The present disclosure is directed to discrete wellbore devices, to hydrocarbon wells that include both a downhole communication network and the discrete wellbore devices, as well as to systems and methods that include the downhole communication network and/or the discrete wellbore device.
An autonomous wellbore tool may be utilized to perform one or more downhole operations within a wellbore conduit that may be defined by a wellbore tubular and/or that may extend within a subterranean formation. Generally, the autonomous wellbore tool is pre-programmed within a surface region, such as by direct, or physical, attachment to a programming device, such as a computer. Subsequently, the autonomous wellbore tool may be released into the wellbore conduit and may be conveyed autonomously therein. A built-in controller, which forms a portion of the autonomous wellbore tool, may retain program information from the pre-programming process and may utilize this program information to control the operation of the autonomous wellbore tool. This may include controlling actuation of the autonomous wellbore tool when one or more actuation criteria are met.
With traditional autonomous wellbore tools, an operator cannot modify and/or change programming once the autonomous wellbore tool has been released within the wellbore conduit. In addition, the operator also may not receive any form of direct communication to indicate that the autonomous wellbore tool has executed the downhole operation. Thus, there exists a need for discrete wellbore devices that are configured to communicate wirelessly, for hydrocarbon wells including a wireless communication network and the discrete wellbore devices, and for systems and methods including the same.
Discrete wellbore devices, hydrocarbon wells including a downhole communication network and the discrete wellbore devices, and systems and methods including the same are disclosed herein. The discrete wellbore devices include a wellbore tool and a communication device. The wellbore tool is configured to perform a downhole operation within a wellbore conduit that is defined by a wellbore tubular of the hydrocarbon well. The communication device is operatively coupled for movement with the wellbore tool within the wellbore conduit. The communication device is configured to communicate, via a wireless communication signal, with a downhole communication network that extends along the wellbore tubular.
The hydrocarbon wells include a wellbore that extends within a subterranean formation. The hydrocarbon wells further include the wellbore tubular, and the wellbore tubular extends within the wellbore. The hydrocarbon wells also include the downhole communication network, and the downhole communication network is configured to transfer a data signal along the wellbore conduit and/or to a surface region. The hydrocarbon wells further include the discrete wellbore device, and the discrete wellbore device is located within a downhole portion of the wellbore conduit.
The methods may include actively and/or passively detecting a location of the discrete wellbore device within the wellbore conduit. These methods include conveying the discrete wellbore device within the wellbore conduit and wirelessly detecting proximity of the discrete wellbore device to a node of the downhole communication network. These methods further include generating a location indication signal with the node responsive to detecting proximity of the discrete wellbore device to the node. These methods also include transferring the location indication signal to the surface region with the downhole communication network.
The methods additionally or alternatively may include wireless communication between the discrete wellbore device and the downhole communication network. The communication may include transmitting data signals from the discrete wellbore device. The communication may include transmitting commands and/or programming to the discrete wellbore device. These methods include conveying the discrete wellbore device within the wellbore conduit and transmitting the wireless communication signal between the discrete wellbore device and a given node of the downhole communication network and/or another discrete wellbore device within the wellbore.
In general, elements that are likely to be included are illustrated in solid lines, while elements that are optional are illustrated in dashed lines. However, elements that are shown in solid lines may not be essential. Thus, an element shown in solid lines may be omitted without departing from the scope of the present disclosure.
Hydrocarbon well 20 further includes a downhole communication network 70. Downhole communication network 70 includes a plurality of nodes 72 and is configured to transfer a data signal 71 along wellbore conduit 32, from surface region 24, to subsurface region 26, from surface region 24 to subterranean formation 28, and/or from subterranean formation 28 to surface region 24. Hydrocarbon well 20 also includes a discrete wellbore device 40, and the discrete wellbore device is located within a subterranean portion 33 of the wellbore conduit (i.e., a portion of wellbore conduit 32 that extends within subsurface region 26 and/or within subterranean formation 28).
As illustrated in
Discrete wellbore device 40 may include and/or be an autonomous wellbore device that may be configured for autonomous, self-regulated, and/or self-controlled operation within wellbore conduit 32. Alternatively, discrete wellbore device 40 may be a remotely controlled wellbore device, and wireless communication signal 88 may be utilized to control at least a portion of the operation of the discrete wellbore device. Regardless of the exact configuration, discrete wellbore device 40 may be configured to be conveyed within wellbore conduit 32 in an untethered manner Stated another way, discrete wellbore device 40 may be uncoupled, or unattached, to surface region 24 while being conveyed within wellbore conduit 32 and/or when located within subterranean portion 33 of wellbore conduit 32. Stated yet another way, discrete wellbore device 40 may be free from physical contact, or connection, with surface region 24 and/or with a structure that is present within surface region 24 while being conveyed within wellbore conduit 32. Thus, discrete wellbore device 40 also may be referred to herein as an autonomous wellbore device 40, a disconnected wellbore device 40, a detached wellbore device 40, a free-flowing wellbore device 40, an independent wellbore device 40, a separate wellbore device 40, and/or a fluid-conveyed wellbore device 40.
Any structure(s) that form a portion of discrete wellbore device 40 may be operatively attached to one another and may be sized to be deployed within wellbore conduit 32 as a single, independent, and/or discrete, unit. Stated another way, discrete wellbore device 40 may include and/or be a unitary structure. Stated yet another way, discrete wellbore device 40 may include a housing 46 that may contain and/or house the structure(s) that form wellbore device 40. Examples of these structures include wellbore tool 50, communication device 90, control structure 54, and/or components thereof.
Wellbore tool 50 may include any suitable structure that may be adapted, configured, designed, and/or constructed to perform the downhole operation within wellbore conduit 32. As an example, wellbore tool 50 may include and/or be a perforation device 60 that is configured to form one or more perforations 62 (as illustrated in
As additional examples, wellbore tool 50 may include and/or be a plug 64 and/or a packer 66. Under these conditions, the downhole operation may include at least partial, or even complete, occlusion of the wellbore conduit by the plug and/or by the packer.
As yet another example, wellbore tool 50 may include and/or define an enclosed volume 68. The enclosed volume may contain a chemical 69, and the downhole operation may include release of the chemical into the wellbore conduit. Additionally or alternatively, the enclosed volume may contain a diversion agent 65, and the downhole operation may include release of the diversion agent into the wellbore conduit. Examples of diversion agent 65 include any suitable ball sealer, supplemental sealing material that is configured to seal a perforation within wellbore tubular 30, polylactic acid flakes, a chemical diversion agent, a self-degrading diversion agent, and/or a viscous gel.
As another example, wellbore tool 50 may include and/or be an orientation-regulating structure 67. The orientation-regulating structure may be configured to be conveyed with the wellbore tool within the wellbore conduit and to regulate a cross-sectional orientation of the wellbore tool within the wellbore conduit while the discrete wellbore device is being conveyed within the wellbore conduit. Under these conditions, the downhole operation may include regulation of the cross-sectional orientation of the wellbore tool.
Control structure 54, when present, may include any suitable structure that may be adapted, configured, designed, and/or constructed to be conveyed with the wellbore tool within the wellbore conduit. The control structure also may be adapted, configured, designed, constructed, and/or programmed to control the operation of at least a portion of the discrete wellbore device. This may include independent, autonomous, and/or discrete control of the discrete wellbore device.
As an example, control structure 54 may be programmed to determine that an actuation criterion has been satisfied. Responsive to the actuation criterion being satisfied, the control structure may provide an actuation signal to wellbore tool 50, and the wellbore tool may perform the downhole operation responsive to receipt of the actuation signal. The control structure then may be programmed to automatically generate (or control communication device 90 to generate) a wireless confirmation signal after performing the downhole operation. The wireless confirmation signal may confirm that the downhole operation was performed and may be conveyed to surface region 24 by downhole communication network 70.
