The present invention is generally related to a discontinuous drive power tool assembly, including impact and impulse tool assemblies, having a spindle and a socket. More particularly, the present invention is related to the interface between the spindle and the socket.
Discontinuous drive tools are used to provide an amount of torque to an item, such as a bolt or a nut that is being tightened on another object. It is common practice to utilize a male-to-female square socket interface to connect a drive socket to an output spindle anvil of an impact or impulse power tool. Due to tolerance and wear that occurs at this interface, the level of energy transfer efficiency can be adversely affected as the lost motion between the output spindle anvil and the drive socket increases.
According to an aspect of the present invention, there is provided a discontinuous drive power tool assembly for generating rotational torque. The tool assembly includes a spindle having a first end portion configured to receive a socket. The first end portion has a primary engaging surface and a tapered surface spaced from a distal end of the first end portion. The primary engaging surface and the tapered surface are configured to engage corresponding surfaces on the socket. The tool assembly also includes a pulse hammer engagable with a second end portion of the spindle that is opposite the first end portion, and a motor including a motor shaft engagable with the pulse hammer, the motor being configured to rotate the pulse hammer.
According to an aspect of the present invention, there is provided a spindle for a discontinuous drive power tool assembly. The spindle includes a first end portion configured to receive a socket. The first end portion has a primary engaging surface and a tapered surface spaced from a distal end of the spindle. The primary engaging surface and the tapered surface are configured to engage corresponding surfaces on the socket. The spindle also includes a second end portion configured to be engagable with a pulse hammer of the discontinuous power tool.
According to an aspect of the present invention, there is provided a socket configured to be secured to a spindle of a discontinuous drive power tool. The socket includes a tapered surface extending from an end of the socket. The tapered surface of the socket is configured to engage a tapered surface of the spindle.
Features of embodiments of the present invention are illustrated in the drawings, in which like reference numerals designate like element. The drawings form part of the original disclosure, in which:
The discontinuous drive power tool 10 also includes a trigger 16 that is mounted in the handle 14 and allows the operator to selectively turn the discontinuous drive power tool 10 on and off, as desired. A reversing lever 18 may be provided on the trigger 16. The reversing lever 18 allows the operator to tighten or loosen the object being worked on by the discontinuous drive power tool 10.
The discontinuous drive power tool 10 also includes a motor subassembly 20, an embodiment of which is shown in greater detail in
As illustrated in
A front bearing 42 may be press fit onto the distal portion 38 of the rotor shaft 24 and a rear bearing 44 may be press fit onto the proximal portion 40 of the rotor shaft 24. The front and rear bearings 42, 44 may be mounted within the housing 12 by known methods so as to secure the motor 22 to the housing 12, yet allow the rotor shaft 24 to freely rotate within the housing 30. Various seals, o-rings, and gaskets may be used to seal the motor 22 so that compressed air that is delivered to the motor housing 30 via the opening 32 does not leak out of the motor 22 and into the rest of the housing 12. A cap 46 may be connected to a rear end 48 of the housing 12 with a plurality of fasteners 50. In the embodiment illustrated in
A standoff spacer 54 may be connected to the proximal portion 40 of the rotor shaft 24. The standoff spacer 54 may be formed integrally with the rotor shaft 24 or may be a separate piece that is connected to the rotor shaft 24 via a threaded or welded connection.
As illustrated in
In an embodiment, the pulse hammer 72 includes a plurality of recesses 84 that define cam surfaces 86 that are configured to interact with the rollers 76. The coupler 74 is operatively connected to the rotor shaft 24 so that the coupler 74 rotates with the rotor shaft 24. The proximal portion 82 of the spindle 80 includes cam surfaces 88 that interact with the rollers 76. The cam surfaces 86 of the pulse hammer 72, the cam surfaces 88 of the spindle 80, and the rollers 76 are configured to allow the pulse hammer 72 to momentarily freely rotate and accelerate, relative to the rotational speed of the coupler 74 and the rotor shaft 24, to build up and store energy in the pulse hammer 72. When the rollers 76 are forced inward with respect to the coupler 74 by the cam surfaces 86 of the pulse hammer 72, the rollers 76 engage the spindle 80 and the stored energy in the pulse hammer will transfer to the spindle 80, thereby creating an impact blow to the spindle 80, which is transferred to the object being worked on, such as a fastener being tightened, by the tool 10. After the impact blow has been delivered, the pulse hammer 72 will decelerate, the spindle 80 will disengage from the coupler 74 so that the spindle does not rotate as the rotor shaft 24 continues to rotate, and the cycle may start over again with acceleration of the pulse hammer 72.
