Embodiments of the invention relate to the field of circuit protection devices. More particularly, the present invention relates to a disconnect switch with an integrated thermal breaker.
Circuit interrupters or circuit breakers, such as, battery disconnect switches, are employed to provide protection for the electrical power circuit of a vehicle. For example, some vehicles, such as trucks and cars, employ direct current (DC) disconnecting switches to provide a rapid mechanism to disconnect batteries or other DC power supplies in the event of serious electrical faults. Disconnecting switches may also be employed by vehicles, such as, for example, electric vehicles such as golf carts and fork lifts, to disconnect alternating current (AC) power supplies.
Prior attempts to accommodate such loads employed an operating mechanism for the battery disconnect device which, for example, has an arrangement of switches or relays paired with circuit protection devices that require heavy gauge wiring. However, such designs are complex, expensive, and have a large footprint that takes up significant space in a relatively small area, such as a battery box. Also, many resettable high amperage circuit breakers must be sufficiently heated to reach a malleable state for switching the disconnect switch to the “off” position. It is with respect to these and other considerations that the present improvements have been needed.
A need exists for a high amperage disconnect switch by integrating a high amperage thermal breaker into a disconnect switch. Exemplary embodiments of the present disclosure are directed to a disconnect switch, such as a mechanical disconnect switch disposed between a source of power and a circuit to be protected. A thermal breaker can be integrated with the disconnect switch that can be disposed between a source of power and a circuit to be protected. The disconnect switch may comprise a housing, a first terminal coupled to a power source, and a second terminal coupled to a load. The first terminal and the second terminal can be partially included in the housing. The disconnect switch can comprise a bi-metal thermal conductive element made of, for example, at least two metal sheets with different thermal expansion coefficients. An operating mechanism can be coupled to the bi-metal thermal conductive element and configured to open and close the bi-metal thermal conductive element with the first terminal and the second terminal. The bi-metal thermal conductive element may have a concave shape and electrically engage with the first terminal and the second terminal upon respective application of power to the load. Upon occurrence of an overload condition, heat flowing through the bi-metal thermal conductive element causes the concave shape to retract to a convex shape and disengage the bi-metal thermal conductive element from the first terminal and the second terminal.
As mentioned above, switch assembly 120 also includes safety lock 150 which may have a central aperture 151 capable of receiving a locking device, such as a padlock. The safety lock 150 provides that inadvertent operation is not possible (e.g., lockout-tagout).
It should be noted that
Spring 260 is housed within the base section 130 and be coupled to the shaft 145 which is also coupled to electrical contact 250. Although the electrical contact 250 is shown as being positioned toward a first end 145a of shaft 145, it may be disposed along a variety of positions on shaft 145. Electrical contact 250 electrically connects the terminals 140, 240 when the switch 100 is mechanically turned to a closed position (e.g., current is allowed to flow from terminal 140 via the electrical contact 250 to terminal 240). Similarly, electrical contact 250 is used to electrically disconnect the terminals 140, 240 when the switch assembly is mechanically turned to an open position (e.g., the flow of current from terminal 140 via the electrical contact 250 to the terminal 150 is interrupted/terminated).
The spring 260 coupled to the shaft 145 allows the mechanical disconnect switch 100 to function as a rotary switch and/or a plunger switch. In other words, the switching assembly 120 can be of a rotary style disconnect switch and/or a plunger style disconnect switch for electrically connecting and/or disconnecting terminals 140, 240 via electrical contact 250.
In one embodiment, terminals 140, 240 can be connected to a source of electrical power such as, for example, a battery and a load. For example, terminal 140 can be electrically coupled to the power load and terminal 240 can be electrically coupled to the power source. The switching assembly 120 can include, without limitation, a manual ON/OFF switch or knob 121, cooperating with shaft 145 for positioning the electrical contact 250 to open and close the electrical contact 250 thus allowing or preventing current to flow between terminals 140 and 240. The mechanical disconnect switch 100 may be configured to trip or open the electrical contact 250 in response to at least one of an arc fault condition, an overload condition, and/or a short circuit condition thereby preventing current from flowing between terminals 140 and 240.
The bi-metal thermal conductive element 350 may be made of a plurality of metal sheets with different thermal expansion coefficients. For example, the bi-metal thermal conductive element 350 may comprise a metal alloy, nickel, iron, manganese, chromium, copper, steel, brass, aluminum, or a combination thereof where a first metal sheet can be copper and the second metal sheet can be nickel.
