This application is based on and claims priority under 35 USC 119 from Japanese Patent Application No. 2011-087747 filed Apr. 11, 2011.
The present invention relates to dischargers and image forming apparatuses.
According to an aspect of the invention, there is provided a discharger including a discharging member and a grid member. The discharging member is disposed facing a member to be charged and discharges electricity by applying voltage thereto. The grid member is disposed between the discharging member and the member to be charged and regulates electric discharge from the discharging member when voltage is applied between the grid member and the discharging member. The grid member has multiple holes with a predetermined shape. The holes extends through the grid member from the discharging member toward the member to be charged. The grid member has a first region in which the holes with the predetermined shape are arranged at a first inclination angle inclined relative to the extending direction of the discharging member, a second region in which the holes with the predetermined shape are arranged at a second inclination angle that is different from the first inclination angle, and a boundary disposed between the first region and the second region and extending in the extending direction of the discharging member. When the first region is symmetrically projected onto the second region with respect to the boundary, an arrangement pattern of the holes in the first region and an arrangement pattern of the holes in the second region are positionally displaced relative to each other.
Exemplary embodiment(s) of the present invention will be described in detail based on the following figures, wherein:
Although exemplary embodiments of the present invention will be described below with reference to the drawings, the present invention is not to be limited to the following exemplary embodiments.
In order to provide an easier understanding of the following description, the front-rear direction will be defined as “X-axis direction” in the drawings, the left-right direction will be defined as “Y-axis direction”, and the up-down direction will be defined as “Z-axis direction”. Moreover, the directions or the sides indicated by arrows X, -X, Y, -Y, Z, and -Z are defined as forward, rearward, rightward, leftward, upward, and downward directions, respectively, or as front, rear, right, left, upper, and lower sides, respectively.
Furthermore, in each of the drawings, a circle with a dot in the center indicates an arrow extending from the far side toward the near side of the plane of the drawing, and a circle with an “x” therein indicates an arrow extending from the near side toward the far side of the plane of the drawing.
In the drawings used for explaining the following description, components other than those necessary for providing an easier understanding of the description are omitted where appropriate.
First Exemplary Embodiment
In
The user interface UI includes input keys serving as an example of an input section, such as a copy start key and a numerical keypad, and a display UI1.
The image input device U1 is constituted of an image scanner serving as an example of an image reader. In
The feeding device U2 includes feed trays TR1 to TR4 serving as an example of multiple feeders, and a feed path SH1 along which recording paper S serving as an example of a medium accommodated in each of the feed trays TR1 to TR4 is transported.
In
The image recording device U3 further includes a controller C, a laser driving circuit D serving as an example of a driving circuit for a latent-image writing unit controlled by the controller C, and a power circuit E controlled by the controller C. The laser driving circuit D controlled by the controller C outputs laser driving signals according to the image information for yellow (Y), magenta (M), cyan (C), and black (K) colors input from the image input device U1 to latent-image forming units ROSy, ROSm, ROSc, and ROSk for the respective colors at a predetermined timing.
A drawer component U3b for image forming units is supported below the latent-image forming units ROSy, ROSm, ROSc, and ROSk by a pair of left and right guide members R1 and R1 in a movable manner between an ejected position at which the drawer component U3b is ejected to the front of the image recording device U3 and a mounted position at which the drawer component U3b is mounted inside the image recording device U3.
In
The image bearing units UY, UM, UC, and UK and developing units GY, GM, GC, and GK having developing rollers RO constitute toner-image forming members UY+GY, UM+GM, UC+GC, and UK+GK, respectively. The image bearing units UY, UM, UC, and UK and the developing units GY, GM, GC, and GK are detachably attached to the drawer component U3b.
In
The toner images on the surfaces of the photoconductor drums Py, Pm, Pc, and Pk are sequentially superposed and transferred onto an intermediate transfer belt B, which is an example of an image bearing member and serves as an example of an intermediate transfer body, by first transfer rollers Tiy, Tim, Tic, and Tik serving as an example of a first transfer unit, whereby a multi-color image, that is, a color image, is formed on the intermediate transfer belt B. The color image formed on the intermediate transfer belt B is transported to a second transfer region Q4 serving as an example of an image recording position.
In the case of black image data only, the photoconductor drum Pk and the developing unit GK for the black (K) color are used so that only a black toner image is formed.