The spindle 80 may be further supported by the housing 12 via a bushing 90, and an oil seal 92 may be used to seal the pulse hammer subassembly 70 from the rest of the discontinuous drive power tool 10. A central portion 94 of the spindle 80 has a generally cylindrical shape and a circular cross section. A distal portion 96 of the spindle 80, includes a male spindle end 98 having a portion with a substantially rectangular section shape and square cross section. The male spindle end 98 is configured to receive, for example, a socket tool or power socket 100, an embodiment of which is illustrated in
As illustrated in greater detail in
Moving towards the central portion 94 of the spindle 80 and away from the distal end 104, a cylindrical surface 108 that defines a cylindrical portion 107 is disposed adjacent the primary engaging surface 102. A tapered surface 110 is separated from the cylindrical surface 108 by a recess or groove 109, which is defined by a concave surface, and extends towards the central portion 94 of the spindle 80, which has a cylindrical surface 95. The tapered surface 110 defines a conical portion 111 of the spindle 80. In the illustrated embodiment, the diameter of the conical portion 111 that is adjacent the recess 109 is substantially the same as the diameter of the cylindrical portion 107, and the diameter of the conical portion 111 that is adjacent the central portion 94 is substantially the same as the diameter of the central portion 94. Other diameters may be used. The illustrated embodiment is not intended to be limiting in any way.
In the illustrated embodiment, the tapered surface 110 extends along the spindle 80 by a length that is less than a length of the primary engagement surface 102. In an embodiment, the tapered surface 110 may define an angle α of up to about 45° relative to a longitudinal axis LA of the spindle 80 to concentrically locate the socket 100 relative to the spindle 80. In an embodiment, the tapered surface 110 may define an angle α between about 1° and about 16° relative to the longitudinal axis LA for locking purposes, as discussed in further detail below, and in an embodiment, the tapered surface 110 may define an angle α of about 7° relative to the longitudinal axis LA.
The socket 100 is adapted to be secured to the distal portion 96 of the spindle 80 and includes a spindle receiving end 112, or proximal end or female drive end, that is generally cylindrical in shape and is defined by an outer cylindrical surface 113. The outer cylindrical surface 113 may include a recess or groove 113a that is defined by a concave surface that extends around the entire circumference of the socket 100. The socket 100 also includes an object receiving end 114, or distal end, that is also generally cylindrical in shape and is defined by an outer cylindrical surface 115. In the illustrated embodiment, the outer cylindrical surfaces 113, 115 do not have the same diameter, but in other embodiments, the outer cylindrical surfaces 113, 115 may have the same diameter or the outer cylindrical surface 115 may have a diameter that is greater than the diameter of the outer cylindrical surface 113. The object receiving end 114 includes an opening that is defined by an object engaging surface 117 that is configured to engage the object being worked on by the discontinuous drive power tool 10, such as a nut or a bolt. In an embodiment, the object engaging surface 117 defines a hexagonal shape, such as the shape of a hexagonal head of a bolt or the shape of a hexagonal nut. The particular shape of the object engaging surface 117 is desirably suitable for the shape of the object being driven with the discontinuous drive power tool 10, as is know in the art.
The spindle receiving end 112 of the socket 100 typically has an outside diameter that is greater than the diameter of the central portion 94 of the spindle 80. The spindle receiving end 112 includes an opening that extends into the socket 100 and is at least partially defined by a tapered surface 118 that defines a conical tapered portion 119 that is configured to receive the tapered surface 110 and conical tapered portion 111 of the spindle 80. The tapered surface 118 of the socket 100 has an angle β relative to a longitudinal axis LS of the socket 100 that is desirably the same or about the same as the angle α of the tapered surface 110 of the spindle 80 to concentrically locate the socket 100 relative to the spindle 80. For example, the angle β may be up to about 45° relative to the longitudinal axis LS of the socket 100. In an embodiment, the tapered surface 118 may define an angle β between about 1° and about 16° relative to the longitudinal axis LS for locking purposes, and in an embodiment, the tapered surface 118 may define an angle β of about 7° relative to the longitudinal axis LS.
