally Selecting Packaging Technologies . . . Cost & Performance;” pp. 1-9; cited in Civil Action 5:11-cv-004590; Jun. 1999.
9PX5—Pentair; Selected Website Pages; pp. 1-29; cited in Civil Action 5:11-cv-004590; Sep. 2011.
9PX6—Pentair; “IntelliFio Variable Speed Pump” Brochure; 2011; pp. 1-9; cited in Civil Action 5:11-cv-004590.
9PX7—Pentair; “IntelliFio VF Intelligent Variable Flow Pump;” 2011; pp. 1-9; cited in Civil Action 5:11-cv-004590.
9PX8—Pentair; “IntelliFio VS+SVRS Intelligent Variable Speed Pump;” 2011; pp. 1-9; cited in Civil Action 5:11-cv-004590.
9PX9—Sta-Rite; “IntelliPro Variable Speed Pump;” 2011; pp. 1-9; cited in Civil Action 5:11-cv-004590.
9PX14—Pentair; “IntelliFio Installation and User's Guide;” pp. 1-53; Jul. 26, 2011; Sanford, NC; cited in Civil Action 5:11-cv-004590.
9PX16—Hayward Pool Products; “EcoStar Owner's Manual (Rev. B);” pp. 1-32; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D; 2010.
9PX17—Hayward Pool Products; “EcoStar & EcoStar SVRS Brochure;” pp. 1-7; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D; Sep. 30, 2011.
9PX19—Hayward Pool Products;“Hayward Energy Solutions Brochure;” pp. 1-3; www.haywardnet.com; cited in Civil Action 5:11-cv-00459D; Sep. 2011.
9PX20—Hayward Pool Products; “ProLogic Installation Manual (Rev. G);” pp. 1-25; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D; Sep. 2011.
9PX21—Hayward Pool Products; “ProLogic Operation Manual (Rev. F);” pp. 1-27; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D; Sep. 2011.
9PX22—Hayward Pool Products; “Wireless & Wired Remote Controls Brochure;” pp. 1-5; 2010; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D.
9PX23—Hayward Pool Products; Selected Pages from Hayward's Website:/www.hayward-pool.com; pp. 1-27; cited in Civil Action 5:11-cv-004590; Sep. 2011.
9PX28—Hayward Pool Products; “Selected Page from Hayward's Website Relating to EcoStar Pumps;” p. 1; cited in Civil Action 5:11-cv-00459D; Sep. 2011.
9PX29—Hayward Pool Products; “Selected Page from Hayward's Website Relating to EcoStar SVRS Pumps;” cited in Civil Action 5:11-cv-00459; Sep. 2011.
9PX30—Hayward Pool Systems; “Selected Pages from Hayward's Website Relating to ProLogic Controllers;” pp. 1-5; Civil Action 5:11-cv-00459D; Sep. 2011.
U.S. Appl. No. 12/869,570 Appeal Decision dated May 24, 2016.
Bibliographic Data Sheet—U.S. Appl. No. 10/730,747 Applicant: Robert M. Koehl Reasons for Inclusion: Printed publication US 2005/0123408 A1 for U.S. Appl. No. 10/730,747 has incorrect filing date.
Shabnam Moghanrabi; “Better, Stronger, Faster;” Pool & Spa News, Sep. 3, 2004; pp. 1-5; www/poolspanews.com.
Grundfos Pumps Corporation; “The New Standard in Submersible Pumps;” Brochure; pp. 1-8; Jun. 1999; Fresno, CA USA.
Grundfos Pumps Corporation; “Grundfos SQ/SQE Data Book;” pp. 1-39; Jun. 1999; Fresno, CA USA.
Goulds Pumps; “Balanced Flow System Brochure;” pp. 1-4; 2001.
Goulds Pumps; “Balanced Flow Submersible System Installation, Operation & Trouble-Shooting Manual;” pp. 1-9; 2000; USA.
Goulds Pumps; “Balanced Flow Submersible System Informational Seminar;” pp. 1-22; Undated.
Goulds Pumps; “Balanced Flow System Variable Speed Submersible Pump” Specification Sheet; pp. 1-2; Jan. 2000; USA.
Goulds Pumps; Advertisement from “Pumps & Systems Magazine;” entitled “Cost Effective Pump Protection+ Energy Savings,” Jan. 2002; Seneca Falls, NY.
Goulds Pumps; “Hydro-Pro Water System Tank Installation, Operation & Maintenance Instructions;” pp. 1-30; Mar. 31, 2001; Seneca Falls, NY USA.
Goulds Pumps; “Pumpsmart Control Solutions” Advertisement from Industrial Equipment News; Aug. 2002; New York, NY USA.
Goulds Pumps; “Model BFSS List Price Sheet;” Feb. 5, 2001.
Goulds Pumps; “Balanced Flow System Model BFSS Variable Speed Submersible Pump System” Brochure; pp. 1-4; Jan 2001; USA.
Goulds Pumps; “Balanced Flow System Model BFSS Variable Speed Submersible Pump” Brochure; pp. 1-3; Jan. 2000; USA.
Goulds Pumps; “Balanced Flow System . . . The Future of Constant Pressure Has Arrived;” Undated Advertisement.
AMTROL Inc.; “AMTROL Unearths the Facts About Variable Speed Pumps and Constant Pressure Valves;” pp. 1-5; Mar. 2002; West Warwick, RI USA.