The actuation criterion may include any suitable criterion. As an example, the actuation criterion may include receipt of a predetermined wireless communication signal from downhole communication network 70. As another example, discrete wellbore device 40 further may include a detector 56. Detector 56 may be adapted, configured, designed, and/or constructed to detect a downhole parameter and/or a parameter of the discrete wellbore device. Under these conditions, discrete wellbore device 40 may be configured to generate wireless communication signal 88, and the wireless communication signal may include, or be based upon, the downhole parameter and/or the parameter of the discrete wellbore device. Additionally or alternatively, the actuation criterion may include detecting the downhole parameter and/or the parameter of the discrete wellbore device, such as by determining that the downhole parameter and/or the parameter of the discrete wellbore device is outside a threshold, or predetermined, parameter range.
Communication device 90, when present, may include any suitable structure that is adapted, configured, designed, constructed, and/or programmed to communicate with downhole communication network 70 via wireless communication signal 88. As an example, communication device 90 may include a wireless device transmitter 91. The wireless device transmitter may be configured to generate wireless communication signal 88 and/or to convey the wireless communication signal to downhole communication network 70. As another example, communication device 90 additionally or alternatively may include a wireless device receiver 92. The wireless device receiver may be configured to receive the wireless communication signal from the downhole communication network and/or from another discrete wellbore device.
Wireless communication signal 88 may include and/or be any suitable wireless signal. As examples, the wireless communication signal may be an acoustic wave, a high frequency acoustic wave, a low frequency acoustic wave, a radio wave, an electromagnetic wave, light, an electric field, and/or a magnetic field.
During operation of hydrocarbon well 20, discrete wellbore device 40 may be located and/or placed within wellbore conduit 32 and subsequently may be conveyed within the wellbore conduit such that the discrete wellbore device is located within subterranean portion 33 of the wellbore conduit. This may include the discrete wellbore device being conveyed in an uphole direction 96 (i.e., toward surface region 24 and/or away from subterranean formation 28) and/or in a downhole direction 98 (i.e., toward subterranean formation 28 and/or away from surface region 24), as illustrated in
As illustrated in dashed lines in
While discrete wellbore device 40 is located within the wellbore conduit and/or within subterranean portion 33 thereof, the discrete wellbore device may wirelessly communicate with downhole communication network 70 and/or with one or more nodes 72 thereof. This wireless communication may be passive wireless communication or active wireless communication and may be utilized to permit and/or facilitate communication between discrete wellbore device 40 and surface region 24, to permit and/or facilitate communication between two or more discrete wellbore devices 40, to provide information about discrete wellbore device 40 to surface region 24, and/or to permit wireless control of the operation of discrete wellbore device 40 by an operator who may be located within surface region 24.
As used herein, the phrase “passive wireless communication” may be utilized to indicate that downhole communication network 70 is configured to passively detect and/or determine one or more properties of discrete wellbore device 40 without discrete wellbore device 40 including (or being required to include) an electronically controlled structure that is configured to emit a signal (wireless or otherwise) that is indicative of the one or more properties. As an example, downhole communication network 70 and/or one or more nodes 72 thereof may include a sensor 80 (as illustrated in
Under these conditions, sensor 80 may detect a parameter that is indicative of proximity of discrete wellbore device 40 to the given node 72. Examples of sensor 80 include an acoustic sensor that is configured to detect a sound that is indicative of proximity of discrete wellbore device 40 to the given node, a pressure sensor that is configured to detect a pressure (or pressure change) that is indicative of proximity of the discrete wellbore device to the given node, a vibration sensor that is configured to detect a vibration that is indicative of proximity of the discrete wellbore device to the given node, and/or an electric field sensor that is configured to detect an electric field that is indicative of proximity of the discrete wellbore device to the given node. Additional examples of sensor 80 include a magnetic field sensor that is configured to detect a magnetic field that is indicative of proximity of the discrete wellbore device to the given node, an electromagnetic sensor that is configured to detect an electromagnetic field that is indicative of proximity of the discrete wellbore device to the given node, a radio sensor that is configured to detect a radio wave signal that is indicative of proximity of the discrete wellbore device to the given node, and/or an optical sensor that is configured to detect an optical signal that is indicative of proximity of the discrete wellbore device to the given node.
As used herein, the phrase “active wireless communication” may be utilized to indicate electronically controlled wireless communication between discrete wellbore device 40 and downhole communication network 70. This active wireless communication may include one-way wireless communication or two-way wireless communication.
With one-way wireless communication, one of discrete wellbore device 40 and downhole communication network 70 may be configured to generate a wireless communication signal 88, and the other of discrete wellbore device 40 and downhole communication network 70 may be configured to receive the wireless communication signal. As an example, node 72 may include a wireless node transmitter 81 that is configured to generate wireless communication signal 88, and discrete wellbore device 40 may include wireless device receiver 92 that is configured to receive the wireless communication signal. As another example, discrete wellbore device 40 may include wireless device transmitter 91 that is configured to generate wireless communication signal 88, and node 72 may include a wireless node receiver 82 that is configured to receive the wireless communication signal.
With two-way wireless communication, discrete wellbore device 40 and downhole communication network 70 each may include respective wireless transmitters and respective wireless receivers. As an example, discrete wellbore device 40 may include both wireless device transmitter 91 and wireless device receiver 92. In addition, node 72 may include both wireless node transmitter 81 and wireless node receiver 82.
Returning to
As another example, downhole communication network 70 and/or nodes 72 thereof may be adapted, configured, and/or programmed to generate wireless data signal 88 (as illustrated in
As yet another example, discrete wellbore device 40 may be configured to perform the downhole operation within wellbore conduit 32. Under these conditions, it may be desirable to arm discrete wellbore device 40 once the discrete wellbore device reaches a threshold arming depth within subsurface region 26, and downhole communication network 70 may be configured to transmit a wireless arming signal to discrete wellbore device 40 responsive to the discrete wellbore device reaching the threshold arming depth. Downhole communication network 70 also may be configured to transmit a wireless actuation signal to discrete wellbore device 40 once the discrete wellbore device reaches a target region of the wellbore conduit. Responsive to receipt of the wireless actuation signal, discrete wellbore device 40 may perform the downhole operation within wellbore conduit 32. Downhole communication network 70 (or a node 72 thereof that is proximate perforation 62) may be configured to detect and/or determine that the downhole operation was performed (such as via detector 80 of
As another example, downhole communication network 70 may be configured to transmit a wireless query signal to discrete wellbore device 40. Responsive to receipt of the wireless query signal, discrete wellbore device 40 may be configured to generate and/or transmit a wireless status signal to downhole communication network 70. The wireless status signal may be received by downhole communication network 70 and/or a node 72 thereof. The wireless status signal may include information regarding a status of discrete wellbore device 40, an operational state of discrete wellbore device 40, a depth of discrete wellbore device 40 within the subterranean formation, a velocity of discrete wellbore device 40 within wellbore conduit 32, a battery power level of discrete wellbore device 40, a fault status of discrete wellbore device 40, and/or an arming status of discrete wellbore device 40. Downhole communication network 70 then may be configured to convey the information obtained from discrete wellbore device 40 along wellbore conduit 32 and/or to surface region 24 via data signal 71.
