1. Field of the Invention
This invention relates to disconnectable mooring systems for loading and offloading liquid petroleum product oil tankers, floating storage (FSO) vessels, floating production storage and offloading (FPSO) systems, floating vessels for natural gas offloading, such as cryogenic liquefied natural gas (LNG) regas import terminals, and LNG transport vessels. In particular, the invention relates to an improved buoy recovery system for a disconnectable turret mooring system that permits turret-buoy connection at any compass heading.
2. Description of the Prior Art
Floating production systems are commonly used in remote offshore locations where design constraints on production infrastructure or the harsh seas make conventional fixed production platforms impracticable. Floating production systems typically include a vessel for storage and transportation of produced oil or gas from a remote offshore well to an onshore receiving terminal. To produce the oil or gas into the storage vessel, the floating production system must be moored in some manner to the offshore well. Many mooring systems are “turret” systems of one form or another, which are familiar to those skilled in the art and will only be briefly discussed herein. The mooring turret is an assembly disposed vertically through the vessel from a position above the main deck and down through the keel. Turrets are generally very large, expansive structures having a vertical height greater than that of the vessel and usually include large diameter upper and lower bearings, such that the vessel may rotate independently about the turret. Many prior art disconnectable mooring systems also require a large (approximately 10 meters or greater diameter) cone-shaped opening in the vessel bottom. Such large turret-vessel structures are expensive to construct. Furthermore, large openings in the vessel hull constructed to accommodate disconnectable mooring buoys cause significant drag and energy losses on those cargo vessels if they are required to sail a long distance from the mooring. Newer and larger high-speed LNG carrier/regas vessels tend to have a narrow flat bottom near their bow, the optimum location for buoy connection. A large hull opening is much less desirable at that position.
Numerous prior art patents disclose prior buoy mooring systems. Several of these disclose a submerged buoy that can be detachably released from a floating vessel. In these systems, the submerged buoy typically has sufficient buoyancy so that it can be raised into contact with the vessel keel with the aid of tensioning devices and wire systems or by its own bouyant force. For example,
The turret assembly 120 is mounted in the vessel hull 110 such that the hull can rotate about the turret in response to environmental forces of wind, waves, and currents. The hull 110 opens to the sea near the keel elevation 108. The turret assembly 120 comprises a vertical turret shaft 122 which is equipped with a hollow hydraulic connector 128 at its lower end that is designed and arranged to disconnectably mate with a connector hub 166 located at the top of the buoy 160. Rubber fenders 125 are provided at the keel 108 to cushion the mooring process. A water seal 127 is provided to maintain watertight integrity of the turret compartment in the vessel 110.
The mooring arrangement 100 of
When the buoy 160 is completely separated from the vessel 110, the buoy 160 is arranged and designed to sink to a neutrally buoyant position at a depth of approximately thirty-six meters below the sea level. The vessel 110 is moored to the buoy 160 by first recovering the submerged buoy 160 upwards to the hollow hydraulic connector 128 positioned at the keel 108. A mooring tensioning assembly 132 is used to pull in the buoy 160 using a pull-in line 135 attached to the mooring chain 130 of buoy 160. The pull-in line 135 is rigged from the mooring tensioning assembly 132 through a chain tensioner 136 in the turret assembly 120 to the mooring chain 130 of buoy 160. The mooring tensioning assembly 132 pulls in the pull-in line 135 until the loading sharply increases (i.e. once the buoy 160 is within a few yards of the vessel 110). The chain tensioner 136 in the turret shaft 122 is then engaged and begins slowly pulling in the geostationary buoy 160 up to the connection position. The turret assembly 120 is rotated with respect to the vessel using hydraulic drive motors (not illustrated) until the riser tubes 170 of turret assembly 120 and the riser tubes 168 of geostationary buoy 160 are properly aligned. The hollow hydraulic connector 128 is then locked in engagement with the connector hub 166, fixing the turret 120 with the geostationary 160 and mooring the vessel 110 to the seabed (not illustrated). The vessel is free to weathervane about the geostationary turret 120 in response to wind, waves, and currents.
Large turret structures are often necessary to support the weight of the turret-mounted tensioning assembly or provide an adequate spacing in which to rig the pull-in line from a vessel-mounted tensioning assembly. As shown in
3. Identification of Objects of the Invention
One or more embodiments of the invention are arranged and designed to accomplish one or more of the following objects:
An object of the invention is to provide a disconnectable turret mooring system with a vessel-mounted tensioning assembly which allows for connection at any compass heading, yet prevents pull-in line engagement with turret components.