After the first transfer process, residual toners on the surfaces of the photoconductor drums Py, Pm, Pc, and Pk are cleaned by the cleaners CLy, CLm, CLc, and CLk for the photoconductor drums.
A drawer component U3c for the intermediate transfer body is supported below the drawer component U3b in a movable manner between an ejected position at which the drawer component U3c is ejected to the front of the image recording device U3 and a mounted position at which the drawer component U3c is mounted inside the image recording device U3. In the drawer component U3c, a belt module BM serving as an example of an intermediate transfer unit is supported in a vertically movable manner between a lifted position at which the belt module BM is brought into contact with the lower surfaces of the photoconductor drums Py, Pm, Pc, and Pk and a lowered position at which the belt module BM is lowered away from the lower surfaces.
The belt module BM includes the aforementioned intermediate transfer belt B, belt support rollers Rd, Rt, Rw, Rf, and T2a serving as an example of intermediate-transfer-body support members, and the aforementioned first transfer rollers Tiy, Tim, Tic, and Tik. The belt support rollers Rd, Rt, Rw, Rf, and T2a include a belt driving roller Rd serving as an example of a driving member, a tension roller Rt serving as an example of a tension applying member, a working roller Rw serving as an example of a meander prevention member, multiple idler rollers Rf serving as an example of driven members, and a backup roller T2a serving as an example of an opposing member disposed opposite the second transfer region Q4. The intermediate transfer belt B is supported by the belt support rollers Rd, Rt, Rw, Rf, and T2a in a rotatable manner in a direction indicated by an arrow Ya.
A second transfer unit Ut is disposed below the backup roller T2a. The second transfer unit Ut includes a second transfer roller T2b serving as an example of a second transfer member. The second transfer roller T2b is disposed in a movable manner toward and away from the backup roller T2a with the intermediate transfer belt B interposed therebetween, and the second transfer region Q4 is formed in an area where the second transfer roller T2b comes into contact with the intermediate transfer belt B. The backup roller T2a is in contact with a contact roller T2c serving as an example of a contact member for applying voltage. The rollers T2a to T2c constitute a second transfer unit T2.
A second transfer voltage having the same polarity as the charge polarity of the toners is applied, at a predetermined timing, to the contact roller T2c from the power circuit controlled by the controller C.
The sheet transport path SH2 is disposed below the belt module BM. The recording paper S fed from the feed path SH1 of the feeding device U2 is transported to the sheet transport path SH2. Then, a registration roller Rr serving as an example of a feed adjustment member transports the recording paper S to the second transfer region Q4 via pre-transfer medium guide members SGr and SG1 in accordance with the timing at which the toner images are to be transferred to the second transfer region Q4.
The toner images on the intermediate transfer belt B are transferred onto the recording paper S by the second transfer unit T2 as the recording paper S travels through the second transfer region Q4. In the case of a full-color image, the toner images superposed and first-transferred on the surface of the intermediate transfer belt B are collectively second-transferred onto the recording paper S.
After the second transfer process, the intermediate transfer belt B is cleaned by a belt cleaner CLB serving as an example of an intermediate-transfer-body cleaner.
The first transfer rollers Tiy, Tim, Tic, and Tik, the intermediate transfer belt B, the second transfer unit T2, and the belt cleaner CLB constitute a transfer unit T1+B+T2+CLB that transfers the images on the surfaces of the photoconductor drums Py, Pm, Pc, and Pk onto the recording paper S.
The recording paper S having the superposed toner image second-transferred thereon is transported to a fixing unit F via a post-transfer medium guide member SG2 and a sheet transport belt BH serving as an example of a pre-fixation medium guide member. The fixing unit F includes a heating roller Fh serving as an example of a thermal fixing member and a pressing roller Fp serving as an example of a pressure fixing member. A fixing region Q5 is formed in an area where the heating roller Fh and the pressing roller Fp come into contact with each other.
The toner image on the recording paper S is thermally fixed thereon by the fixing unit F as the recording paper S travels through the fixing region Q5.
The toner-image forming members UY+GY, UM+GM, UC+GC, and UK+GK, the transfer unit T1+B+T2+CLB, and the fixing unit F constitute the image reader in the first exemplary embodiment that records an image on the recording paper S.
A first gate GT1 serving as an example of a transport-path switching member is provided downstream of the fixing unit F. The first gate GT1 selectively switches the transport path of the recording paper S, transported along the sheet transport path SH2 and having the image thermally fixed thereon in the fixing region Q5, to either the sheet inversion path SH4 or the sheet output path SH3 in the sheet processing device U4. The recording paper S transported to the sheet output path SH3 is transported to a sheet transport path SH5 in the sheet processing device U4.