As yet another example, communication between discrete wellbore device 40 and downhole communication network 70 may be utilized to program, re-program, and/or control discrete wellbore device 40 in real-time, while discrete wellbore device 40 is present within wellbore conduit 32, and/or while discrete wellbore device 40 is being conveyed in the wellbore conduit. This may include transferring any suitable signal and/or command from surface region 24 to downhole communication network 70 as data signal 71, transferring the signal and/or command along wellbore conduit 32 via downhole communication network 70 and/or data signal 71 thereof, and/or wirelessly transmitting the signal and/or command from downhole communication network 70 (or a given node 72 thereof) to discrete wellbore device 40 (such as via wireless communication signal 88 of
As illustrated in dashed lines in
Downhole communication network 70 include any suitable structure that may be configured for wireless communication with discrete wellbore device 40 via wireless communication signals 88 (as illustrated in
Transfer of data signal 71 between adjacent nodes 72 may be performed wirelessly, in which case downhole communication network 70 may be referred to herein as and/or may be a wireless downhole communication network 70. Under these conditions, data signal 71 may include and/or be an acoustic wave, a high frequency acoustic wave, a low frequency acoustic wave, a radio wave, an electromagnetic wave, light, an electric field, and/or a magnetic field. Additionally or alternatively, transfer of data signal 71 between adjacent nodes 72 may be performed in a wired fashion and/or via a data cable 73, in which case downhole communication network 70 may be referred to herein as and/or may be a wired downhole communication network 70. Under these conditions, data signal 71 may include and/or be an electrical signal.
As illustrated in
As discussed, nodes 72 also may include one or more sensors 80. Sensors 80 may be configured to detect a downhole parameter. Examples of the downhole parameter include a downhole temperature, a downhole pressure, a downhole fluid velocity, and/or a downhole fluid flow rate. Additional examples of the downhole parameter are discussed herein with reference to the parameters that are indicative of proximity of discrete wellbore device 40 to nodes 72 and/or that are indicative of the discrete wellbore device flowing past nodes 72 within wellbore conduit 32.
As also illustrated in
Conveying the discrete wellbore device within the wellbore conduit at 110 may include translating the discrete wellbore device within the wellbore conduit in any suitable manner. As an example, the conveying at 110 may include translating the discrete wellbore device along at least a portion of a length of the wellbore conduit. As another example, the conveying at 110 may include conveying the discrete wellbore device from a surface region and into and/or within a subterranean formation. As another example, the conveying at 110 may include providing a fluid stream to the wellbore conduit and flowing the discrete wellbore device in, or within, the fluid stream. As yet another example, the conveying at 110 may include conveying under the influence of gravity.
Wirelessly detecting proximity of the discrete wellbore device to the node of the downhole communication network at 120 may include wirelessly detecting in any suitable manner. The downhole communication network may include a plurality of nodes that extends along the wellbore conduit, and the wirelessly detecting at 120 may include wirelessly detecting proximity of the discrete wellbore device to a specific, given, or individual, node.
The wirelessly detecting at 120 may be passive or active. When the wirelessly detecting is passive, the downhole communication network (or the node) may be configured to detect proximity of the discrete wellbore device thereto without the discrete wellbore device including (or being required to include) an electronically controlled structure that is configured to emit a wireless communication signal. As an example, the node may include a sensor that is configured to detect proximity of the discrete wellbore device thereto. Examples of the sensor are disclosed herein.
When the wirelessly detecting at 120 is active, the discrete wellbore device may include a wireless transmitter that is configured to generate the wireless communication signal. Under these conditions, the wirelessly detecting at 120 may include wirelessly detecting the wireless communication signal. Examples of the wireless communication signal are disclosed herein.
It is within the scope of the present disclosure that the wireless communication signal may be selected such that the wireless communication signal is only conveyed over a (relatively) short transmission distance within the wellbore conduit, such as a transmission distance of less than 5 meters, less than 2.5 meters, or less than 1 meter. Additional examples of the transmission distance are disclosed herein. Under these conditions, the plurality of nodes of the downhole communication network may be spaced apart a greater distance than the transmission distance of the wireless communication signal. As such, only a single node may detect the wireless communication signal at a given point in time and/or the single node may only detect the wireless communication signal when the discrete wellbore device is less than the transmission distance away from the given node.
Alternatively, the wireless communication signal may be selected such that the wireless communication signal is conveyed over a (relatively) larger transmission distance within the wellbore conduit, such as a transmission distance that may be greater than the spacing between nodes, or a node-to-node separation distance, of the downhole communication network. Under these conditions, two or more nodes of the downhole communication network may detect the wireless communication signal at a given point in time, and a signal strength of the wireless communication signal that is received by the two or more nodes may be utilized to determine, estimate, or calculate, the location of the discrete wellbore device within the wellbore conduit and/or proximity of the discrete wellbore device to a given node of the downhole communication network.
Examples of the node-to-node separation distance include node-to-node separation distances of at least 5 meters (m), at least 7.5 m, at least 10 m, at least 12.5 m, at least 15 m, at least 20 m, at least 25 m, at least 30 m, at least 40 m, at least 50 m, at least 75 m, or at least 100 m. Additionally or alternatively, the node-to-node separation distance may be less than 300 m, less than 200 m, less than 100 m, less than 50 m, less than 45 m, less than 40 m, less than 35 m, less than 30 m, less than 25 m, less than 20 m, less than 15 m, or less than 10 m.
The node-to-node separation distance also may be described relative to a length of the wellbore conduit. As examples, the node-to-node separation distance may be at least 0.1% of the length, at least 0.25% of the length, at least 0.5% of the length, at least 1% of the length, or at least 2% of the length. Additionally or alternatively, the node-to-node separation distance also may be less than 25% of the length, less than 20% of the length, less than 15% of the length, less than 10% of the length, less than 5% of the length, less than 2.5% of the length, or less than 1% of the length.
The discrete wellbore device also may be configured to generate a wireless location indication signal. The wireless location indication signal may be indicative of a calculated location of the discrete wellbore device within the wellbore conduit, with this calculated location being determined by the discrete wellbore device (or a control structure thereof). Under these conditions, the wirelessly detecting at 120 additionally or alternatively may include detecting the wireless location indication signal.
Generating the location indication signal at 130 may include generating the location indication signal with the node responsive to the wirelessly detecting at 120. As an example, the node may include a data transmitter that is configured to generate the location indication signal. Examples of the data transmitter and/or of the location indication signal are disclosed herein.
Transferring the location indication signal at 140 may include transferring the location indication signal from the node to the surface region with, via, and/or utilizing the downhole communication network. As an example, the transferring at 140 may include sequentially transferring the location indication signal along the wellbore conduit and to the surface region via the plurality of nodes. As another example, the transferring at 140 may include propagating the location indication signal from one node to the next within the downhole communication network. The propagation may be wired and/or wireless, as discussed herein.
Comparing the calculated location of the discrete wellbore device to the actual location of the discrete wellbore device at 150 may include comparing in any suitable manner. As an example, and as discussed, the wirelessly detecting at 120 may include wirelessly detecting a location indication signal that may be generated by the discrete wellbore device. As also discussed, this location indication signal may include the calculated location of the discrete wellbore device, as calculated by the discrete wellbore device. As another example, a location of each node of the downhole communication network may be (at least approximately) known and/or tabulated. As such, the actual location of the discrete wellbore device may be determined based upon knowledge of which node of the downhole communication network is receiving the location indication signal from the discrete wellbore device.
Responding to the location difference at 160 may include responding in any suitable manner and/or based upon any suitable criterion. As an example, the responding at 160 may include responding if the calculated location differs from the actual location by more than a location difference threshold. As another example, the responding at 160 may include re-programming the discrete wellbore device, such as based upon a difference between the calculated location and the actual location. As yet another example, the responding at 160 may include aborting the downhole operation. As another example, the responding at 160 may include calibrating the discrete wellbore device such that the calculated location corresponds to, is equal to, or is at least substantially equal to the actual location.
Methods 200 include conveying a (first) discrete wellbore device within the wellbore conduit at 210 and may include conveying a second discrete wellbore device within the wellbore conduit at 220. Methods 200 further include transmitting a wireless communication signal at 230 and may include performing a downhole operation at 250 and/or programming the discrete wellbore device at 260. Methods 200 further may include determining a status of the discrete wellbore device at 270 and/or transferring a data signal at 280.
Conveying the (first) discrete wellbore device within the wellbore conduit at 210 may include conveying the (first) discrete wellbore device in any suitable manner Examples of the conveying at 210 are disclosed herein with reference to the conveying at 110 of methods 100.
