The present disclosure belongs to the field of hermetically sealed reciprocating refrigeration compressors, in particular, relating to a discrete refrigeration compressor exhaust muffler device and a refrigeration compressor using the same.
Technological advancements in refrigeration appliances such as refrigerators have led to rapid progress in the field of refrigeration compressors. With increasing demands for environmental protection and energy conservation, refrigerator manufacturers have increased their efforts in developing energy efficient chlorofluorocarbon (CFC) free refrigerators. Therefore it is necessary for the refrigerator compressor industry to explore new products in order to keep pace with the progress in the refrigerator industry.
Existing refrigerator compressors have a reciprocating piston construction.
However when the above compressor operates, the temperature and pressure of the compressed gas increases as a result of being compressed (temperature reaching 160° C.±, pressure reaching 32 kg). When the high-temperature-high-pressure gas flows through the exhaust muffler chamber 5, it transfers heat to the exhaust muffler chamber 5. Since the traditional exhaust muffler chamber 5 is casted onto the compressor cylinder block 2, heat is retained at the compressor cylinder block 2, cannot be dissipated outside of the compressor. Due to the heat retained inside the compressor, the compressor cylinder block 2 becomes a heating source. In addition to the heat produced by gas compression, heat is also produced by the electric motor during operation. As a result the temperature inside the compressor can be extremely high, and incoming gas is heated by heating sources inside the compressor. The extremely high temperature of incoming gas lowers the gas density, and thereby reduces the mass of incoming gas and the amount of compressed gas produced by the compressor. This leads to a reduction in the mass of output refrigerant. Thus, the compressor may consume a large amount of energy but deliver poor cooling performance.
An object of the present disclosure is to overcome aforementioned shortcomings of traditional compressors by providing a discrete heat-insulated exhaust muffler device and a refrigeration compressor using the exhaust muffler device. The exhaust muffler device is capable of effectively reducing compressor noise levels and reducing negative effects of hot gas inside the compressor. The exhaust muffler device can significantly improve compressor cooling performance and is suitable for use in a hermetically sealed refrigeration compressor, particularly a small-sized hermetically sealed refrigeration compressor.
A further object of the present disclosure is to provide a discrete exhaust muffler device that is low cost, light weight, structurally simple, and easily manufactured, and a refrigeration compressor using the exhaust muffler device, particularly a small-sized hermetically sealed refrigeration compressor.
According to one embodiment of this disclosure, a discrete, heat-insulating exhaust muffler device for a refrigeration compressor includes a metal cavity body defining a cavity, installation holes on the metal cavity body configured to respectively connect a gas intake pipe and an exhaust pipe to the cavity. A non-metallic shell is disposed on an outside of the metal cavity body. The non-metallic shell has installation holes associated with the respective installation holes on the metal cavity body for connecting the gas intake pipe and the exhaust pipe.
According to the above embodiment, the non-metallic shell can be separately formed and subsequently mounted outside the metal cavity. The non-metallic shell can be casted with the metal cavity body to form a single body. The non-metallic shell can be chemically deposited on the outer surface of the metal cavity by electroplating, electrophoresis, or other methods.
According to the above embodiment, the non-metallic shell includes raised projections disposed on an interior wall of the non-metallic shell.
According to the above embodiment, the non-metallic shell is made of a non-metallic heat-insulating material that is intermiscible with refrigerant or engine oil for the refrigeration compressor. The non-metallic heat-insulating material includes a plastic or a rubber.
According to the above embodiment, the non-metallic shell includes first and second shell bodies that are configured to be joined together. Each of the shell bodies is separately formed and subsequently joined together to form the non-metallic shell that is to be mounted on the outside of the metal cavity body.
According to the above embodiment, the first and second shell bodies of the non-metallic shell are joined together by snap-fitting, adhesive bonding, or heat bonding when mounted on the outside of the metal cavity body.
According to the above embodiment, the raised projections are provided on an interior wall of a major surface of each of the first and second shell bodies.
According to the above embodiment, the first shell body of the non-metallic shell has a level bottom and vertical side walls extending perpendicularly from a periphery of the level bottom. The side walls have an equal height. The second shell body has a slanted bottom and side walls extending from a periphery of the slanted bottom, the side walls extend in parallel to each other toward ends in flush with each other that mate with the sidewalls of the first shell body.