A curl correction unit U4a serving as an example of a curve correction unit is disposed at an intermediate location of the sheet transport path SH5. A second gate G4 serving as an example of a transport-path switching member is disposed in the sheet transport path SH5. The second gate G4 transports the recording paper S transported from the sheet output path SH3 of the image recording device U3 to either a first curl correction member h1 or a second curl correction member h2, depending on the direction in which the recording paper S is curved or curled. The curl of the recording paper S transported to the first curl correction member h1 or the second curl correction member h2 is corrected as the recording paper S travels through the curl correction member. The recording paper S with its curl corrected is output by a sheet output roller Rh serving as an example of a sheet output member toward a sheet output tray TH1 serving as an example of a sheet output section of the sheet processing device U4 while the image fixed surface of the paper is faced upward.
The recording paper S transported toward the sheet inversion path SH4 of the image recording device U3 by the first gate GT1 travels while pushing over a transport-direction regulation member constituted of an elastic thin-film member, that is, a mylar gate GT2, so as to be transported to the sheet inversion path SH4 of the image recording device U3.
A downstream end of the sheet inversion path SH4 in the image recording device U3 is connected to the sheet circulation path SH6 and a sheet inversion path SH7, and another mylar gate GT3 is disposed at the connection between the sheet inversion path SH4, the sheet circulation path SH6, and the sheet inversion path SH7. The recording paper S transported to the sheet inversion path SH4 via the first gate GT1 travels through the mylar gate GT3 so as to be transported toward the sheet inversion path SH7 in the sheet processing device U4. In a case where duplex printing is to be performed, the recording paper S transported along the sheet inversion path SH4 is transported to the sheet inversion path SH7 via the mylar gate GT3, and is subsequently transported in the reverse direction so as to be switched back. Then, the mylar gate GT3 regulates the transport direction so that the switched-back recording paper S is transported toward the sheet circulation path SH6. The recording paper S transported to the sheet circulation path SH6 is transported again to the second transfer region Q4 via the feed path SH1.
After the trailing edge of the recording paper S passes through the mylar gate GT2, the recording paper S transported along the sheet inversion path SH4 is switched back before passing through the mylar gate GT3. Then, the mylar gate GT2 regulates the transport direction of the recording paper S so that the recording paper S with its front and back faces in an inverted state is transported to the sheet transport path SH5. The inverted recording paper S has its curl corrected by the curl correction unit U4a and is subsequently output onto the sheet output tray TH1 in the sheet processing device U4 while the image fixed surface of the recording paper S is faced downward.
The components denoted by the reference characters SH1 to SH7 constitute a sheet transport path SH. Furthermore, the components denoted by the reference characters SH, Ra, Rr, Rh, SGr, SG1, SG2, BH, and GT1 to GT3 constitute a sheet transport unit SU.
Charger
In
With regard to the following description of the charger according to the first exemplary embodiment, since the chargers CCy to CCk for the Y, M, C, and K colors have the same configuration, the charger CCk for the K color will be described in detail, and detailed descriptions of the chargers CCy to CCc for the remaining colors will be omitted.
In
A rear end of the shield electrode 2 supports a rear-end block 3 serving as an example of a first-end member, and a front end of the shield electrode 2 supports a front-end block 4 serving as an example of a second-end member. Upper right portions of the rear-end block 3 and the front-end block 4 are provided with cylindrical shaft bearings 3a and 4a serving as an example of support members for a cleaning movable member and extending in the front-rear direction.
The shaft bearings 3a and 4a rotatably support a shaft 6 serving as an example of a rotatable member and extending in the front-rear direction. The outer peripheral surface of the shaft 6 is provided with a threaded section 6a. A rear end portion of the shaft 6 extends rearward through the shaft bearing 3a at the rear side and supports a driven coupling 7 serving as an example of a transmitted member. When the charger CCk is attached to the image recording device U3, the driven coupling 7 is supported in engagement with a driving coupling 8 serving as an example of a transmitting member rotatably supported by the image recording device U3. The driving coupling 8 is capable of transmitting a driving force from an electrode-cleaner motor 9 serving as an example of a driving source for an electrode cleaning member and supported by the image recording device U3 in a rotatable manner in forward and reverse directions.
