Hydrocarbons in an undersea reservoir lying at the bottom of a deep sea (over 500 meters) are commonly produced by an installation that includes risers for carrying the hydrocarbons up from the sea floor to a production vessel that stores the hydrocarbons. The connections to the sea floor can also include flowlines for water injection, gas lift, gas export, and umbilicals, and also mooring lines that moor the vessel. At times the vessel must sail away from a location over the region of the reservoir where the risers and mooring lines are located, as when a storm is approaching, or to carry the stored hydrocarbons to another station, or for another purpose. For this reason, the installation commonly includes a connection buoy, or buoyant connector that is connected to the upper ends of the risers and the upper ends of the mooring lines, and that is in turn, connected to the vessel in a manner that allows the connector to be disconnected and reconnected. When the connector is disconnected from the vessel, the connector sinks to a position that is at least 25 meters under the sea surface so the connector lies under most or all of the wave action zone.
When the vessel returns to the production installation, the connector must be raised and connected to the vessel by personnel on the vessel and/or divers. The less massive the connector, the easier it is to manipulate and move during disconnection and reconnection. The present invention is directed largely to making such installations so the connector is of minimum mass and volume and therefore easier to move, and so the connector is moved a minimum distance. The installations are used primarily for the production of hydrocarbons, but are useful wherever large quantities of hydrocarbons are to be transferred.
In accordance with one embodiment of the invention, an installation is provided for mooring a hydrocarbon transfer vessel that includes a buoyant connector that connects risers and mooring lines to a vessel, wherein the connector can be disconnected from the vessel to sink under much of the wave action zone, wherein the connector can be moved with minimum effort. The mooring lines have primarily vertical lower portions that extend up to mooring buoys and have upper portions that extend primarily horizontally from the mooring buoys to the connector. The risers have lower portions that extend from the sea floor up to riser buoy means, and the risers have upper portions in the form of jumper hoses that extend from the riser buoy means to the connector. In most cases, the riser buoy means are buoys that are separate from the mooring buoys, but in some cases the riser buoys are formed by the mooring buoys that also support the lower portions of the risers. According to the invention, the riser buoy means is not directly moored to the seabed, but is coupled to the mooring buoys. It should be noted that in this text, “coupled to the mooring buoys” includes attached to the mooring system in the vicinity of the buoy or to a junction element linked to the buoy.
There is no primarily vertical line or other weight-supporting connection between any riser buoy (or riser buoy means) and the buoyant connector. Flexible jumper hoses extend from the riser buoy to the connector, but the jumper hoses are buoyant in water and are too long and flexible to transfer weight from the riser buoy to the connector. As a result, the connector supports substantially only its own weight, and half of the weight of the jumper hoses. As a result, when the connector must be lifted from deep (e.g. 50 meters) under water to the vessel, the personnel must lift only the weight of the buoyant connector (minus its buoyancy), one end of each mooring line horizontal upper portion, and a portion of the jumper hoses of the risers.
The novel features of the invention are set forth with particularity in the appended claims. It should be understood that when referring to risers, applicant refers to risers carrying the hydrocarbons up from the sea floor to a production vessel that stores the hydrocarbons, as well as flowlines for water injection, for gas lift, for gas export (when needed) and umbilicals. The invention will be best understood from the following description when read in conjunction with the accompanying drawings.
a is a side elevation view of a vessel and a hydrocarbon transfer installation of the invention, with the connector of the installation connected to the vessel.
b is a side elevation view of an installation that differs from that of
c is a view similar to that of
d is a view similar to that of
a illustrates a system 12 for mooring a vessel 14 such as an FPSO (floating, production, storage, and offloading) through a disconnectable turret buoy, or connection buoy, or buoyant connector 16. The system includes risers (production lines, lines for water injection, gas lift, umbilicals) 101 whose lower ends 24 lead to well heads 25 that connect to a subsea hydrocarbon (oil and/or gas) reservoir 26, and also includes mooring assemblies 30 that hold the vessel in position. The risers 101 and mooring or anchor assemblies 30 have upper ends connected to the connection buoy 16, and lower ends connected to the sea floor 34. Thus, all major connections of the vessel to the sea floor are made though the connection buoy 16. There is no primarily vertical tensioned line that extends from the riser buoy 102 to the seabed 34. The vessel sometimes sails away from the location over the reservoir, as when a large storm or iceberg is approaching, or if the vessel sails to a location where it unloads the hydrocarbons it has collected and stored. In those cases, the connection buoy 16 must be disconnected from the vessel 14 and allowed to sink to a height that is preferably below the bottom 70 of a wave action zone 40 of height A, and later picked up and reconnected to the vessel 14.
During disconnection and reconnection of the connection buoy 16, the buoy must be handled by personnel on the vessel and/or divers. The less massive the connection buoy, the easier it is to manipulate it and move it during such operations. The present invention is directed to designing the system so a connection buoy of minimal mass and volume can be used to reliably connect and disconnect the mooring and riser parts of the system to the vessel.