In embodiments in which the angle α of the tapered surface 110 of the spindle 80 is the same or substantially the same as the angle β of the tapered surface 118 of the socket 100, the two tapered surfaces 110, 118 will create a locking structure when they are placed in contact with each other.
The opening of the spindle receiving end 112 may be further defined by the primary engagement surface 106 that is configured to receive the primary engagement surface 102 of the spindle 80. The primary engagement surface 106 of the socket 100 is generally rectangular or square and is square in cross section and has a periphery that is substantially identical to the periphery of the primary engagement surface 102 of the spindle 80. In the illustrated embodiment, the socket 100 also includes an intermediate surface 120 that is in between the tapered surface 118 and the primary engagement surface 106. The intermediate surface 120 is cylindrical in shape and defines a cylindrical portion 121. The intermediate surface 120 provides a transition between the tapered surface 118 and the primary engagement surface 106. As illustrated, a chamfer 116 having a tapered, conical surface may be located in between the intermediate surface 120 and the primary engagement surface 106. In an embodiment, not illustrated, the socket 100 may not include the intermediate surface and the tapered surface 118 may be configured so that the primary engagement surface 106 extends from the tapered surface 118. The socket 100 may also include a cylindrical surface 129 that extends in between the primary engaging surface 106 and the object engaging surface 117. In an embodiment, illustrated in
The engagement of the tapered surface 118 of the socket 100 and the tapered surface 110 of the spindle 80 substantially prevents lost motion between the spindle 80 and the socket 100, which may reduce wear on the socket 100 and allow for more accurate transmission of forces and torque from the tool 10 to the socket 100 and object being worked on. In addition, the tapered surfaces 110, 118 may assist in aligning the primary engagement surface 102 of the spindle 80 with the primary engagement surface 106 of the socket 100.
As illustrated in
Returning to
The torque sensor 130 may be configured to provide a continuous torque measurement as a function of time, as illustrated by curve 142 in
Similarly, when the torque sensor 130 identifies the next moment in time when the tool 10 is delivering a peak torque pulse to the object being worked on, as indicated by the next peak 148, the torque sensor 130 sends another signal to the integrated circuit 60 of the rotational position sensor 56 to trigger another subsequent reading of the rotational angular position of the magnet 58. This allows the microprocessor 62 to provide an indication to the operator of the tool 10 how much the object being worked on has rotated since the tool 10 started working on the object (i.e., tightening a fastener), as shown on the right hand axis of
To operate the discontinuous drive power tool 10 in accordance with embodiments of the present invention, the socket 100 having a suitable design that corresponds to the object to be worked on, such as a fastener (i.e., bolt) or a nut, may be secured to the male spindle end 98, and the handle 14 of the discontinuous drive power tool 10 may be connected to a source of compressed air. The operator may then engage the object to be worked on with the socket 100 and actuate the trigger 16 to begin to tighten the object relative to a workpiece it is being fastened to. Actuating the trigger 16 allows the compressed air to enter the motor housing 30 via the opening 32, which causes the rotor shaft 24 to rotate.
The rotor shaft 24 of the motor 22 is engaged with the pulse hammer 72 and coupler 74 and causes the pulse hammer 72 to accelerate and provide an impact torque to the spindle 80, which is transferred to the socket 100 and ultimately to the object being worked on, as discussed above.
The angular displacement of the object being rotated by the discontinuous drive power tool 10 is measured by initially sensing the torque delivered through the spindle 80 to the object being rotated at the peak of each impact pulse provided by the pulse hammer 72 with the torque sensor 130. Once the torque level reaches or surpasses the threshold torque level 144, the rotational angular position of the rotor shaft 24 of the motor 22 is sensed and recorded as being at its absolute rotational angular position relative to the longitudinal axis LA by the integrated circuit 60 that is fixed in position in the housing 12. The use of the rotational position sensor 56 identifies the angular starting (or reference) position that is concurrent with the threshold torque level moment event 144. The moment event is defined as when a measured torque pulse at its peak level as delivered by the spindle 80 is sensed. The rotor shaft 24 is coupled to the spindle 80 via the pulse hammer 72 at moments when the pulse hammer 72 transfers the torque generated by the rotation of the rotor shaft 24 and the pulse hammer 72 to the spindle 80. The spindle 80 then transfers the force to the object being worked on by the discontinuous drive power tool 10.