Referring to
A grid electrode 12 having a grid pattern serving as an example of a grid member is supported in the lower opening of the shield electrode 2 between the wire electrode 11 and the photoconductor drum Pk, that is, in a charge region Q1 facing the photoconductor drum Pk. The grid electrode 12 is formed by perforating multiple vertically-extending through-holes in a electrically conductive thin-film material extending in the front-rear direction, which is the direction in which the wire electrode 11 extends. The front and rear ends of the grid electrode 12 are supported in a bridged manner between the blocks 3 and 4.
The electrodes 2, 11, and 12 receive discharge voltage from the power circuit E so that the surface of the photoconductor drum Pk is electrostatically charged by electrons released from the wire electrode 11 in accordance with a potential difference between the wire electrode 11 and the shield electrode 2 as well as between the wire electrode 11 and the grid electrode 12. In the first exemplary embodiment, a high voltage is applied to the wire electrode 11, and a voltage according to a target charge voltage for the surface of the photoconductor drum Pk is applied to the grid electrode 12. With the voltage applied to the grid electrode 12, the electric discharge of the wire electrode 11 is regulated so that the charge voltage for the surface of the photoconductor drum Pk is controlled.
Referring to
The shaft 6, the arm 18, and the shaft through-hole 19 constitute a cleaning movable member 6+18+19 according to the first exemplary embodiment.
A U-shaped lower slider frame 21 having an upper opening and serving as an example of a second cleaning frame member is supported below the upper slider frame 17. In
In
Furthermore, the lower surface of the lower slider frame 21 is provided with a plate-like detected section 21b that extends downward. An optical sensor SN1 that serves as a detecting member is disposed at a position corresponding to the detected section 21b in the state where the electrode cleaner 16 is moved to the home position serving as an example of an initial position shown in
Referring to
In the first exemplary embodiment, a torsion spring 28 serving as an example of a bias member that biases the upper cleaner support 24 in a direction for rotating the front end thereof downward, that is, in a direction for moving the upper wire cleaner 26 closer toward the wire electrode 11, is attached to each of the shaft portions 23.
At the reference position shown in
A method for detecting whether the electrode cleaner 16 has reached the front end of the charger CCk may be achieved by employing a freely-chosen method, such as using a sensor, a detailed description thereof will be omitted here. When the cleaning operation is completed, the electrode cleaner 16 returns to the home position.
The upper cleaner support 24, the contact portions 24d, the contact portions 27, and the torsion springs 28 constitute a cleaning contact mechanism 24+27+28 according to the first exemplary embodiment.
Referring to
In the first exemplary embodiment, the cleaning operation for cleaning the wire electrode 11 and the grid electrode 12 by reciprocating the electrode cleaner 16 in the front-rear direction is performed in a state where each of the photoconductor drum Py to Pk is not electrostatically charged, that is, in a state where image forming operation is not performed. When the cleaning operation is being performed, that is, when the electrode cleaner 16 is being reciprocated, the ejecting unit is activated so that the contamination removed by the electrode cleaner 16 is drawn in by suction and ejected outward.
Although the image forming apparatus U according to the first exemplary embodiment is set to perform the cleaning operation every time the accumulative number of printed sheets reaches 1000 sheets as an example of a predetermined number of sheets, the cleaning operation may alternatively be performed at a freely-chosen time point, such as when the image forming operation is completed, when the power of the image forming apparatus U is turned off, or at a predetermined time.
Grid Electrode
In
Referring to
In the first exemplary embodiment, the left grid region 38 and the right grid region 39 both have the elongate hexagonal holes 37 with the same shape, and have margins 40 that surround the holes 37.
In the left grid region 38 in the first exemplary embodiment, the inclination angle θ1 is defined as an angle formed between a line 44b and the outbound direction of the reciprocating electrode cleaner 16 during the cleaning operation, that is, a forward direction 45 in the first exemplary embodiment. Specifically, with the center of gravity of a reference hole 37 being defined as 41 and lines that connect centers 42a, 43a, and 44a of gravity of neighboring holes 42, 43, and 44 being defined as 42b, 43b, and 44b, respectively, the line 44b that connects the center 44a of gravity farthest from the center 41 to the center of gravity 41 is selected.
The inclination angle θ2 in the right grid region 39 is similar to the inclination angle θ1 in the left grid region 38 except for the fact that they are bilaterally symmetric.