Conveying the second discrete wellbore device within the wellbore conduit at 220 may include conveying the second discrete wellbore device within the wellbore conduit while the first discrete wellbore device is located within and/or being conveyed within the wellbore conduit. Thus, the conveying at 220 may be at least partially concurrent with the conveying at 210. Examples of the conveying at 220 are disclosed herein with reference to the conveying at 110 of methods 100.
Transmitting the wireless communication signal at 230 may include transmitting any suitable wireless communication signal between the discrete wellbore device and a given node of the plurality of nodes of the downhole communication network. Examples of the wireless communication signal are disclosed herein.
The transmitting at 230 may include transmitting while the discrete wellbore device is located within the wellbore conduit and/or within a subterranean portion of the wellbore conduit. Thus, the transmitting at 230 may include transmitting through and/or via a wellbore fluid that may extend within the wellbore conduit and/or that may separate the discrete wellbore device from the given node of the downhole communication network. In addition, the transmitting at 230 may be at least partially concurrent with the conveying at 210 and/or with the conveying at 220.
The transmitting at 230 further may include transmitting when, or while, the discrete wellbore device is proximate, or near, the given node of the downhole communication network. In addition, the transmitting at 230 may include transmitting the wireless communication signal from one of the discrete wellbore device and the given node and receiving the wireless communication signal with the other of the discrete wellbore device and the given node.
The transmitting at 230 may include transmitting the wireless communication signal across a transmission distance. Examples of the transmission distance include transmission distances of at least 0.1 centimeter (cm), at least 0.5 cm, at least 1 cm, at least 1.5 cm, at least 2 cm, at least 3 cm, at least 4 cm, at least 5 cm, at least 6 cm, at least 7 cm, at least 8 cm, at least 9 cm, or at least 10 cm. Additional examples of the transmission distance include transmission distances of less than 500 cm, less than 400 cm, less than 300 cm, less than 200 cm, less than 100 cm, less than 80 cm, less than 60 cm, less than 50 cm, less than 40 cm, less than 30 cm, less than 20 cm, less than 10 cm, or less than 5 cm.
The transmitting at 230 may include transmitting any suitable wireless communication signal between the discrete wellbore device and the given node of the downhole communication network. As an example, the transmitting at 230 may include transmitting a wireless depth indication signal from the given node to the discrete wellbore device. As another example, the transmitting at 230 may include transmitting a wireless query signal from the given node to the discrete wellbore device and, responsive to receipt of the wireless query signal, transmitting a wireless status signal from the discrete wellbore device to the given node. Examples of the wireless status signal are disclosed herein.
As indicated in
The wireless communication signal that is generated by the discrete wellbore device may include a wireless status signal that is indicative of a status of the discrete wellbore device. Examples of the status of the discrete wellbore device include a temperature proximal the discrete wellbore device within the wellbore conduit, a pressure proximal the discrete wellbore device within the wellbore conduit, a velocity of the discrete wellbore device within the wellbore conduit, a location of the discrete wellbore device within the wellbore conduit, a depth of the discrete wellbore device within the subterranean formation, and/or an operational state of the discrete wellbore device.
As indicated in
Method 200 further may include performing a downhole operation with the discrete wellbore device responsive to receipt of the wireless communication signal by the discrete wellbore device, as indicated in
As indicated in
The communicating at 240 may include direct transmission of the data signal between the first discrete wellbore device and the second discrete wellbore device. As an example, the communicating at 240 may include generating a direct wireless communication signal with the first discrete wellbore device and (directly) receiving the direct wireless communication signal with the second discrete wellbore device.
The communicating at 240 also may include indirect transmission of the data signal between the first discrete wellbore device and the second discrete wellbore device. As an example, the communicating at 240 may include transmitting a first wireless communication signal from the first discrete wellbore device to a first given node of the downhole communication network. The communicating further may include generating the data signal with the first given node, with the data signal being based upon the first wireless communication signal. The communicating at 240 then may include transferring the data signal from the first given node to a second given node of the downhole communication network, with the second given node being proximate the second discrete wellbore device. Subsequently, the communicating at 240 may include generating a second wireless communication signal with the second given node, with the second wireless communication signal being based upon the data signal. The communicating at 240 then may include transmitting the second wireless communication signal from the second given node to the second discrete wellbore device and/or receiving the second wireless communication signal with the second discrete wellbore device.
Performing the downhole operation at 250 may include performing any suitable downhole operation with the discrete wellbore device. As an example, the discrete wellbore device may include a perforation device that is configured to form a perforation within the wellbore tubular responsive to receipt of a wireless perforation signal from the downhole communication network and/or from the given node thereof. Under these conditions, the transmitting at 230 may include transmitting the wireless perforation signal to the discrete downhole device, and the performing at 250 may include perforating the wellbore tubular.
As additional examples, the discrete wellbore device may include a plug and/or a packer that may be configured to at least partially, or even completely, block and/or occlude the wellbore conduit responsive to receipt of a wireless actuation signal from the downhole communication network and/or from the given node thereof. Under these conditions, the transmitting at 230 may include transmitting the wireless actuation signal to the discrete wellbore device, and the performing at 250 may include at least partially blocking and/or occluding the wellbore conduit.
Programming the discrete wellbore device at 260 may include programming and/or re-programming the discrete wellbore device via the wireless communication signal. As an example, the discrete wellbore device may include a control structure that is configured to control the operation of at least a portion of the discrete wellbore device. Under these conditions, the transmitting at 230 may include transmitting a wireless communication signal that may be utilized by the discrete wellbore device to program and/or re-program the control structure.
Determining the status of the discrete wellbore device at 270 may include determining any suitable status of the discrete wellbore device. When methods 270 include the determining at 270, the transmitting at 230 may include transmitting a wireless query signal to the discrete wellbore device from the downhole communication network and subsequently transmitting a wireless status signal from the discrete wellbore device to the downhole communication network. The wireless status signal may be generated by the discrete wellbore device responsive to receipt of the wireless query signal and may indicate and/or identify the status of the discrete wellbore device. Additionally or alternatively, the determining at 270 may include determining the status of the discrete wellbore device without receiving a wireless communication signal from the discrete wellbore device. Examples of the status of the discrete wellbore device are disclosed herein.
As an example, the determining at 270 may include determining that a depth of the discrete wellbore device within the subterranean formation is greater than a threshold arming depth. Methods 200 then may include performing the transmitting at 230 to transmit a wireless arming signal to the discrete wellbore device responsive to determining that the depth of the discrete wellbore device is greater than the threshold arming depth.
As another example, the determining at 270 additionally or alternatively may include determining that the discrete wellbore device is within a target region of the wellbore conduit. Methods 200 then may include performing the transmitting at 230 to transmit the wireless actuation signal and/or the wireless perforation signal to the discrete wellbore device responsive to determining that the discrete wellbore device is within the target region of the wellbore conduit. Under these conditions, the transmitting at 230 further may include receiving the wireless actuation signal and/or the wireless perforation signal with the discrete wellbore device and performing the downhole operation responsive to receiving the wireless actuation signal and/or the wireless perforation signal.
As yet another example, the determining at 270 additionally or alternatively may include determining that (or if) the downhole operation was performed successfully during the performing at 250. This may include determining that (or if) the perforation device, the plug, and/or the packer was actuated successfully. Under these conditions, the transmitting at 230 may include transmitting a successful actuation signal via the downhole communication network and/or to the surface region responsive to determining that the downhole operation was performed successfully.
As another example, the determining at 270 additionally or alternatively may include determining that (or if) the downhole operation was performed unsuccessfully during the performing at 250. This may include determining that (or if) the perforation device, the plug, and/or the packer was actuated unsuccessfully. Under these conditions, the transmitting at 230 may include transmitting an unsuccessful actuation signal via the downhole communication network and/or to the surface region responsive to determining that the downhole operation was performed unsuccessfully.