Once the impact of the force is received by the object being worked on, the pulse hammer 72 disengages and allows the rotor shaft 24 to rotate a predetermined amount, e.g., one-half turn (180°), one full turn (360°), etc. After the rotor shaft 24 has rotated the predetermined amount, the pulse hammer 72 reengages and once again allows for the transfer of force that is generated by the motor 22 and pulse hammer 72 all the way to the spindle 80 and to the object being fastened or worked on by the discontinuous drive power tool 10.
The torque sensor 130 is configured to identify the moment event of when the rotor shaft 24 of the motor 22 ceases its rotation in concert with the spindle 80. The torque sensor 130 transfers this information to the rotational position sensor 56 at which point the rotational position sensor 56 measures the rotational angular reference position of the rotor shaft 24 of the motor 22. This rotational angular reference position, which corresponds to the threshold moment event, is stored in memory, which may be part of the integrated circuit 60, or may be part of the microprocessor 62. The rotor shaft 24 is allowed to disengage from the spindle 80 and rotate the predetermined amount (180°, 360°, etc.) before recoupling with the spindle 80 to deliver a torque pulse to the object being worked on by the discontinuous drive power tool 10.
When the second peak torque moment event 146 occurs, i.e., when the rotor shaft 24 and the spindle 80 cease to rotate again, the second peak torque is identified by the torque sensor 130 and the torque sensor 130 sends a peak torque trigger signal to the rotational position sensor 56. At this point in time, a first subsequent rotational angular position of the rotor shaft 24 is measured by the rotational position sensor 56 and is stored in the memory on the integrated circuit 60 or the microprocessor in much the same way the information relating to the rotational angle reference position was stored. The process may continue with subsequent steps of measuring the rotational angular position of the rotor shaft 24 with the rotational position sensor 56 at each moment the torque sensor 130 measures a peak torque event (represented by 148, 150, 152, 154 in
As discussed above,
Although the invention has been described in detail for the purpose of illustration based on what is currently considered to be the most practical and preferred embodiments, it is to be understood that such detail is solely for that purpose and that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover modifications and equivalent arrangements that are within the spirit and scope of the appended claims. For example, it is to be understood that the present invention contemplates that, to the extent possible, one or more features of any embodiment can be combined with one or more features of any other embodiment.
It should be appreciated that in one embodiment, the drawings herein can be considered to be drawn to scale (e.g., in correct proportion). However, it should also be appreciated that other proportions of parts may be employed in other embodiments.
Furthermore, since numerous modifications and changes will readily occur to those of skill in the art, it is not desired to limit the invention to the exact construction and operation described herein. Accordingly, all suitable modifications and equivalents should be considered as falling within the spirit and scope of the invention.
This application claims the benefit of priority from U.S. Provisional Patent Application Ser. No. 61/037,157, filed Mar. 17, 2008, the entire content of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4126063 | Palmer | Nov 1978 | A |
4993289 | Parks | Feb 1991 | A |
5038869 | Olson | Aug 1991 | A |
5782570 | Masterson et al. | Jul 1998 | A |
5960681 | Anderson et al. | Oct 1999 | A |
6076436 | Farley | Jun 2000 | A |
6390929 | Hyatt | May 2002 | B2 |
7028589 | Cheng | Apr 2006 | B1 |
7036406 | Milbourne et al. | May 2006 | B2 |
7207393 | Clark et al. | Apr 2007 | B2 |
7249638 | Bodine et al. | Jul 2007 | B2 |
7281310 | Moore et al. | Oct 2007 | B2 |
20030056625 | Bizilia et al. | Mar 2003 | A1 |
Number | Date | Country |
---|---|---|
1579958 | Sep 2005 | EP |
1666207 | Jun 2006 | EP |
1679158 | Jul 2006 | EP |
Number | Date | Country | |
---|---|---|---|
20090255699 A1 | Oct 2009 | US |
Number | Date | Country | |
---|---|---|---|
61037157 | Mar 2008 | US |