In the first exemplary embodiment, the boundary 36 is disposed at an intermediate position in the left-right direction relative to the first wire 11a and the second wire 11b, such that the left grid region 38 is disposed in correspondence with the first wire 11a, and the right grid region 39 is disposed in correspondence with the second wire 11b.
Furthermore, as shown in
Referring to
In the grid electrode 12 in the first exemplary embodiment, the first inclination angle θ1 and the second inclination angle θ2 are inclined away from each other with the boundary 36 interposed therebetween, and absolute values of the angles θ1 and θ2 are set substantially equal to each other. Specifically, in the first exemplary embodiment, the arrangement patterns of the holes 37 are line-symmetric between the left grid region 38 and the right grid region 39, such that the arrangement pattern of the left grid region 38 is displaced relative to the arrangement pattern of the right grid region 39 in the front-rear direction, which is the extending direction of the boundary 36.
Furthermore, in the grid electrode 12 in the first exemplary embodiment, some of the holes 37 that are adjacent to the boundary 36 are deficient holes 37a and 37b, as compared with the holes 37 located distant from the boundary 36. With regard to such holes 37a and 37b, the joint areas between the margins of the holes 37a and 37b and the boundary 36 are sometimes narrow. This tends to cause the bristles of the brush-like grid cleaner 20 to get caught in the holes 37a and 37b and fall out when the grid cleaner 20 passes therethrough. In light of this, among the deficient holes 37a and 37b, the holes 37b that have a smaller opening area than a predetermined opening area for the holes 37a and 37b are closed since the bristles may easily get caught in the holes 37b. In the first exemplary embodiment, for example, a hole is closed if the opening area thereof is smaller than or equal to 20% of that of a non-deficient hole 37. Alternatively, a hole may be closed if an opening width thereof is smaller than or equal to a specific width (e.g., 0.1 mm).
With regard to each of the deficient and unclosed holes 37a, the bristles of the grid cleaner 20 may get readily caught in an area where the margin 40 and the boundary 36 form a sharp angle at the rear end of the hole 37a, that is, at the downstream side thereof during the homebound process of the electrode cleaner 16, causing the bristles to fall out. Therefore, in the grid electrode 12 in the first exemplary embodiment, each sharp-angled area 37d is partly closed so as to eliminate the sharp angle.
Referring to
In the first exemplary embodiment, the left grid region 38 and the right grid region 39 have identical periodically-repeating grid patterns, and also have the deficient holes 37a and 37b that are periodically disposed along the boundary 36. Furthermore, in the first exemplary embodiment, a hole having an opening area that is smaller than or equal to 20% of that of a non-deficient hole 37 is closed. Therefore, the holes 37 include entirely closed holes 37b and holes 37a in which only the sharp-angled areas 37d are closed. Although it may be desirable that all of the closed holes 37b in the left grid region 38 and all of the closed holes 37b in the right grid region 39 be arranged such that they do not overlap each other, it may sometimes be difficult to arrange all of the closed holes without overlapping them if there are many closed areas or in view of design flexibility of the grid pattern. Therefore, in view of design flexibility and unevenness prevention, it may be desirable that all of the holes 37, 37a, and 37b be arranged such that at least the closed holes 37b do not overlap each other across the boundary 36. Specifically, examples of the arrangement patterns include an arrangement pattern in which the closed holes 37b and the holes 37a with the closed sharp-angled areas 37d overlap each other across the boundary 36, an arrangement pattern in which the holes 37a with the closed sharp-angled areas 37d overlap each other across the boundary 36, and an arrangement pattern in which identical closed holes 37b do not overlap each other in a line-symmetric fashion.
Operation of First Exemplary Embodiment
In the image forming apparatus U according to the first exemplary embodiment of the present invention having the above-described configuration, when voltage is applied to the wire electrodes 11 and the electrode members 2+12 opposed thereto, electrons are released from the wires 11a and 11b, whereby the surfaces of the photoconductor drums Py to Pk are electrostatically charged.
In the first exemplary embodiment, the left grid region 38 and the right grid region 39 have asymmetric arrangement patterns with respect to a line, so that the occurrence of uneven charge distribution in the axial direction of each of the photoconductor drums Py to Pk, that is, the main scanning direction, is reduced, as compared with a case where the left grid region 38 and the right grid region 39 are disposed symmetrically with respect to a line.
Referring to
The grid electrode 12 in the first exemplary embodiment and the grid electrode 01 of the comparative example shown in
In this case, in the grid electrode 01 of the comparative example having line-symmetric arrangement patterns as shown in
In particular, if holes 04 with a small opening area are to be closed, the closed holes 04 would be disposed adjacent to each other across the boundary, resulting in a reduced opening ratio in the sub scanning direction.