As yet another example, the determining at 270 additionally or alternatively may include determining that (or if) the discrete wellbore device is experiencing a fault condition. Under these conditions, the transmitting at 230 may include transmitting a wireless fault signal from the discrete wellbore device to the downhole communication network responsive to determining that the discrete wellbore device is experiencing the fault condition. In addition, methods 200 further may include disarming the discrete wellbore device responsive to determining that the discrete wellbore device is experiencing the fault condition. This may include transmitting a wireless disarming signal to the discrete wellbore device from the surface region, via the downhole communication network, and/or from the given node of the downhole communication network.
Methods 200 also may include aborting operation of the discrete wellbore device responsive to determining that the discrete wellbore device is experiencing the fault condition and/or determining that the downhole operation was performed unsuccessfully. Under these conditions, the transmitting at 230 may include transmitting a wireless abort signal to the discrete wellbore device from the surface region, via the downhole communication network, and/or from the given node of the downhole communication network. In the context of a wellbore tool that includes a perforation device, the aborting may include sending a disarm command signal to the discrete wellbore device or otherwise disarming the perforation device.
Methods 200 also may include initiating self-destruction of the discrete wellbore device responsive to determining that the discrete wellbore device is experiencing the fault condition and/or determining that the downhole operation was performed unsuccessfully. Under these conditions, the transmitting at 230 may include transmitting a wireless self-destruct signal to the discrete wellbore device from the surface region, via the downhole communication network, and/or from the given node of the downhole communication network.
Transferring the data signal at 280 may include transferring the data signal along the wellbore conduit, from the surface region, to the subterranean formation, from the subterranean formation, and/or to the surface region via the downhole communication network and may be performed in any suitable manner. As an example, the plurality of nodes may be spaced apart along the wellbore conduit by a node-to-node separation distance, and the transferring at 280 may include transferring between adjacent nodes and across the node-to-node separation distance. Examples of the node-to-node separation distance are disclosed herein. As disclosed herein, the transferring at 280 may include wired or wireless transfer of the data signal, and examples of the data signal are disclosed herein.
In the present disclosure, several of the illustrative, non-exclusive examples have been discussed and/or presented in the context of flow diagrams, or flow charts, in which the methods are shown and described as a series of blocks, or steps. Unless specifically set forth in the accompanying description, it is within the scope of the present disclosure that the order of the blocks may vary from the illustrated order in the flow diagram, including with two or more of the blocks (or steps) occurring in a different order and/or concurrently. It is also within the scope of the present disclosure that the blocks, or steps, may be implemented as logic, which also may be described as implementing the blocks, or steps, as logics. In some applications, the blocks, or steps, may represent expressions and/or actions to be performed by functionally equivalent circuits or other logic devices. The illustrated blocks may, but are not required to, represent executable instructions that cause a computer, processor, and/or other logic device to respond, to perform an action, to change states, to generate an output or display, and/or to make decisions.
As used herein, the term “and/or” placed between a first entity and a second entity means one of (1) the first entity, (2) the second entity, and (3) the first entity and the second entity. Multiple entities listed with “and/or” should be construed in the same manner, i.e., “one or more” of the entities so conjoined. Other entities may optionally be present other than the entities specifically identified by the “and/or” clause, whether related or unrelated to those entities specifically identified. Thus, as a non-limiting example, a reference to “A and/or B,” when used in conjunction with open-ended language such as “comprising” may refer, in one embodiment, to A only (optionally including entities other than B); in another embodiment, to B only (optionally including entities other than A); in yet another embodiment, to both A and B (optionally including other entities). These entities may refer to elements, actions, structures, steps, operations, values, and the like.
As used herein, the phrase “at least one,” in reference to a list of one or more entities should be understood to mean at least one entity selected from any one or more of the entity in the list of entities, but not necessarily including at least one of each and every entity specifically listed within the list of entities and not excluding any combinations of entities in the list of entities. This definition also allows that entities may optionally be present other than the entities specifically identified within the list of entities to which the phrase “at least one” refers, whether related or unrelated to those entities specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) may refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including entities other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including entities other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other entities). In other words, the phrases “at least one,” “one or more,” and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B, and C,” “at least one of A, B, or C,” “one or more of A, B, and C,” “one or more of A, B, or C” and “A, B, and/or C” may mean A alone, B alone, C alone, A and B together, A and C together, B and C together, A, B and C together, and optionally any of the above in combination with at least one other entity.
In the event that any patents, patent applications, or other references are incorporated by reference herein and (1) define a term in a manner that is inconsistent with and/or (2) are otherwise inconsistent with, either the non-incorporated portion of the present disclosure or any of the other incorporated references, the non-incorporated portion of the present disclosure shall control, and the term or incorporated disclosure therein shall only control with respect to the reference in which the term is defined and/or the incorporated disclosure was present originally.
As used herein the terms “adapted” and “configured” mean that the element, component, or other subject matter is designed and/or intended to perform a given function. Thus, the use of the terms “adapted” and “configured” should not be construed to mean that a given element, component, or other subject matter is simply “capable of” performing a given function but that the element, component, and/or other subject matter is specifically selected, created, implemented, utilized, programmed, and/or designed for the purpose of performing the function. It is also within the scope of the present disclosure that elements, components, and/or other recited subject matter that is recited as being adapted to perform a particular function may additionally or alternatively be described as being configured to perform that function, and vice versa.
As used herein, the phrase, “for example,” the phrase, “as an example,” and/or simply the term “example,” when used with reference to one or more components, features, details, structures, embodiments, and/or methods according to the present disclosure, are intended to convey that the described component, feature, detail, structure, embodiment, and/or method is an illustrative, non-exclusive example of components, features, details, structures, embodiments, and/or methods according to the present disclosure. Thus, the described component, feature, detail, structure, embodiment, and/or method is not intended to be limiting, required, or exclusive/exhaustive; and other components, features, details, structures, embodiments, and/or methods, including structurally and/or functionally similar and/or equivalent components, features, details, structures, embodiments, and/or methods, are also within the scope of the present disclosure.
The systems and methods disclosed herein are applicable to the oil and gas industries.
It is believed that the disclosure set forth above encompasses multiple distinct inventions with independent utility. While each of these inventions has been disclosed in its preferred form, the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense as numerous variations are possible. The subject matter of the inventions includes all novel and non-obvious combinations and subcombinations of the various elements, features, functions and/or properties disclosed herein. Similarly, where the claims recite “a” or “a first” element or the equivalent thereof, such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements.
It is believed that the following claims particularly point out certain combinations and subcombinations that are directed to one of the disclosed inventions and are novel and non-obvious. Inventions embodied in other combinations and subcombinations of features, functions, elements and/or properties may be claimed through amendment of the present claims or presentation of new claims in this or a related application. Such amended or new claims, whether they are directed to a different invention or directed to the same invention, whether different, broader, narrower, or equal in scope to the original claims, are also regarded as included within the subject matter of the inventions of the present disclosure.