Another object of the invention is to provide a disconnectable turret mooring system wherein the turret for buoy recovery is significantly reduced in size.
Another object of the invention is to provide a disconnectable turret mooring system which permits the swivel stack assembly to be positioned within the vessel between the deck and the keel.
Another object of the invention is to provide a buoy recovery system which supports the weight of the buoy during recovery but does not adversely affect the pull-in line or mooring chain during turret-buoy piping alignment operations.
Another object of the invention is to provide a buoy recovery system which minimizes the loading on the turret structure during turret-buoy piping alignment operations.
Another object of the invention is to provide a disconnectable turret mooring system which minimizes the opening in the vessel bottom.
Another object of the invention is to provide a disconnectable turret mooring system with an integrated buoy recovery system which can retrieve and release a geostationary buoy in high sea states and harsh conditions as a result of the arrangement of the buoy-to-ship interface equipment.
Other objects, features, and advantages of the invention will be apparent to one skilled in the art from the following specification and drawings.
The objects identified above, as well as other features and advantages of the invention are incorporated in an improved buoy recovery system for a disconnectable mooring arrangement that permits turret-buoy connection at any compass heading. In a preferred embodiment, the mooring tensioning assembly is positioned at a location on the vessel other than on the rotatable turret assembly. This permits the size of the turret assembly to be significantly reduced, because a large turret structure is no longer needed to support the mooring tensioning assembly or provide the required space for the turret-mounted tensioning device to function properly. The reduced size of the turret assembly also permits both the turret assembly and the swivel stack to be positioned within the confines of the vessel (i.e., between the deck and the hull of a moon pool of the vessel).
The improved buoy recovery system employs intermediate buoy support equipment to support the weight of the buoy and to prevent damage to the turret assembly or to the pull-in line during buoy recovery operations. The intermediate buoy support equipment includes a hollow bore hydraulic cylinder assembly that is configured as a rotatable hydraulic chain jack. The hollow bore hydraulic cylinder assembly comprises a hollow bore hydraulic cylinder, a cylindrical line swivel, a bearing and a retaining device. The hydraulic cylinder is vertically mounted atop the hollow hydraulic connector of the turret assembly. The cylindrical line swivel, which also has a hollow bore for passage of the pull-in line, is disposed within the hollow bore hydraulic cylinder and is arranged and designed to create an upper and a lower annulus with the hydraulic cylinder. The cylindrical line swivel is supported within the hydraulic cylinder by a bearing disposed in the lower annulus. The bearing allows the turret and the turret-mounted hydraulic cylinder to rotate about the cylindrical line swivel, which remains substantially stationary with the geostationary buoy during mooring operations. When hydraulic fluid is pumped from a hydraulic source into the lower annulus between the hydraulic cylinder and the cylindrical line swivel, the cylindrical line swivel is raised or jacked up within the hydraulic cylinder.
The pull-in line, which is preferably a hawser but may also be a tensioning rope, wire line, or even a mooring chain, is rigged from the mooring tensioning assembly through the turret assembly at a specific initial orientation of the turret to the vessel. During buoy recovery operations, the pull-in line is preferably connected using a rope-to-chain connector to the end of a mooring chain attached to the buoy. Alternatively, the pull-in line may be attached directly to the buoy itself. The buoy is then recovered toward the vessel by pulling in the pull-in line through the turret assembly and the hydraulic cylinder assembly using the mooring tensioning assembly. When the end of the pull-in line emerges through the top of the hydraulic cylinder assembly, the retaining device coupled to the cylindrical line swivel is engaged about the pull-in line to secure the pull-in line with attached buoy to the cylindrical line swivel. This permits the weight of the buoy to be supported by the intermediate buoy support equipment rather than by the mooring tensioning assembly.
While the weight of the buoy is supported by the cylindrical line swivel of the intermediate buoy support equipment, the pull-in line above the retaining device is payed out until the cylindrical line swivel is fully retracted. When the cylindrical line swivel is in its fully retracted position, the load of the buoy is transferred directly to the bearing of the hydraulic cylinder assembly. The bearing allows the turret and hydraulic cylinder to be freely rotated about the cylindrical line swivel and buoy. The cylindrical line swivel, however, remains substantially stationary in relation to the buoy while the turret, hollow hydraulic connector and hydraulic cylinder are rotated into the proper turret-buoy piping alignment. The torsional stiffness of the pull-in line, due to the weight of the buoy, is great enough to allow operation of the bearing without causing undue twisting of the pull-in line or rotational movement of the geostationary buoy.