Although it is conceivable to reduce the variation in the opening ratio by increasing the thickness of the boundary 36, the boundary 36 with an increased thickness would block the electric discharge, resulting in reduced charging efficiency for each of the photoconductor drums Py to Pk. For this reason, it may be desirable to minimize the thickness of the boundary 36. However, reducing the thickness of the boundary 36 would cause the opening ratio to vary easily.
Accordingly, referring to
Therefore, the configuration of the comparative example with a large variation in the opening ratio in the main scanning direction is problematic in that the opening ratio varies greatly and that uneven charge distribution in the main scanning direction is large on the surfaces of the photoconductor drums Py to Pk. In particular, in the configuration of the comparative example in which the opening ratio varies periodically, uneven charge distribution tends to occur periodically in the main scanning direction, leading to reduced image quality, such as periodical formation of dark and light areas in an image. In contrast, in the first exemplary embodiment, the asymmetric left and right grid regions 38 and 39 allow for a reduced variation in the opening ratio so that the occurrence of uneven charge distribution is reduced, whereby the occurrence of image deterioration is reduced.
In particular, in the first exemplary embodiment, since the closed holes 37b are displaced relative to each other in the main scanning direction between the left and right grid regions 38 and 39, a variation in the opening ratio is reduced so that the occurrence of uneven charge distribution is reduced, as compared with a case where the closed areas are disposed adjacent to each other across the boundary 36 even in an asymmetric arrangement or a case where the closed areas partly overlap each other across the boundary 36.
Furthermore, in the first exemplary embodiment, the line-symmetric arrangement patterns of the left grid region 38 and the right grid region 39 are displaced relative to each other in the front-rear direction, and the arrangement patterns may be formed by turning over a single arrangement pattern and then joining identical arrangement patterns together. Therefore, the grid regions 38 and 39 may be formed using a single component so as to allow for reduced manufacturing costs, as compared with a case where the right grid region 39 and the left grid region 38 are formed by fabricating grid segments with different grid patterns individually and then joining them together.
Moreover, in the first exemplary embodiment, when the electrode cleaner 16 reciprocates, the brush-like grid cleaner 20 removes the contamination, such as a discharge product, from the surface of the grid electrode 12. The removed contamination may adhere to the grid cleaner 20 or fall onto the surface of the photoconductor drum Py to Pk. In this case, in the first exemplary embodiment, the ventilator is activated while the electrode cleaner 16 reciprocates, so that the contamination falling or fallen onto the photoconductor drum Pk to Pk is collected after being ejected outward with air. Therefore, the occurrence of a charge defect caused by contamination adhered to the surfaces of the photoconductor drums Py to Pk is reduced.
In particular, in the case where the brush-like grid cleaner 20 is used, the bristles of the brush may get caught at the margins 40 of the holes 37 and fall out. If the bristles of the brush adhere to the surface of each of the photoconductor drums Py to Pk, image deterioration may possibly occur. However, in the first exemplary embodiment, the holes 37b with a small opening area where the bristles can get easily caught are closed so as to reduce the possibility of the bristles of the brush falling out. In addition, an exhaust process is performed during the cleaning operation so that the fallen bristles of the brush may be readily collected.
Furthermore, in the first exemplary embodiment, the inclination angles 741 and 742 are set so as to be inclined outward with increasing distance in the forward direction, that is, toward the downstream side in the outbound direction of the electrode cleaner 16. Specifically, the angles are set such that the arrangement patterns of the holes 37 spread away from each other with increasing distance in the forward direction. Therefore, with regard to the right grid region 39 in
In particular, in the configuration in which the electrode cleaner 16 reciprocates, the bristles 20a of the brush may readily scrape off the contamination during the outbound process so that the contamination may often be removed during the homebound process. In actuality, it is confirmed by the present inventors that a larger amount of contamination falls onto the surfaces of the photoconductor drums Py to Pk during the homebound process.
In a case where the inclination angles 741 and 742 are inclined inward with increasing distance in the forward direction, the bristles of the brush would be elastically deformed inward during the homebound process. This would cause the contamination adhered to the bristles of the brush to be flicked so as to become concentrated toward the center from both sides in the sub scanning direction. When the contamination is concentrated toward the center, the contamination cannot be sufficiently drawn in only by the suction of air. This causes the contamination to exist locally in certain areas on the surfaces of the photoconductor drums Py to Pk, and the time required for the photoconductor cleaners Cly to CLk to remove the contamination increases, possibly resulting in reduced image quality.
