The invention relates to a control system for an automatic transmission, and more particularly to an electro-hydraulic control system having a mechanism for electronic transmission range selection.
A typical multi-speed transmission uses several torque transmitting devices, such as friction clutches, to achieve a plurality of forward and reverse gear or speed ratios, a Neutral, and a Park. Selection of speed ratios is typically accomplished by engaging a shift lever or other driver interface device that is connected by a shifting cable or other mechanical connection to the transmission. Alternatively, the selection of speed ratios may be controlled by an electronic transmission range selection (ETRS) system, also known as a “shift by wire” system. In an ETRS system, selection of speed ratios is accomplished through electronic signals communicated between the driver interface device and the transmission. The ETRS system reduces mechanical components, increases instrument panel space, enhances styling options, and eliminates the possibility of shifter cable misalignment with the transmission range selection levers.
While previous hydraulic control systems are useful for their intended purpose, the need for new and improved hydraulic control system configurations within transmissions which exhibit improved performance, especially from the standpoints of efficiency, responsiveness and smoothness, is essentially constant. Accordingly, there is a need for an improved, cost-effective hydraulic control system for use in a hydraulically actuated automatic transmission.
A hydraulic control system for a transmission is provided. The hydraulic control system includes a source of pressurized hydraulic fluid that communicates with a discrete electronic transmission range selection (ETRS) subsystem.
The hydraulic control system includes first and second mode valves located downstream of a hydraulic fluid pressure source. The mode valves are supplied with fluid via one or more solenoid valves or other valves. The mode valves have a plurality of ports configured to transfer pressurized hydraulic fluid. The first mode valve transfers pressurized hydraulic fluid from the source to the second mode valve. The second mode valve transfers pressurized hydraulic fluid from the first mode valve to one of drive or reverse. An electro-hydraulic circuit for pulling the transmission out of park and putting the transmission into park is also provided.
In one aspect, which may be combined with or separate from the other aspects described herein, a hydraulic control system for a transmission is provided, wherein the transmission has a Park mode and an Out of Park mode of operation, and the transmission has a plurality of torque transmitting devices selectively engageable to provide at least one forward speed ratio and at least one reverse speed ratio when in the Out of Park mode of operation. The hydraulic control system includes a pressure regulator subsystem for providing a pressurized hydraulic fluid and a clutch control subsystem for selectively actuating the torque transmitting devices upon receipt of the pressurized hydraulic fluid. A first mode valve assembly is disposed in downstream fluid communication with the pressure regulator subsystem and in upstream fluid communication with the clutch control subsystem. A second mode valve assembly is disposed in downstream fluid communication with the first mode valve assembly and the pressure regulator subsystem and in upstream fluid communication with the clutch control subsystem. A park feed valve assembly is disposed in downstream fluid communication with the pressure regulator subsystem and the first mode valve assembly. The park feed valve assembly has a park feed valve moveable between a Park position and an Out of Park position. A park mechanism is disposed in downstream fluid communication with the park feed valve assembly and the first and second mode valve assemblies. The park mechanism is configured to place the transmission in a Park condition and an Out of Park condition. A park lock control device is connected to the park mechanism, and the park lock control device is actuatable to mechanically prevent the park mechanism from placing the transmission in a Park condition during an engine stop-start event.
In another aspect, which may be combined with or separate from the other aspects described herein, a hydraulic control system for a transmission is provided, wherein the transmission has a Park mode and an Out of Park mode of operation, and the transmission has a plurality of torque transmitting devices selectively engageable to provide at least one forward speed ratio and at least one reverse speed ratio when in the Out of Park mode of operation. The hydraulic control system includes a pressure regulator subsystem for providing a pressurized hydraulic fluid. A first mode valve assembly has first, second, third and fourth ports, the first and second ports being in communication with the pressure regulator subsystem. The first mode valve assembly has a first mode valve moveable between a first and a second position. A second mode valve assembly has a first port in communication with the third port of the first mode valve assembly and a second port in communication with the fourth port of the first mode valve assembly. The second mode valve assembly has a third port in communication with a Drive circuit, a fourth port in communication with a Reverse circuit, and a fifth port. The second mode valve assembly has a second mode valve moveable between a first and a second position. A park feed valve assembly has a first port in communication with the third port of the first mode valve assembly and a second port in communication with a Park circuit. The park feed valve assembly has a park feed valve moveable between a Park position and an Out of Park position. A park mechanism has a first port in communication with the second port of the park feed valve assembly and a second port in communication with the fifth port of the second mode valve assembly. The park mechanism is configured to place the transmission in a Park condition and an Out of Park condition.