The buoy may be recovered to the vessel at any compass heading, because after initial buoy retrieval, the turret may be rotated up to 360 degrees relative to the buoy in order to properly align the turret piping with the buoy piping. The intermediate buoy recovery equipment supports the buoy during the alignment operation; therefore, the pull-in line is not adversely twisted or stretched while the turret is rotated. Once the turret is properly aligned with the buoy, a turret alignment pin is engaged to prevent any additional rotation of the turret with respect to the buoy. Hydraulic fluid is then pumped from a hydraulic source into the lower annulus between the hydraulic cylinder and the cylindrical line swivel to upwardly raise or jack up the cylindrical line swivel within the hydraulic cylinder. This simultaneously unloads the bearing disposed within the hydraulic cylinder assembly. The buoy, which is secured to the cylindrical line swivel through the retaining device, is raised into a position adjacent to the turret. The hollow hydraulic connector is engaged to lock the buoy to the turret at the correct orientation. The turret may then be dewatered, the turret-buoy piping connected, and ropes/chains stowed for future buoy disconnection.
The objects, advantages, and features of the invention are described in detail hereinafter on the basis of, but not limited to, one or more embodiments illustrated in the accompanying figures, in which:
As shown in
The geostationary buoy 260 preferably includes a chain locker 263 disposed axially in the buoy 260. A mooring chain 230 is normally stowed within the chain locker 263 and is used to pull in the buoy 260 toward the hollow hydraulic connector 228 positioned at the bottom 229 of the turret 220. As is typical with most prior art mooring systems, the geostationary buoy 260 includes a number of anchors (not illustrated) and anchor legs 262 that moor the buoy 260 to the seabed (not illustrated) so that the buoy 260 remains essentially geostationary. A bumper assembly 225 is provided at the bottom 208 of the vessel 210 to absorb shocks encountered between the buoy 260 and the vessel 210 during snubbing operations. The mooring system 200 also provides a fluid flow path 268 between a subsea well, pipeline, or component thereof (not illustrated) and the vessel 210 when the vessel 210 is moored to the buoy 260. The cargo is transported to or from the vessel 210 by a pipeline on the seabed (not illustrated), a pipeline end manifold (not illustrated), a flexible conductor 268, and a fluid transfer system 270, 272, 274, located on the vessel 210. However, other fluid flow paths arrangements may be used as appropriate.
As shown in
The improved retrieval system 201, as shown in
As further illustrated in
The roller bearing 250 provides an anti-friction pivot for the hydraulic cylinder 244 to rotate about the chain swivel 252. The roller bearing 250 is disposed within the lower annulus 280, which is bounded by the interior surface 259 of the hydraulic cylinder 244, the downwardly facing lip 253 of ring projection 254, the exterior surface 257 of chain swivel 252 and the lip 249 of the integral external lower flange 248. Disposing the roller bearing 250 within the lower annulus 280 eliminates the need for an external housing and/or sealing of the bearing 250. Because roller bearing 250 is preferably submerged in hydraulic fluid disposed in the lower annulus 280 at all times, the need to lubricate roller bearing 250 is also eliminated. Hydraulic fluid is supplied to the lower annulus 280 from a hydraulic fluid source (not illustrated) via line 221. The chain swivel 252 is raised upwardly within the hydraulic cylinder 244 to its fully extended or final state when hydraulic fluid is pumped into lower annulus 280. Conversely, the chain swivel 252 is lowered downwardly within the hydraulic cylinder 244 back to its fully retracted or initial state when hydraulic fluid is evacuated from lower annulus 280. Thus, ring projection 254 acts as a piston operating within the lower annulus 280 and upper annulus 282 to raise or lower the upper portion 256 of chain swivel 252, which acts as a piston rod, in response to hydraulic fluid entering or exiting the lower annulus 280.