This application is a divisional of U.S. patent application Ser. No. 14/820,616 filed Aug. 7, 2015, which claims the priority benefit of U.S. Patent Application 62/049,513 filed Sep. 12, 2014 entitled “Discrete Wellbore Devices, Hydrocarbon Wells Including A Downhole Communication Network And The Discrete Wellbore Devices and Systems and Methods Including The Same,” the entirety of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3103643 | Kalbfell | Sep 1963 | A |
3205477 | Kalbfell | Sep 1965 | A |
3512407 | Zill | May 1970 | A |
3637010 | Malay et al. | Jan 1972 | A |
3741301 | Malay et al. | Jun 1973 | A |
3781783 | Tucker | Dec 1973 | A |
3790930 | Lamel et al. | Feb 1974 | A |
3900827 | Lamel et al. | Aug 1975 | A |
3906434 | Lamel et al. | Sep 1975 | A |
4001773 | Lamel et al. | Jan 1977 | A |
4283780 | Nardi | Aug 1981 | A |
4298970 | Shawhan et al. | Nov 1981 | A |
4302826 | Kent et al. | Nov 1981 | A |
4314365 | Peterson et al. | Feb 1982 | A |
4884071 | Howard | Nov 1989 | A |
4962489 | Medlin et al. | Oct 1990 | A |
5128901 | Drumheller | Jul 1992 | A |
5136613 | Dumestre, III | Aug 1992 | A |
5166908 | Montgomery | Nov 1992 | A |
5182946 | Boughner et al. | Feb 1993 | A |
5234055 | Cornette | Aug 1993 | A |
5283768 | Rorden | Feb 1994 | A |
5373481 | Orban et al. | Dec 1994 | A |
5468025 | Adinolfe et al. | Nov 1995 | A |
5480201 | Mercer | Jan 1996 | A |
5495230 | Lian | Feb 1996 | A |
5562240 | Campbell | Oct 1996 | A |
5592438 | Rorden et al. | Jan 1997 | A |
5667650 | Face et al. | Sep 1997 | A |
5850369 | Rorden et al. | Dec 1998 | A |
5857146 | Kido | Jan 1999 | A |
5924499 | Birchak et al. | Jul 1999 | A |
5960883 | Tubel et al. | Oct 1999 | A |
5995449 | Green et al. | Nov 1999 | A |
6049508 | Deflandre | Apr 2000 | A |
6125080 | Sonnenschein et al. | Sep 2000 | A |
6128250 | Reid et al. | Oct 2000 | A |
6177882 | Ringgenberg et al. | Jan 2001 | B1 |
6236850 | Desai | May 2001 | B1 |
6239690 | Burbidge et al. | May 2001 | B1 |
6300743 | Patino et al. | Oct 2001 | B1 |
6320820 | Gardner et al. | Nov 2001 | B1 |
6324904 | Ishikawa et al. | Dec 2001 | B1 |
6360769 | Brisco | Mar 2002 | B1 |
6394184 | Tolman et al. | May 2002 | B2 |
6400646 | Shah et al. | Jun 2002 | B1 |
6429784 | Beique et al. | Aug 2002 | B1 |
6462672 | Besson | Oct 2002 | B1 |
6543538 | Tolman et al. | Apr 2003 | B2 |
6670880 | Hall et al. | Dec 2003 | B1 |
6679332 | Vinegar et al. | Jan 2004 | B2 |
6695277 | Gallis | Feb 2004 | B1 |
6702019 | Dusterhoft et al. | Mar 2004 | B2 |
6717501 | Hall et al. | Apr 2004 | B2 |
6727827 | Edwards et al. | Apr 2004 | B1 |
6745012 | Dao et al. | Jun 2004 | B1 |
6772837 | Dusterhoft et al. | Aug 2004 | B2 |
6816082 | Laborde | Nov 2004 | B1 |
6868037 | Dasgupta et al. | Mar 2005 | B2 |
6880634 | Gardner et al. | Apr 2005 | B2 |
6883608 | Parlar et al. | Apr 2005 | B2 |
6899178 | Tubel | May 2005 | B2 |
6909667 | Shah et al. | Jun 2005 | B2 |
6912177 | Smith | Jun 2005 | B2 |
6920085 | Finke et al. | Jul 2005 | B2 |
6930616 | Tang et al. | Aug 2005 | B2 |
6940392 | Chan et al. | Sep 2005 | B2 |
6940420 | Jenkins | Sep 2005 | B2 |
6953094 | Ross et al. | Oct 2005 | B2 |
6956791 | Dopf et al. | Oct 2005 | B2 |
6980929 | Aronstam et al. | Dec 2005 | B2 |
6987463 | Beique et al. | Jan 2006 | B2 |
7006918 | Economides et al. | Feb 2006 | B2 |
7011157 | Costley et al. | Mar 2006 | B2 |
7036601 | Berg et al. | May 2006 | B2 |
7051812 | McKee et al. | May 2006 | B2 |
7064676 | Hall et al. | Jun 2006 | B2 |
7082993 | Ayoub et al. | Aug 2006 | B2 |
7090020 | Hill et al. | Aug 2006 | B2 |
7140434 | Chouzenoux et al. | Nov 2006 | B2 |
7219762 | James et al. | May 2007 | B2 |
7224288 | Hall et al. | May 2007 | B2 |
7228902 | Oppelt | Jun 2007 | B2 |
7249636 | Ohmer | Jul 2007 | B2 |
7252152 | LoGiudice et al. | Aug 2007 | B2 |
7257050 | Stewart et al. | Aug 2007 | B2 |
7261154 | Hall et al. | Aug 2007 | B2 |
7261162 | Deans et al. | Aug 2007 | B2 |
7275597 | Hall et al. | Oct 2007 | B2 |
7277026 | Hall et al. | Oct 2007 | B2 |
RE40032 | van Borkhorst et al. | Jan 2008 | E |
7317990 | Sinha et al. | Jan 2008 | B2 |
7321788 | Addy et al. | Jan 2008 | B2 |
7322416 | Burris, II et al. | Jan 2008 | B2 |
7325605 | Fripp et al. | Feb 2008 | B2 |
7339494 | Shah et al. | Mar 2008 | B2 |
7348893 | Huang et al. | Mar 2008 | B2 |
7385523 | Thomeer et al. | Jun 2008 | B2 |
7387165 | Lopez de Cardenas et al. | Jun 2008 | B2 |
7411517 | Flanagan | Aug 2008 | B2 |
7477160 | Lemenager et al. | Jan 2009 | B2 |
7516792 | Lonnes et al. | Apr 2009 | B2 |
7551057 | King et al. | Jun 2009 | B2 |
7590029 | Tingley | Sep 2009 | B2 |
7595737 | Fink et al. | Sep 2009 | B2 |
7602668 | Liang et al. | Oct 2009 | B2 |
7649473 | Johnson et al. | Jan 2010 | B2 |
7750808 | Masino et al. | Jul 2010 | B2 |
7775279 | Marya et al. | Aug 2010 | B2 |
7787327 | Tang et al. | Aug 2010 | B2 |
7819188 | Auzerais et al. | Oct 2010 | B2 |
7828079 | Oothoudt | Nov 2010 | B2 |
7831283 | Ogushi et al. | Nov 2010 | B2 |
7913773 | Li et al. | Mar 2011 | B2 |
7952487 | Montebovi | May 2011 | B2 |
7994932 | Huang et al. | Aug 2011 | B2 |
8004421 | Clark | Aug 2011 | B2 |
8044821 | Mehta | Oct 2011 | B2 |
8049506 | Lazarev | Nov 2011 | B2 |
8115651 | Camwell et al. | Feb 2012 | B2 |
8117907 | Han et al. | Feb 2012 | B2 |
8157008 | Lilley | Apr 2012 | B2 |
8162050 | Roddy et al. | Apr 2012 | B2 |
8220542 | Whitsitt et al. | Jul 2012 | B2 |
8237585 | Zimmerman | Aug 2012 | B2 |
8242928 | Prammer | Aug 2012 | B2 |
8276674 | Lopez de Cardenas et al. | Oct 2012 | B2 |
8284075 | Fincher et al. | Oct 2012 | B2 |
8284947 | Giesbrecht et al. | Oct 2012 | B2 |