In yet another aspect, which may be combined with or separate from the other aspects described herein, a park sensor assembly for a park mechanism of a vehicular transmission is provided. The park sensor assembly includes an actuator rod assembly configured to move the transmission into and out of park. A piston rod is connected to the actuator rod assembly through a park lever and is configured to move along an axis between a first position and a second position. One of the first and second positions corresponds to a Park position of the transmission and the other of the first and second positions corresponds to an Out of Park position of the transmission. A magnet assembly is fixed to the piston rod. A Hall Effect sensor switch is disposed adjacent to the magnet assembly. The magnet assembly and piston rod are movable with respect to the Hall Effect sensor switch. The Hall Effect sensor switch is operable to detect the magnet assembly when the piston rod is in the first position.
Further objects, aspects and advantages of the present invention will become apparent by reference to the following description and appended drawings wherein like reference numbers refer to the same component, element or feature.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
FIG. 1Bi is a diagram of another portion of the hydraulic control system of
FIG. 1Bii is a diagram of a portion of the hydraulic control system of
With reference to
The pressure regulator subsystem 102 is operable to provide and regulate pressurized hydraulic fluid, such as oil, throughout the hydraulic control system 100. The pressure regulator subsystem draws hydraulic fluid from a sump, which may be disposed at the bottom of a transmission housing to which the hydraulic fluid returns and collects from various components and regions of the transmission. The hydraulic fluid is forced from the sump and throughout the hydraulic control system 100 via a pump. The pump is preferably driven by an engine and may be, for example, a gear pump, a vane pump, a gerotor pump, or any other positive displacement pump. The pump communicates pressurized hydraulic fluid to a fluid line. The fluid line may be in communication with a spring biased one-way valve, a spring biased blow-off safety valve, and a pressure regulator valve. The control system 100 may also include a feed limit valve assembly (not shown) to limit the maximum pressure of hydraulic fluid to various subsystems and control solenoids.
The clutch control subsystem 106 provides hydraulic fluid to clutch actuators (not shown). The clutch actuators are hydraulically actuated pistons that each engage one of a plurality of torque transmitting devices C1, C2 to achieve various forward, or drive speed ratios and reverse speed ratios.
The ETRS control subsystem 110 connects the pressure regulator subsystem 102 with the clutch control subsystem 106. Generally, the ETRS control subsystem 110 converts electronic input for a requested range selection (Drive, Reverse, Park) into hydraulic and mechanical commands. The hydraulic commands use line pressure hydraulic fluid from the pressure regulator subsystem 102 via fluid line 130 to supply hydraulic fluid to the clutch actuator subsystem. The mechanical commands include engaging and disengaging a park mechanism 180.
Referring to
The first solenoid 112 opens a fluid line 118 to supply pressurized hydraulic fluid to a first port 120B of an enablement valve assembly 120. The enablement valve assembly 120 includes a spool valve 122 slidably disposed within a bore 124 and four fluid ports 120A-D. When pressurized fluid is supplied through the fluid line 118, fluid pressure acts upon the spool valve 122 through the fluid port 120B and compresses the spool valve 122 against a spring 126 into a stroked position, by way of example. The spool valve 122 is actuated to a stroked position or by the solenoid 112 and by hydraulic fluid acting on the spool valve 122 delivered via fluid line 118 and to a de-stroked position by the spring 126. When the spool valve 122 of the enablement valve assembly 120 is actuated by the solenoid 112, the fluid port 120C communicates with the fluid port 120D. The fluid port 120C communicates with a fluid pressure source line 130, and the fluid port 120D communicates with a mode valve supply line 132. Accordingly, when the enablement valve assembly 120 is actuated by the solenoid 112, the fluid pressure source line 130, such as from line pressure, communicates with the mode valve supply line 132. Port 120A is an exhaust port that communicates with the sump.
The ETRS subsystem 110 further includes first and second mode valve assemblies 134, 136. The first mode valve 134 includes ports 134A-I. Port 134A communicates with a fluid line 138. Port 134C communicates with a fluid line 140. Ports 134D and 134H communicate with the fluid line 132. Port 134E communicates with a fluid line 142. Port 134G communicates with a fluid line 144. Port 134B, 134F, and 134I are exhaust ports that communicate with the sump.
The first mode valve assembly 134 further includes a valve 146 slidably disposed within a bore 148. The valve 146 is actuated by the solenoid 114 and a spring 150. When solenoid 114 is opened, fluid communicates through solenoid 114, through line 140, and moves the valve 146 against the spring 150. Accordingly, the valve 146 is moveable between a stroked position where the spring 150 is compressed and a de-stroked position, shown in
In the stroked position, solenoid 114 is opened and fluid from line 140 contacts the valve 146 through port 134C and moves the valve 146 against the spring 150. In this condition, port 134H communicates with port 134G, and port 134D is closed. Accordingly, when actuated, line 132 communicates with line 144. One branch 152 of line 144 communicates with a park feed valve assembly 155, and another branch 154 of line 144 communicates with port 136I of the second mode valve assembly 136.