In contrast, in the first exemplary embodiment, the bristles 20a are elastically deformed outward during the homebound process so that the contamination is readily dispersed outward. Therefore, the contamination may be sufficiently drawn in by the suction of air, so that the contamination adhered to the surfaces of the photoconductor drums Py to Pk may also be readily dispersed, thereby effacing image deterioration.
The brush used for the grid cleaner 20 is generally formed by cutting a long pile-sheet brush, which has bristles in the form of piles on long sheet-like base fabric, into short segments in accordance with the size of the grid cleaner 20. Therefore, it is known that the bristles at the cut ends may readily fall out from the base fabric. Although the ends may be given a thermal treatment or an adhesive treatment to prevent the bristles from falling out, such a treatment leads to an increase in costs. For this reason, it is confirmed that the bristles may fall out during the reciprocation of the electrode cleaner 16 and remain on the grid electrode 12, leading to uneven charge distribution. The bristles often get caught in areas where the holes 37 in the grid are narrow, but are unlikely to get caught in wide areas. Moreover, even when detached bristles get caught in the narrow areas, these bristles may sometimes be removed when the grid cleaner 20 is moved again since the brush comes into contact again with the detached bristles caught in the narrow areas.
Based on experiments performed by the present inventors for reducing the number of falling bristles, it is confirmed that the number of falling bristles is reduced by disposing the grid such that the brush is located toward the center during the homebound process. Specifically, when the brush expands during the outbound process by coming into contact with the margins 40 extending at the inclination angles θ1 and θ2, the bristles 20a of the brush approach the periphery (i.e., the outer frame segment 12b) of the grid electrode 12. Therefore, since the holes 37 along the periphery are deficient and narrow, the bristles 20a of the brush may get caught in the sharp-angled areas and readily fall out before the bristles 20a move over the margins 40. On the other hand, since the brush moves toward the center during the homebound process, the brush moves away from the periphery. Therefore, the bristles 20a are unlikely to fall out since the deficient holes 37b are closed and the holes with closed sharp angle areas are widened. In particular, even when the bristles fall out during the outbound process, there is a high possibility that the bristles may be removed during the homebound process. The bristles removed from the grid electrodes 12 fall onto the photoconductor drums Py to Pk and are ejected outward by air suction.
Second Exemplary Embodiment
In the following description of the second exemplary embodiment, components that correspond to those in the first exemplary embodiment are given the same reference numerals, and detailed descriptions thereof will be omitted.
The second exemplary embodiment differs from the first exemplary embodiment in the following points, but is similar to the first exemplary embodiment in other points.
Referring to
Operation of Second Exemplary Embodiment
In the chargers CCy to CCk in the second exemplary embodiment having the above-described configuration, a variation in the opening ratio in the main scanning direction is reduced, as compared with the bilaterally symmetric configuration of the comparative example as shown in
Third Exemplary Embodiment
In the following description of the third exemplary embodiment, components that correspond to those in the first exemplary embodiment are given the same reference numerals, and detailed descriptions thereof will be omitted.
The third exemplary embodiment differs from the first exemplary embodiment in the following points, but is similar to the first exemplary embodiment in other points.
Referring to
Operation of Third Exemplary Embodiment
In the chargers CCy to CCk in the third exemplary embodiment having the above-described configuration, a variation in the opening ratio in the main scanning direction is reduced, as compared with the bilaterally symmetric configuration of the comparative example as shown in
Modifications
Although the exemplary embodiments of the present invention have been described in detail above, the present invention is not to be limited to the above exemplary embodiments and permits various modifications within the scope of the invention defined in the claims. Modifications H01 to H014 of the above exemplary embodiments of the present invention will be described below.
In a first modification H01 of the above exemplary embodiments, the image forming apparatus U is not limited to a copier, but may be applied to other types of image forming apparatuses, such as a printer or a facsimile apparatus. Furthermore, the above exemplary embodiments are not limited to a color image forming apparatus, but may be applied to a monochrome image forming apparatus. Furthermore, the above exemplary embodiments are not limited to a tandem-type image forming apparatus, but may be applied to a rotary-type image forming apparatus.