A retaining device 258 is secured with bolts 237 to the top of the chain swivel 252 (i.e., the top of the piston rod). The retaining device 258 preferably includes two sliding plates 290 that are adapted to slide within grooves 292 formed in the side of the rope-to-chain connector 240. During buoy recovery operations, the pull-in line 235 and/or mooring chain 230 is secured to the chain swivel 252 by sliding the retaining plates 290 into the grooves 292 of the rope-to-chain connector 240. The retaining device 258 may alternatively consist of a clamp, retaining pin, or similar mechanism to secure the rope-to-chain connector 240, the pull-in line 235, or the chain 230 to the chain swivel 252.
As shown in
As illustrated in
In operation, the pull-in line 235, as shown in
Once the rope-to-chain connector 240 is secured to the chain swivel 252 using the retaining device 258, any tension in the pull-in line 235 above the rope-to-chain connector 240 is released by paying out the pull-in line 235 from the mooring tensioning assembly 232 until the rope-to-chain connector 240 is seated on the retaining device 258 and/or the chain swivel 252 is fully retracted. When the chain swivel 252 is in its fully retracted or initial position, the load of the buoy 260 is transferred directly to the roller bearing 250. The roller bearing 250 allows the turret 220 and turret-mounted hydraulic cylinder 244 to be freely rotated about the chain swivel 252 and buoy 260. The chain swivel 252, however, remains substantially stationary in relation to the buoy 260 while the turret 220, hollow hydraulic connector 228, and hydraulic cylinder 244 are rotated into the proper turret-buoy piping alignment. The torsional stiffness of the pull-in line 235 and/or chain 230, due to the weight of the connected buoy 260, is great enough to allow rotation of the turret 220 and turret-mounted hydraulic cylinder 244 about the roller bearing 250 without causing undue twisting of the pull-in line 235 and/or chain 230 or rotational movement of the geostationary buoy 260.
Thus, the buoy 260 may be recovered to the vessel 210 at any compass heading, because after initial buoy retrieval, the turret 220 may be rotated up to 360 degrees relative to the buoy 260 in order to properly align the turret piping 270 with the buoy piping 268. The intermediate buoy recovery equipment 242 supports the buoy 260 during the alignment operation; therefore, the pull-in line 235 is not adversely twisted or stretched while the turret 220 is rotated. Once the turret 220 is properly aligned with the buoy 260, a turret alignment pin 218 is placed between the bottom 229 of the vessel 210 and the top 261 of the buoy 260 to prevent any additional rotation of the turret 220 with respect to the buoy 260. The intermediate buoy recovery equipment 242 then acts as a rod and piston to raise the buoy 260 into a position adjacent to the keel 208 of vessel 210. Hydraulic fluid is pumped from a source (not illustrated), through line 221, and into the lower annulus 280 housing roller bearing 250. The hydraulic fluid entering lower annulus 280 raises the ring projection 254 of chain swivel 252, which acts as a piston to raise the upper portion 256 of chain swivel 252 (i.e., the piston rod) into a final, extended position. This rod and piston action simultaneously unloads the roller bearing 250 within the lower annulus 280 and raises the buoy 260, which is attached to chain swivel 252 through retaining device 258. In a preferred embodiment, the chain swivel 252 is capable of being raised at least one meter by the hydraulic fluid pumped into the lower annulus 280. A hollow hydraulic connector 228 is engaged to lock the buoy 260 to the turret 220 at the correct piping orientation. The turret 220 may then be dewatered, the turret-buoy piping 268, 270 connected, and ropes 235/chains 230 stored for future buoy disconnection.
The Abstract of the disclosure is written solely for providing the United States Patent and Trademark Office and the public at large with a way to determine quickly from a cursory reading the nature and gist of the technical disclosure, and it represents one implementation of the invention and is not indicative of the nature of the invention as a whole.
While some embodiments of the invention have been illustrated in detail, the invention is not limited to the embodiments shown; modifications and adaptations of the above embodiment may occur to those skilled in the art. Such modifications and adaptations are in the spirit and scope of the invention as set forth herein:
Number | Name | Date | Kind |
---|---|---|---|
4436048 | Gentry et al. | Mar 1984 | A |
4448568 | Gentry et al. | May 1984 | A |
5240446 | Boatman et al. | Aug 1993 | A |
5292271 | Boatman et al. | Mar 1994 | A |
5306186 | Boatman | Apr 1994 | A |
5316509 | Boatman et al. | May 1994 | A |
5356321 | Boatman et al. | Oct 1994 | A |
5372531 | Boatman et al. | Dec 1994 | A |
6564740 | Hobdy et al. | May 2003 | B1 |