According to the above embodiment, the first shell body has protrusions on the vertical side walls along two long sides thereof, and the second shell body has snap-fitting rings on the side walls along two long sides thereof. Alternatively, the first shell body has the snap-fitting rings and the second shell body has the protrusions. The snap-fitting rings and the protrusions are configured to snap-fitted with each other.
According to the above embodiment, the case is made from a PBT engineering plastic.
According to the above embodiment, the non-metallic shell has a thickness of 0.5 mm-2.5 mm. Raised projections are provided on an interior wall of the non-metallic shell. The raised projections are projected from the interior wall to a distance of 0.2 mm to 1 mm.
According to the above embodiment, the metal cavity body is formed by welding together first and second cavity bodies to define the cavity.
According to the above embodiment, each of the two cavity bodies is formed by stamping a steel plate or a metal alloy plate.
According to the above embodiment, a baffle is mounted inside the metal cavity body between the first and second cavity bodies. The baffle has a gas flow buffer hole and an exhaust pipe installation hole. The gas flow buffer hole has a diameter smaller than that of the exhaust pipe installation hole.
According to the above embodiment, the baffle is mounted vertically or horizontally inside the metal cavity body between the first and second cavity bodies.
According to the above embodiment, the metal cavity body has a rectangular shape, and the non-metallic shell has a shape matching that of the metal cavity body.
According to the above embodiment, the exhaust muffler device is located outside of a compressor cylinder block of the refrigeration compressor, and is separated from the compressor cylinder block.
The present disclosure provides a hermetically sealed refrigeration compressor using the exhaust muffler device described above, major components inside the sealed compressor housing include a compressor cylinder block, a crankshaft piston connecting rod assembly, a valve assembly, an intake muffler chamber assembly, an electric motor, and an exhaust muffler device. The electric motor is located on a bottom inside the compressor housing. The compressor cylinder block is located above the electric motor. The crankshaft piston connecting rod assembly connects to the valve assembly through the compressor cylinder block. The compressor cylinder cover is located at an end of the valve assembly. The intake muffler chamber assembly and the valve assembly are disposed adjacent with each other inside the compressor housing. The exhaust muffler device is located outside the compressor cylinder block and is separated from the compressor cylinder block. The non-metallic shell is mounted at an outside of the metal cavity body of the exhaust muffler device.
According to the above embodiment, a gas intake pipe extends through a gas intake pipe installation hole on the exhaust muffler device. The gas intake pipe connects to the compressor cylinder cover via a gas intake connection pipe, an exhaust pipe extends through an exhaust pipe installation hole on the exhaust muffler device, and the exhaust pipe is in fluid communication with the outside of the compressor housing via an internal high pressure exhaust pipe.
According to the above embodiment, the exhaust muffler device is mounted vertically or horizontally inside the compressor housing.
According to the above embodiment, inside the compressor housing, the gas intake connection pipe between the gas intake pipe of the exhaust muffler device and the compressor cylinder cover is horizontally disposed. A first end of the gas intake connection pipe connects to the gas intake pipe of the exhaust muffler chamber. A second end of the gas intake connection pipe is welded to an annular exhaust connection ring on the compressor cylinder cover. A circular gas flow passage in the center of the annular exhaust connection ring is in fluid communication with a gas flow passage of the gas intake connection pipe. The circular gas flow passage allows gas to flow therethrough after installation of a compressor cylinder cover screw thereon. The circular gas flow passage in the annular exhaust connection ring is in fluid communication with a gas flow passage of the compressor cylinder cover.
Compared to existing technologies, the embodiments described herein have the following advantages:
1. A non-metallic shell is mounted on the outside of a metal cavity body of an exhaust muffler device. The non-metallic shell is made of a non-metallic material that possesses superior heat insulating properties and can reduce thermal contact between exhaust gas inside the exhaust muffler device and gas inside the compressor. The non-metallic material can also reduce outward heat transfer from the metal cavity body of the exhaust muffler device. As a result, the temperature inside the compressor can be reduced and the efficiency of the compressor can be improved.
2. Raised projections are provided on an interior wall of the non-metallic shell that can prevent thermal contact between the metal cavity body and the non-metallic shell and reduce heat transfer from the metal cavity body to the non-metallic shell. As a result, heat transfer from hot compressed gas produced by the compressor cylinder to refrigerant inside the compressor housing is reduced. Therefore the temperature inside the compressor can be reduced and the efficiency of the compressor can be improved.