In a second modification H02, although the wire electrode 11 is constituted of two wires in the above exemplary embodiments, the wire electrode 11 may be constituted of a single wire or three or more wires. Furthermore, the grid electrode 12 is not limited to two regions, i.e., the left grid region 38, 38′, 38″ and the right grid region 39, 39′, 39″, but may have three or more regions.
In a third modification H03 of the above exemplary embodiments, the shield electrode 2 may be omitted.
In a fourth modification H04, although the cleaners 22 and 26 are configured to come into and out of contact with the wire electrode 11 in the above exemplary embodiments, the cleaners 22 and 26 may be configured to be constantly in contact with the wire electrode 11.
In a fifth modification H05, although chargers are described as an example of dischargers in the above exemplary embodiments, the transfer units T1y to T1k, and T2, static eliminators or auxiliary static eliminators for the photoconductor drums Py to Pk and the recording paper S may be used as an example of dischargers.
In a sixth modification H06 of the above exemplary embodiments, the configuration for moving the electrode cleaner 16 in the front-rear direction is not limited to the use of the shaft 6, but may employ a freely-chosen configuration that can move the electrode cleaner 16 in the front-rear direction.
In a seventh modification H07, the positions where the detected sections 21b and the optical sensors SN1 are disposed are not limited to those described in the above exemplary embodiments, but may be changed to freely-chosen positions, such as displacing the positions in the front-rear direction or the left-right direction. Furthermore, for example, the detected sections 21b may protrude outward from the charger bodies 1, and the optical sensors SN1 may be configured to perform detection by being disposed in the image recording device U3 of the image forming apparatus U or in the corresponding photoconductor drums Py to Pk, instead of being disposed in the corresponding chargers CCy to CCk.
In an eighth modification H08, the configuration of the grid cleaner 20 is not limited to that described in the above exemplary embodiments, but a freely-chosen configuration may be employed in accordance with the design. For example, the brush or cloth may be changed to a freely-chosen cleaning member, such as a sponge. Furthermore, a cleaning member that is contactable with the inner surface of the shield electrode 2 may be provided so that the shield electrode 2 may also be cleaned, or a cleaning member that is contactable with the lower surface of the grid electrode 12 may be provided so that both surfaces of the grid electrode 12 may be cleaned.
In a ninth modification H09, although the left grid region 38, 38′, 38″ and the right grid region 39, 39′, 39″ have bilaterally symmetric arrangement patterns that are displaced relative to each other in the main scanning direction in the above exemplary embodiments, the arrangement patterns themselves may be bilaterally asymmetric with respect to a line. For example, a freely-chosen combination of the left and right grid regions, such as a combination of the left grid region 38′ in the second exemplary embodiment and the right grid region 39′ in the third exemplary embodiment, may be used.
In a tenth modification H010, although the absolute values of the inclination angles 741 and 742 are substantially equal to each other between the left grid region 38, 38′, 38″ and the right grid region 39, 39′, 39″ in the above exemplary embodiments, an alternative configuration with different absolute values is also possible.
In an eleventh modification H011, although the inclination angles 741 and 742 may be inclined outward with increasing distance in the outbound direction of the electrode cleaner 16 in the above exemplary embodiments, the inclination angles 741 and 742 may alternatively be inclined inward.
In a twelfth modification H012, although the holes 37b may be closed in the above exemplary embodiments, a configuration in which the holes 37b are not closed is also possible.
In a thirteenth modification H013, although the air suction process may be performed during the movement of the electrode cleaner 16, that is, during the cleaning operation, in the above exemplary embodiments, a configuration in which the air suction process is not performed is also possible. Furthermore, for example, the photoconductor drums Py to Pk may be rotated, that is, idly rotated, during the cleaning operation so as to prevent the contamination from falling onto specific positions on the surfaces of the photoconductor drums Py to Pk, and the idle rotation process and the air suction process may be performed in combination with each other.
In a fourteenth modification H014, the shapes of the holes 37, 37′, 37″ are not limited to those described in the above exemplary embodiments, and may be a freely-chosen shape. Examples of the shapes may include a polygonal shape, such as a regular hexagonal shape, a triangular shape, a rectangular shape, and a pentagonal shape, a combination of polygonal shapes, such as a combination of a pentagonal shape and a hexagonal shape, and a combination of a polygonal shape and a circular shape.
The foregoing description of the exemplary embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in the art. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, thereby enabling others skilled in the art to understand the invention for various embodiments and with the various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2011-087747 | Apr 2011 | JP | national |