In some variations, the solenoid 114 is used for other purposes within the transmission. In such a case, the solenoid 114 may not be available to actuate or to hold open the first mode valve assembly 134. In such a case, another solenoid or valve 160 may be used to feed fluid via the fluid line 138 to the first port 134A of the first mode valve assembly 134. Fluid pressure within the line 162 compresses a second valve 164 located within the bore 148 of the first mode valve assembly 134. When the second valve 164 is compressed, the valve 146 is held in the actuated position and fluidly connecting the ports 134H and 134G.
The valve 174 is moveable between a stroked position where the spring 177 is compressed (shown in FIG. 1Bi), and a de-stroked position where the spring 177 is not compressed (shown in FIG. 1Bii). In the de-stroked position, port 136I communicates with port 136H and port 136E is blocked. Accordingly, branch 154 of line 144 communicates with line 173, which is the drive line of the transmission. Therefore, the transmission is in “Drive” when the second mode valve assembly 136 is de-stroked, subject to the Park status. In the de-stroked position, port 136F communicates with port 136G and exhausts. In addition, port 136E communicates with port 136D. Accordingly, line 142 communicates with the “into park” line 170, therefore sending fluid to the park mechanism 180, which will be described in further detail below.
The second mode valve assembly 136 generally includes ports 136A-M. Ports 136B, 136G, 136K, and 136M are exhaust ports that communicate with the sump. Ports 136A and 136J communicate with a fluid line 166. Port 136C communicates with fluid line 168. Ports 136D and 136L communicate with a fluid line 170. Port 136E communicates with the fluid line 142. Port 136F communicates with a fluid line 172. Port 136H communicates with a fluid line 173. Port 136I communicates with the branch 154 of the fluid line 144. The second mode valve assembly 136 includes a valve 174 slidably disposed within a bore 176. The valve 174 is actuated by the solenoid 116. When solenoid 116 is opened, fluid travels through line 168, communicates through port 136C, and moves the valve 174 against the spring 177.
The valve 174 is moveable between a stroked position where the spring 177 is compressed (shown in
In the stroked position (see
The first mode valve assembly 134 may include a position sensor 171, and the second mode valve assembly 136 may include a pair of position sensors 175, 179, by way of example.
As described above, the park feed valve assembly 155 feeds fluid pressure to the “out of park” line 161, and the port 136D feed fluid pressure into the “into park” line 170. Fluid lines 161 and 170 communicate with the Park servo valve 182. The Park servo valve 182 includes ports 182A and 182B each located on either side of a piston 184. The piston 184 is mechanically coupled to the park mechanism 180. Port 182A communicates with fluid line 170 and port 182B communicates with fluid line 161. The piston 184 moves upon contact by the hydraulic fluid supplied by one of the fluid lines 161, 170, thereby mechanically disengaging or engaging the Park mechanism 180.
The Park mechanism 180 is connected with an out-of-Park (OOP) solenoid 186. The OOP solenoid 186 is actuatable to mechanically prevent the valve 174 from stroking and to prevent the Park mechanism 180 from engaging during an engine stop-start event (i.e. when the vehicle is intended to be mobile during an automatic engine stop). The OOP solenoid 186 may also be used to disengage the Park servo valve 182 when it is desirable to operate in Drive or Reverse at other times.
A park sensor assembly 201 is used to identify whether the park mechanism 180 is in park. The park sensory assembly 201 includes a Hall Effect sensor switch 202 and a magnet assembly 203, which includes a magnet 204, a holder 205, and a fastener 206 (see
Turning to
With reference to
With reference to
Referring now to
As shown in
The description of the invention is merely exemplary in nature and variations that do not depart from the general essence of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