8316936 | Roddy et al. | Nov 2012 | B2 |
8330617 | Chen et al. | Dec 2012 | B2 |
8347982 | Hannegan et al. | Jan 2013 | B2 |
8358220 | Savage | Jan 2013 | B2 |
8376065 | Teodorescu et al. | Feb 2013 | B2 |
8381822 | Hales et al. | Feb 2013 | B2 |
8388899 | Mitani et al. | Mar 2013 | B2 |
8411530 | Slocum et al. | Apr 2013 | B2 |
8434354 | Crow et al. | May 2013 | B2 |
8494070 | Luo et al. | Jul 2013 | B2 |
8496055 | Mootoo et al. | Jul 2013 | B2 |
8539890 | Tripp et al. | Sep 2013 | B2 |
8544564 | Moore et al. | Oct 2013 | B2 |
8552597 | Song et al. | Oct 2013 | B2 |
8556302 | Dole | Oct 2013 | B2 |
8559272 | Wang | Oct 2013 | B2 |
8596359 | Grigsby et al. | Dec 2013 | B2 |
8605548 | Froelich | Dec 2013 | B2 |
8607864 | Mcleod et al. | Dec 2013 | B2 |
8664958 | Simon | Mar 2014 | B2 |
8672875 | Vanderveen et al. | Mar 2014 | B2 |
8675779 | Zeppetelle et al. | Mar 2014 | B2 |
8683859 | Godager | Apr 2014 | B2 |
8689621 | Godager | Apr 2014 | B2 |
8701480 | Eriksen | Apr 2014 | B2 |
8750789 | Baldemair et al. | Jun 2014 | B2 |
8787840 | Srinivasan et al. | Jul 2014 | B2 |
8805632 | Coman et al. | Aug 2014 | B2 |
8826980 | Neer | Sep 2014 | B2 |
8833469 | Purkis | Sep 2014 | B2 |
8893784 | Abad | Nov 2014 | B2 |
8910716 | Newton et al. | Dec 2014 | B2 |
8994550 | Millot et al. | Mar 2015 | B2 |
8995837 | Mizuguchi et al. | Mar 2015 | B2 |
9062508 | Huval et al. | Jun 2015 | B2 |
9062531 | Jones | Jun 2015 | B2 |
9075155 | Luscombe et al. | Jul 2015 | B2 |
9078055 | Nguyen et al. | Jul 2015 | B2 |
9091153 | Yang et al. | Jul 2015 | B2 |
9133705 | Angeles Boza | Sep 2015 | B2 |
9140097 | Themig et al. | Sep 2015 | B2 |
9144894 | Barnett et al. | Sep 2015 | B2 |
9206645 | Hallundbaek | Dec 2015 | B2 |
9279301 | Lovorn et al. | Mar 2016 | B2 |
9284819 | Tolman et al. | Mar 2016 | B2 |
9284834 | Alteirac et al. | Mar 2016 | B2 |
9310510 | Godager | Apr 2016 | B2 |
9333350 | Rise et al. | May 2016 | B2 |
9334696 | Hay | May 2016 | B2 |
9359841 | Hall | Jun 2016 | B2 |
9363605 | Goodman et al. | Jun 2016 | B2 |
9376908 | Ludwig et al. | Jun 2016 | B2 |
9441470 | Guerrero et al. | Sep 2016 | B2 |
9515748 | Jeong et al. | Dec 2016 | B2 |
9557434 | Keller et al. | Jan 2017 | B2 |
9617829 | Dale et al. | Apr 2017 | B2 |
9617850 | Fripp et al. | Apr 2017 | B2 |
9631485 | Keller et al. | Apr 2017 | B2 |
9657564 | Stolpman | May 2017 | B2 |
9664037 | Logan et al. | May 2017 | B2 |
9670773 | Croux | Jun 2017 | B2 |
9683434 | Machocki | Jun 2017 | B2 |
9686021 | Merino | Jun 2017 | B2 |
9715031 | Contant et al. | Jul 2017 | B2 |
9721448 | Wu et al. | Aug 2017 | B2 |
9759062 | Deffenbaugh et al. | Sep 2017 | B2 |
9816373 | Howell et al. | Nov 2017 | B2 |
9822634 | Gao | Nov 2017 | B2 |
9863222 | Morrow et al. | Jan 2018 | B2 |
9879525 | Morrow et al. | Jan 2018 | B2 |
9945204 | Ross et al. | Apr 2018 | B2 |
9963955 | Tolman et al. | May 2018 | B2 |
10100635 | Keller et al. | Oct 2018 | B2 |
10103846 | van Zelm et al. | Oct 2018 | B2 |
10132149 | Morrow et al. | Nov 2018 | B2 |
10145228 | Yarus et al. | Dec 2018 | B2 |
10167716 | Clawson et al. | Jan 2019 | B2 |
10167717 | Deffenbaugh et al. | Jan 2019 | B2 |
10190410 | Clawson et al. | Jan 2019 | B2 |
10196862 | Li-Leger et al. | Feb 2019 | B2 |
20020180613 | Shi et al. | Dec 2002 | A1 |
20020196743 | Sebastian et al. | Dec 2002 | A1 |
20030056953 | Tumlin et al. | Mar 2003 | A1 |
20030067940 | Edholm | Apr 2003 | A1 |
20030117896 | Sakuma et al. | Jun 2003 | A1 |
20040020063 | Lewis et al. | Feb 2004 | A1 |
20040055746 | Ross | Mar 2004 | A1 |
20040200613 | Fripp et al. | Oct 2004 | A1 |
20040239521 | Zierolf | Dec 2004 | A1 |
20050241824 | Burris, II | Nov 2005 | A1 |
20050269083 | Burris et al. | Dec 2005 | A1 |
20050284659 | Hall et al. | Dec 2005 | A1 |
20060033638 | Hall et al. | Feb 2006 | A1 |
20060041795 | Gabelmann et al. | Feb 2006 | A1 |
20060090893 | Sheffield | May 2006 | A1 |
20060187755 | Tingley | Aug 2006 | A1 |
20070139217 | Beique et al. | Jun 2007 | A1 |
20070146351 | Katsurahira et al. | Jun 2007 | A1 |
20070156359 | Varsamis et al. | Jul 2007 | A1 |
20070219758 | Bloomfield | Sep 2007 | A1 |
20070272411 | Lopez de Cardenas et al. | Nov 2007 | A1 |
20080030365 | Fripp et al. | Feb 2008 | A1 |
20080110644 | Howell et al. | May 2008 | A1 |
20080185144 | Lovell | Aug 2008 | A1 |
20080304360 | Mozer | Dec 2008 | A1 |
20090003133 | Dalton et al. | Jan 2009 | A1 |
20090030614 | Carnegie et al. | Jan 2009 | A1 |
20090034368 | Johnson | Feb 2009 | A1 |
20090045974 | Patel | Feb 2009 | A1 |
20090080291 | Tubel et al. | Mar 2009 | A1 |
20090166031 | Hernandez | Jul 2009 | A1 |
20100013663 | Cavender et al. | Jan 2010 | A1 |
20100089141 | Rioufol et al. | Apr 2010 | A1 |
20100112631 | Hur et al. | May 2010 | A1 |
20100133004 | Burleson et al. | Jun 2010 | A1 |
20100182161 | Robbins et al. | Jul 2010 | A1 |
20100212891 | Stewart et al. | Aug 2010 | A1 |
20110056692 | Lopez de Cardenas | Mar 2011 | A1 |
20110061862 | Loretz et al. | Mar 2011 | A1 |
20110066378 | Lerche et al. | Mar 2011 | A1 |
20110168403 | Patel | Jul 2011 | A1 |
20110188345 | Wang | Aug 2011 | A1 |
20110297376 | Holderman et al. | Dec 2011 | A1 |
20110297673 | Zbat et al. | Dec 2011 | A1 |
20110301439 | Albert et al. | Dec 2011 | A1 |
20110315377 | Rioufol | Dec 2011 | A1 |
20120043079 | Wassouf et al. | Feb 2012 | A1 |
20120126992 | Rodney et al. | May 2012 | A1 |
20120152562 | Newton et al. | Jun 2012 | A1 |
20120179377 | Lie | Jul 2012 | A1 |
20120268074 | Cooley | Oct 2012 | A1 |
20130000981 | Grimmer et al. | Jan 2013 | A1 |
20130003503 | L'Her et al. | Jan 2013 | A1 |
20130062055 | Tolman | Mar 2013 | A1 |
20130106615 | Prammer | May 2013 | A1 |