3. Placing the exhaust muffler device outside the compressor cylinder block can greatly reduce heat transfer therebetween during operation of the compressor and can dramatically improve the efficiency of the compressor.
4. The metal cavity body of the exhaust muffler device can be formed by stamping and subsequent welding of a thin metal sheet. The non-metallic material of the shell can have a light weight. Therefore the cost and weight of the device can be significantly reduced. The manufacturing process can be simplified, and more space can be made available around the compressor cylinder block.
The following, in conjunction with the examples in
As shown in
Preferably, raised projections 25 are provided on an interior wall of the non-metallic shell 12 to prevent the shell 12 from contacting the metal cavity body. The surface area covered by the raised projections 25 can vary as long as the contact between the shell 12 and the metal cavity body is prevented. Further, the non-metallic shell 12 of the exhaust muffler device 8 has a wall thickness of 0.5 mm to 2.5 mm, and the raised projections 25 are projected from a surface of the interior wall of the shell 12 to a distance of 0.2 mm to 1 mm.
As shown in
In the above embodiments, the raised projections 25 are located on the interior walls of the shell bodies 17 and 18 of the non-metallic shell 12 to prevent a thermal contact between the shell 12 and the metal cavity body. The amount of surface area covered by the raised projections 25 can vary as long as the thermal contact between the shell 12 and the metal cavity body can be prevented. In one embodiment, the raised projections 25 extend along a long edge of a rectangle and form spaced rows on an interior wall of a major cover surface of the shell bodies 17 and 18. The raised projections 25 may also be located on a side wall of the major cover surface of the shell bodies 17 and 18.
As shown in
The gas flow buffer hole 33 of the baffle 13 has a diameter of 2.0 mm to 4.0 mm. The exhaust pipe installation hole 34 of the baffle 13 has a diameter of 3.0 mm to 7.0 mm.
As shown in
A gas intake pipe extends through the gas intake pipe installation hole on the exhaust muffler device 8. The gas intake pipe connects to the compressor cylinder cover 20 via a gas intake connection pipe 19. The exhaust pipe 15 extends through an exhaust pipe installation hole on the exhaust muffler device 8 and connects to an internal high-pressure exhaust pipe 16 inside the compressor housing 26.
The exhaust muffler device 8 is mounted vertically inside the compressor housing 26.
As shown in
Further, inside the compressor housing 26, a gas intake pipe and an exhaust pipe can be connected to the exhaust muffler device 8 using conventional butt joints or using the connection configuration shown in
In the embodiments described herein, the non-metallic shell 12 made of a non-metallic material is mounted on the outside of the metal cavity body of the exhaust muffler device 8. The non-metallic material possesses superior heat insulating properties, thereby can significantly reduce heat transfer from the exhaust gas to the inside of the compressor. The raised projections 25 located on the interior walls of non-metallic shell 12 can prevent the contact between the metal cavity body and the non-metallic shell 12 and reduce heat transfer from the metal cavity body to the non-metallic shell 12. As a result, heat transfer from high-temperature-high-pressure gas produced by the compressor cylinder to the refrigerant inside the compressor housing can be reduced. The exhaust muffler device 8 is disposed outside of the compressor cylinder block 14. This can greatly reduce heat transfer during operation of the compressor since heat transfer between the compressor cylinder block 14 and the exhaust muffler device 8 is reduced. Hot compressed gas exiting the compressor cylinder flows through the exhaust pipe 15 and the internal high pressure exhaust pipe 16 and is effectively expelled to the outside of the compressor. Negative impact of hot gas on the compressor can be reduced and cooling performance of the compressor can be significantly improved. The exhaust muffler device of the present disclosure is suitable for use with a hermetically sealed refrigeration compressor, particularly a small-sized hermetically sealed refrigeration compressor.
The above disclosure is only intended to illustrate the preferred embodiments of the present invention and is not intended to limit the scope of the present invention. Therefore any equivalent changes made based on the disclosure of the present invention, such as improvements on the process parameters or the apparatus, are still within the protective scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
201110297998.2 | Sep 2011 | CN | national |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2012/072579 | Mar 2012 | US |
Child | 14144209 | US |