Franklin Electric; “CP Water-Subdrive 75 Constant Pressure Controller” Product Data Sheet; May 2001; Bluffton, IN USA.
Franklin Electric; “Franklin Aid, Subdrive 75: You Made It Better;” vol. 20, No. 1; pp. 1-2; Jan./Feb. 2002; www.franklin-electric.com.
Grundfos; “SQ/SQE—A New Standard in Submersible Pumps;” Undated Brochure; pp. 1-14; Denmark.
Grundfos; “JetPaq—The Complete Pumping System;” Undated Brochure; pp. 1-4; Clovis, CA USA.
Email Regarding Grundfos' Price Increases/SQ/SQE Curves; pp. 1-7; Dec. 19, 2001.
F.E. Myers; “Featured Product: F.E. Myers Introducts Revolutionary Constant Pressure Water System;” pp. 1-8; Jun. 28, 2000; Ashland, OH USA.
“Water Pressure Problems” Published Article; The American Well Owner; No. 2, Jul. 2000.
Bjarke Soerensen; “Have You Chatted With Your Pump Today?” Undated Article Reprinted with Permission of Grundfos Pump University; pp. 1-2; USA.
“Understanding Constant Pressure Control;” pp. 1-3; Nov. 1, 1999.
“Constant Pressure is the Name of the Game;” Published Article from National Driller; Mar. 2001.
SJE-Rhombus; “Variable Frequency Drives for Constant Pressure Control;” Aug. 2008; pp. 1-4; Detroit Lakes, MN USA.
SJE-Rhombus; “Constant Pressure Controller for Submersible Well Pumps;” Jan. 2009; pp. 1-4; Detroit Lakes, MN USA.
SJE-Rhombus; “SubCon Variable Frequency Drive;” Dec. 2008; pp. 1-2; Detroit Lakes, MN USA.
Grundfos; “SmartFio SQE Constant Pressure System;” Mar. 2002; pp. 1-4; Olathe, KS USA.
Grundfos; “Grundfos SmartFio SQE Constant Pressure System;” Mar. 2003; pp. 1-2; USA.
Grundfos; “Uncomplicated Electronics . . . Advanced Design;” pp. 1-10; Undated.
Grundfos; “CU301 Installation & Operation Manual;” Apr. 2009; pp. 1-2; Undated; www.grundfos.com.
Grundfos; “CU301 Installation & Operating Instructions;” Sep. 2005; pp. 1-30; Olathe, KS USA.
ITT Corporation; “Goulds Pumps Balanced Flow Submersible Pump Controller;” Jul. 2007; pp. 1-12.
ITT Corporation; “Goulds Pumps Balanced Flow;” Jul. 2006; pp. 1-8.
ITT Corporation; “Goulds Pumps Balanced Flow Constant Pressure Controller for 2 HP Submersible Pumps;” Jun. 2005; pp. 1-4 USA.
ITT Corporation; “Goulds Pumps Balanced Flow Constant Pressure Controller for 3 HP Submersible Pumps;” Jun. 2005; pp. 1-4; USA.
Franklin Electric; Constant Pressure in Just the Right Size; Aug. 2006; pp. 1-4; Bluffton, IN USA.
Franklin Electric; “Franklin Application Installation Data;” vol. 21, No. 5, Sep./Oct. 2003; pp. 1-2; www.franklin-electric.com.
Franklin Electric; “Monodrive MonodriveXT Single-Phase Constant Pressure;” Sep. 2008; pp. 1-2; Bluffton, IN USA.
Docket Report for Case No. 5:11-cv-00459-D; Nov. 2012.
1—Complaint Filed by Pentair Water Pool & Spa, Inc. and Danfoss Drives A/S with respect to Civil Action No. 5:11-cv-00459-D; Aug. 31, 2011.
7—Motion for Preliminary Injunction by Danfoss Drives AIS & Pentair Water Pool & Spa, Inc. with respect to Civil Action No. 5:11-cv-00459-D; Sep. 30, 2011.
22—Memorandum in Support of Motion for Preliminary Injunction by Plaintiffs with respect to Civil Action 5:11-cv-00459-D; Sep. 2, 2011.
23—Declaration of E. Randolph Collins, Jr. in Support of Motion for Preliminary Injunction with respect to Civil Action 5:11-cv-00459-D; Sep. 30, 2011.
24—Declaration of Zack Picard in Support of Motion for Preliminary Injunction with respect to Civil Action 5:11-cv-00459-D; Sep. 30, 2011.
32—Answer to Complaint with Jury Demand & Counterclaim Against Plaintiffs by Hayward Pool Products & Hayward Industries for Civil Action 5:11-cv-004590; Oct. 12, 2011.
USPTO Patent Trial and Appeal Board, Paper 47—Final Written Decision, Case IPR2013-00285, U.S. Pat. No. 8,019,479 B2, Nov. 19, 2014, 39 pages.
Pentair Pool Products, WhisperFlo Pump Owner's Manual, Jun. 5, 2001, 10 pages.
Related Publications (1)
Number Date Country
20160138727 A1 May 2016 US
Provisional Applications (1)
Number Date Country
61421069 Dec 2010 US
Divisions (1)
Number Date Country
Parent 13314798 Dec 2011 US
Child 14974206 US