20130138254 | Seals et al. | May 2013 | A1 |
20130168083 | McCarter | Jul 2013 | A1 |
20130186645 | Hall | Jul 2013 | A1 |
20130192823 | Barrilleaux et al. | Aug 2013 | A1 |
20130278432 | Shashoua et al. | Oct 2013 | A1 |
20130319102 | Riggenberg et al. | Dec 2013 | A1 |
20140060840 | Hartshorne et al. | Mar 2014 | A1 |
20140062715 | Clark | Mar 2014 | A1 |
20140102708 | Purkis et al. | Apr 2014 | A1 |
20140133276 | Volker et al. | May 2014 | A1 |
20140152659 | Davidson et al. | Jun 2014 | A1 |
20140153368 | Bar-Cohen et al. | Jun 2014 | A1 |
20140166266 | Read | Jun 2014 | A1 |
20140170025 | Weiner et al. | Jun 2014 | A1 |
20140266769 | van Zelm | Sep 2014 | A1 |
20140327552 | Filas et al. | Nov 2014 | A1 |
20140352955 | Tubel et al. | Dec 2014 | A1 |
20150003202 | Palmer et al. | Jan 2015 | A1 |
20150009040 | Bowles et al. | Jan 2015 | A1 |
20150027687 | Tubel | Jan 2015 | A1 |
20150041124 | Rodriguez | Feb 2015 | A1 |
20150041137 | Rodriguez | Feb 2015 | A1 |
20150152727 | Fripp et al. | Jun 2015 | A1 |
20150159481 | Mebarkia et al. | Jun 2015 | A1 |
20150167425 | Hammer et al. | Jun 2015 | A1 |
20150176370 | Greening et al. | Jun 2015 | A1 |
20150292319 | Disko et al. | Oct 2015 | A1 |
20150292320 | Lynk et al. | Oct 2015 | A1 |
20150300159 | Stiles et al. | Oct 2015 | A1 |
20150330200 | Richard et al. | Nov 2015 | A1 |
20150337642 | Spacek | Nov 2015 | A1 |
20150354351 | Morrow et al. | Dec 2015 | A1 |
20150377016 | Ahmad | Dec 2015 | A1 |
20160010446 | Logan et al. | Jan 2016 | A1 |
20160010447 | Merino | Jan 2016 | A1 |
20160047230 | Livescu et al. | Feb 2016 | A1 |
20160047233 | Butner et al. | Feb 2016 | A1 |
20160076363 | Morrow et al. | Mar 2016 | A1 |
20160109606 | Market et al. | Apr 2016 | A1 |
20160215612 | Morrow | Jul 2016 | A1 |
20170138185 | Saed et al. | May 2017 | A1 |
20170145811 | Robison et al. | May 2017 | A1 |
20170152741 | Park et al. | Jun 2017 | A1 |
20170167249 | Lee et al. | Jun 2017 | A1 |
20170204719 | Babakhani | Jul 2017 | A1 |
20170254183 | Vasques et al. | Sep 2017 | A1 |
20170293044 | Gilstrap et al. | Oct 2017 | A1 |
20170314386 | Orban et al. | Nov 2017 | A1 |
20180010449 | Roberson et al. | Jan 2018 | A1 |
20180058191 | Romer et al. | Mar 2018 | A1 |
20180058198 | Ertas et al. | Mar 2018 | A1 |
20180058202 | Disko et al. | Mar 2018 | A1 |
20180058203 | Clawson et al. | Mar 2018 | A1 |
20180058204 | Clawson et al. | Mar 2018 | A1 |
20180058205 | Clawson et al. | Mar 2018 | A1 |
20180058206 | Zhang et al. | Mar 2018 | A1 |
20180058207 | Song et al. | Mar 2018 | A1 |
20180058208 | Song et al. | Mar 2018 | A1 |
20180058209 | Song et al. | Mar 2018 | A1 |
20180066490 | Kjos | Mar 2018 | A1 |
20180066510 | Walker et al. | Mar 2018 | A1 |
20190112913 | Song et al. | Apr 2019 | A1 |
20190112915 | Disko et al. | Apr 2019 | A1 |
20190112916 | Song et al. | Apr 2019 | A1 |
20190112917 | Disko et al. | Apr 2019 | A1 |
20190112918 | Yi et al. | Apr 2019 | A1 |
20190112919 | Song et al. | Apr 2019 | A1 |
20190116085 | Zhang et al. | Apr 2019 | A1 |
20190153857 | Yi et al. | May 2019 | A1 |
20190153858 | Kinn et al. | May 2019 | A1 |
20190154859 | Song et al. | May 2019 | A1 |
20190203574 | Yi et al. | Jul 2019 | A1 |
20190203591 | Disko et al. | Jul 2019 | A1 |
20190242249 | Walker et al. | Aug 2019 | A1 |
20190249548 | Zhang et al. | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
102733799 | Jun 2014 | CN |
0636763 | Feb 1995 | EP |
1409839 | Apr 2005 | EP |
2677698 | Dec 2013 | EP |
WO2001033391 | Jan 2001 | WO |
WO2002027139 | Apr 2002 | WO |
WO2004033852 | Apr 2004 | WO |
WO2010074766 | Jul 2010 | WO |
WO2013079928 | Jun 2013 | WO |
WO2013162506 | Oct 2013 | WO |
WO2014018010 | Jan 2014 | WO |
WO2014049360 | Apr 2014 | WO |
WO2014100271 | Jun 2014 | WO |
WO2014134741 | Sep 2014 | WO |
WO2015117060 | Aug 2015 | WO |
Entry |
---|
U.S. Appl. No. 15/666,334, filed Aug. 1, 2017, Walker, Katie M. et al. |
U.S. Appl. No. 62/782,153, filed Dec. 19, 2019, Yi, Xiaohua et al. |
U.S. Appl. No. 62/782,160, filed Dec. 19, 2018, Hall, Timothy J. et al. |
Arroyo, Javier et al. (2009) “Forecasting Histogram Time Series with K-Nearest Neighbours Methods,” International Journal of Forecasting, v.25, pp. 192-207. |
Arroyo, Javier et al. (2011) “Smoothing Methods for Histogram-Valued Time Seriers: An Application to Value-at-Risk,” Univ. of California, Dept. of Economics, www.wileyonlinelibrary.com, Mar. 8, 2011, 28 pages. |
Arroyo, Javier et al. (2011) “Forecasting with Interval and Histogram Data Some Financial Applications,” Univ. of California, Dept. of Economics, 46 pages. |
Emerson Process Management (2011), “Roxar downhole Wireless PT sensor system,” www.roxar.com, or downhole@roxar.com, 2 pgs. |
Gonzalez-Rivera, Gloria et al. (2012) “Time Series Modeling of Histogram-Valued Data: The Daily Histogram Time Series of S&P500 Intradaily Returns,” International Journal of Forecasting, v.28, 36 pgs. |
Gutierrez-Estevez, M. A. et al. (2013) “Acoustic Boardband Communications Over Deep Drill Strings using Adaptive OFDM”, IEEE Wireless Comm. & Networking Conf., pp. 4089-4094. |
Qu, X. et al. (2011) “Reconstruction fo Self-Sparse 20 NMR Spectra From undersampled Data In The Indirect Dimension”, pp. 8888-8909. |
U.S. Department of Defense (1999) “Interoperability and Performance Standards for Medium and High Frequency Radio Systems,” MIL-STD-188-141B, Mar. 1, 1999, 584 pages. |
Number | Date | Country | |
---|---|---|---|
20200072043 A1 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
62049513 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14820616 | Aug 2015 | US |
Child | 16675979 | US |