The mooring assemblies 30 include lines preferably made of steel wire or polyester ropes or combinations thereof which are of less weight than long steel chain mooring lines. Steel has a specific gravity of about 7 and if long steel chains were used their upper ends would have to be supported by a relatively large vessel or large buoy.
a also shows that the vessel has a turret that allows the vessel to weathervane, and that the buoyant connector 16 is connected to the bottom of the turret. A majority of the height of the connector 16 lies under the turret. The bottom of the vessel hull lies about 20 meters below the sea surface for the installation illustrated, and the top of the connector lies about 3 meters above the vessel hull bottom. As a result, the connector moves down about 33 meters in order to lie under the wave active zone 40 (which extends to about 50 meters under the sea surface, or to a depth between 25 and 75 meters under the sea surface), and the connector must be lifted about 33 meters in order to reconnect it to the vessel. If the connector lay fully in the vessel, then it would have to be moved up from a greater depth that is about 7 meters deeper for reconnection. In particular cases such as in seas where there are icebergs, the connector can move down about 100 meters in order to lie under icebergs.
A spring buoy 50 (a buoy with springs extending down from the buoy) is shown in
a also shows risers 101 formed by steel catenary riser (SCR) lower riser parts 100 and flexible jumper hoses 64, with a common riser buoy 102 connected by primarily horizontal lines 104 to the spring buoys or mooring buoys 50. The riser buoy 102 is not directly moored to the seabed but follows the movements and displacements of the spring buoys, as they are interconnected. The common riser buoy 102 could also refer to a bundle of several smaller buoys (as shown in
Further, it can be seen in
b shows an alternative embodiment, where the mooring buoys 50 are connected to the common buoy via taut lines 104, and the common buoy is a bundle of small buoys 102, with one small buoy per riser 100. In this configuration the pretension is shared between the mooring lines lower parts 44 and the primarily horizontal taut lines 104 that extend between the mooring buoys 50 and the small buoys 102. The upper mooring line parts 56 do not have any net tension (other than that caused by their weight in water). The mooring buoys 50 could also be connected one to the other via a taut line 105 in addition to lines 104 (for redundancy or when there are no risers). In this configuration the mooring line upper parts 56 are very light and slack, so the mooring line weight supported by the connector buoy 16 is small. Hence, it creates an artificial water depth and hence the mooring line upper parts 56 and the jumper hoses 64 are independent from the pretension applied on the system, the connector 16 moving with jumpers 64 and the mooring lines upper parts 56. The artificial water depth enables applicant to use upper mooring line parts 56 and jumper hoses 64 of short length which minimizes the suspended weight. Therefore, the design of the connector buoy can be simplified as it is less buoyant, smaller and lighter.
Applicant places the interconnected spring buoys 50 and riser buoys 102B of
In
It is clearly shown that the risers and the riser buoys 102 lie in between the 120 degrees-separated mooring assemblies 30.
Mooring lines made partly of polyester materials are advantageous to minimize the weight that must be supported in deep waters (e.g. over 500 meters). In fact, polyesters materials have specific gravities of 1.1 to 1.4 so they require only a relatively light support.
FIG., 7 shows an installation that combines the systems of
The systems shown in
Thus, the invention provides an improved installation that includes a connector buoy, or connector that connects mooring lines and risers to a vessel. The mooring lines have lower parts that extend primarily vertically to mooring buoys and have primarily horizontal upper parts that extend primarily horizontally to the connector to hold the vessel from drifting far away from a central location. The risers have lower parts that extend primarily vertically up to riser buoy means that may comprise a common buoy, individual buoys, or the mooring line buoys, and flexible jumper hoses that extend up to the connector. There is a vertical decoupling between the riser buoy means and the connector, or between any of the riser buoys or mooring buoys so the connector would not cause the riser buoy or mooring buoy to move appreciably vertically (more than 10% of connector vertical movement) with the connector. This minimizes the mass that has to be moved up when the connector is lifted for reconnection to the vessel.
The connector usually, but not always lies above the riser buoys (see embodiment shown in
The figures only show embodiments where the floating unit is a vessel such as an FPSO but it can also be any type of vessel (Floating storage and offloading unit (FSO), Floating storage and regassification unit . . . ) and any type of floating unit such as SPARs and floating production units (FPU).
Although particular embodiments of the invention have been described and illustrated herein, it is recognized that modifications and variations may readily occur to those skilled in the art, and consequently, it is intended that the claims be interpreted to cover such modifications and equivalents.
Applicant claims priority from US Provisional Patent Application Ser. No. 60/934,230 filed 12 Jun., 2007.
Number | Date | Country | |
---|---|---|---|
60934230 | Jun 2007 | US |