This application claims the benefit of U.S. Provisional Application No. 61/652,803 filed on May 29, 2012. The disclosure of the above application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2782657 | Lucia | Feb 1957 | A |
2910942 | Thorman | Nov 1959 | A |
3107621 | Szady et al. | Oct 1963 | A |
3164034 | Kelley | Jan 1965 | A |
3840088 | Marumo et al. | Oct 1974 | A |
3912050 | Iwanaga et al. | Oct 1975 | A |
4347044 | Ahlen et al. | Aug 1982 | A |
4351206 | Lemieux et al. | Sep 1982 | A |
4369867 | Lemieux | Jan 1983 | A |
4519273 | Shimizu et al. | May 1985 | A |
4653352 | Nakao et al. | Mar 1987 | A |
4704917 | Hiroyasu | Nov 1987 | A |
4944202 | Gierer | Jul 1990 | A |
5078242 | Ratke et al. | Jan 1992 | A |
5179868 | Thibeault | Jan 1993 | A |
5191178 | Baker | Mar 1993 | A |
5203235 | Iizuka | Apr 1993 | A |
5220985 | Annis et al. | Jun 1993 | A |
5299470 | Snell et al. | Apr 1994 | A |
5370015 | Moscatelli | Dec 1994 | A |
5386742 | Irikura et al. | Feb 1995 | A |
5433124 | Person | Jul 1995 | A |
5441459 | Inukai et al. | Aug 1995 | A |
5492509 | Goates | Feb 1996 | A |
5507706 | Jang et al. | Apr 1996 | A |
5582559 | Jang et al. | Dec 1996 | A |
5626533 | Jang | May 1997 | A |
5733221 | Jang | Mar 1998 | A |
5736701 | O'Brien et al. | Apr 1998 | A |
5768944 | Inuzuka et al. | Jun 1998 | A |
5791197 | Rempinski et al. | Aug 1998 | A |
5813941 | Jang | Sep 1998 | A |
5876303 | Yu | Mar 1999 | A |
5887483 | Ohashi et al. | Mar 1999 | A |
5899115 | Kataumi et al. | May 1999 | A |
5919108 | Takagi | Jul 1999 | A |
5921888 | Park | Jul 1999 | A |
6027427 | Yoo | Feb 2000 | A |
6148686 | Kataumi | Nov 2000 | A |
6205880 | Deidewig et al. | Mar 2001 | B1 |
6308797 | Hacker et al. | Oct 2001 | B1 |
6481556 | Haupt | Nov 2002 | B1 |
6537180 | Kim et al. | Mar 2003 | B2 |
6698555 | Schafer et al. | Mar 2004 | B2 |
6701797 | Heuver | Mar 2004 | B2 |
6715597 | Buchanan et al. | Apr 2004 | B1 |
6942591 | Park | Sep 2005 | B2 |
6983668 | Powell et al. | Jan 2006 | B2 |
7270027 | Berger et al. | Sep 2007 | B2 |
7300375 | Petrzik | Nov 2007 | B2 |
7396306 | Long et al. | Jul 2008 | B2 |
7487866 | Kruse et al. | Feb 2009 | B2 |
7654935 | Tanaka et al. | Feb 2010 | B2 |
7896775 | Vernacchia et al. | Mar 2011 | B2 |
8053691 | Vernacchia et al. | Nov 2011 | B2 |
8403793 | Moorman et al. | Mar 2013 | B2 |
20010036878 | Itou et al. | Nov 2001 | A1 |
20020060113 | Harries | May 2002 | A1 |
20020086759 | Imai et al. | Jul 2002 | A1 |
20020119864 | Harries | Aug 2002 | A1 |
20030075408 | Alfredsson | Apr 2003 | A1 |
20040011609 | Schmid | Jan 2004 | A1 |
20040038765 | Fujimine et al. | Feb 2004 | A1 |
20050003921 | Morise et al. | Jan 2005 | A1 |
20070175726 | Combes et al. | Aug 2007 | A1 |
20080207392 | Staudinger | Aug 2008 | A1 |
20080210032 | Uberti et al. | Sep 2008 | A1 |
20080216908 | Vernacchia et al. | Sep 2008 | A1 |
20080220923 | Whitmarsh et al. | Sep 2008 | A1 |
20090082153 | Fujikawa et al. | Mar 2009 | A1 |
20090151495 | Garabello et al. | Jun 2009 | A1 |
20090157271 | Garabello et al. | Jun 2009 | A1 |
20120175210 | Moorman | Jul 2012 | A1 |
Number | Date | Country |
---|---|---|
2141564 | Feb 1973 | DE |
4117736 | May 1992 | DE |
4208888 | Sep 1993 | DE |
4320353 | Jan 1994 | DE |
29714652 | Oct 1997 | DE |
19921301 | Nov 1999 | DE |
19849488 | May 2000 | DE |
19931973 | Jan 2001 | DE |
10134115 | Jan 2003 | DE |
10242382 | Apr 2004 | DE |
102005029963 | Feb 2007 | DE |
102005029964 | Mar 2007 | DE |
0477564 | Apr 1992 | EP |
1469235 | Oct 2004 | EP |
1519082 | Mar 2005 | EP |
1645786 | Apr 2006 | EP |
2151586 | Feb 2010 | EP |
2808065 | Oct 2001 | FR |
58102851 | Jun 1983 | JP |
61253224 | Nov 1986 | JP |
01199035 | Aug 1989 | JP |
2007010145 | Jan 2007 | JP |
WO9705410 | Feb 1997 | WO |
WO9919644 | Apr 1999 | WO |
WO2009037170 | Mar 2009 | WO |
WO2010028745 | Mar 2010 | WO |
Entry |
---|
Pending U.S. Appl. No. 13/670,948, filed Nov. 7, 2012 by Landino et al. All pages. |
Number | Date | Country | |
---|---|---|---|
20130319156 A1 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
61652803 | May 2012 | US |