In one embodiment, the switching assembly 120, having the shaft 145, can be configured to open and close the bi-metal thermal conductive element 350 with terminals 140, 240. For example, during operation, when the switching assembly 120 is turned, rotated, and/or positioned to a closed position, a load current flows from a power source, such as a battery, to a load through the bi-metal thermal conductive element 350 via terminals 140, 240. Alternatively, when the switching assembly 120 is turned, rotated, and/or positioned to an open position, a load current flowing from the power source to the load via terminals 140, 240 is interrupted by the disengagement of either end 350a and/or 350b of the thermal conductive element 350.
The bi-metal thermal conductive element 350 is illustrated having an arcuate shape (e.g., concave) formed between ends 350a and 350b when there is no overload condition (e.g., a steady state condition) in the mechanical disconnect switch 100. In other words, a center portion 350c of the bi-metal thermal conductive element 350 bulges outward away from terminals 140, 240 and each end 350a and 350b of the bi-metal thermal conductive element 350 curves inward towards the terminals 140, 240. The bi-metal thermal conductive element 350 maintains the concave shape when either (1) no current is flowing through bi-metal thermal conductive element 350, and/or (2) when the current flowing through each metal sheet in the bi-metal thermal conductive element 350 generates heat that is less than the thermal expansion coefficients for changing shape and/or volume of the bi-metal thermal conductive element 350. As such, the mechanical disconnect switch 100 can be considered a high current breaker where “high” may be in the range of 200-500 A. Table 1 below provides exemplary thermal expansion coefficients (k) for exemplary metal sheet materials such as iron and copper.
The bi-metal thermal conductive element 350 can return to the arcuate shape (concave shape) when the temperature of the metal sheets in the bi-metal thermal conductive element 350 cools to a temperature below the thermal expansion coefficients. For example, following the ends 350a, 350b of the bi-metal thermal conductive element 350 being displaced away (e.g., tripped) from terminals 140, 240 due to the heat in the metal sheets, following a cooling period, each of the ends 350a, 350b of bi-metal thermal conductive element 350 may return to the concave shape and return to electrically contact with terminals 140, 240 without turning the switching assembly 120.
Thus, as provided herein, the mechanical disconnect switch 100 provides one or more benefits by providing a resettable high amperage mechanical disconnect switch with a switching assembly 120 that is more efficient to turn because of the leverage provided by the handle/knob independent of the temperature of the bi-metal thermal conductive element 350. Also, the integrated thermal breaker (e.g., the bi-metal thermal conductive element 350) allows the mechanical disconnect switch 100 to be a resettable high amperage mechanical disconnect switch without engaging the switching assembly 120 on or off following a cooling period. In other words, the bi-metal thermal conductive element 350 can automatically both electrically engage and/or disengage from the terminals 140, 240 depending on the temperature of the bi-metal thermal conductive element 350 being greater than and/or less than the thermal expansion coefficients for changing shape and/or volume for both metal sheets in the bi-metal thermal conductive element 350.
Thus, as described herein, the various embodiments described herein provide for a circuit protection assembly for a mechanical disconnect switch having integrated fuse protection. The disconnect switch with an integrated thermal breaker that can be disposed between a source of power and a circuit to be protected. The disconnect switch can comprise a housing. The disconnect switch can comprise a first terminal coupled to a power source. The disconnect switch can comprise a second terminal coupled to a load. The first terminal and the second terminal can be partially included in the housing. The disconnect switch can comprise a bi-metal thermal conductive element. The bi-metal thermal conductive element can be made of at least two metal sheets with different thermal expansion coefficients. An operating mechanism can be coupled to the bi-metal thermal conductive element. The operating mechanism can be structured to open and close the bi-metal thermal conductive element with the first terminal and the second terminal. The bi-metal thermal conductive element can have a concave shape and electrically engage with the first terminal and the second terminal upon respective application of power to the load. Upon occurrence of an overload condition, heat flowing through the bi-metal thermal conductive element causes the concave shape to retract to a convex shape and disengage the bi-metal thermal conductive element from the first terminal and the second terminal.
While the present invention has been disclosed with reference to certain embodiments, numerous modifications, alterations and changes to the described embodiments are possible without departing from the sphere and scope of the present invention, as defined in the appended claim(s). Accordingly, it is intended that the present invention not be limited to the described embodiments, but that it has the full scope defined by the language of the following claims, and equivalents thereof.