The present invention relates to a coin discriminator, comprising: a coin path along which a coin containing a first and a second portion made of different metals and/or metal alloys is arranged to pass; coil means positioned adjacent to the coin path; electrical means for supplying time varying drive signals to the coil means; and detection means for detecting eddy currents induced in the coin by the coil means. Furthermore, the present invention relates to a method of measuring the conductivity at a bond between the first and second portions of such a coin.
Coin discriminators, which are arranged to measure the electric characteristics, e.g. the resistance or conductivity, of a coin by exposing it to a magnetic pulse and detecting the decay of eddy currents induced in the coin, are generally known in the technical field. Such coin discriminators are used in a variety of coin handling machines, such as coin counting machines, coin sorting machines, coin validators for vending and gaming machines, etc. Previously known coin handling devices are for instance disclosed in WO 97/07485 and WO 87/07742.
The way in which such coin discriminators operate is described in e.g. GB-A-2 135 095, in which a coin testing arrangement comprises a transmitter coil, which is pulsed with a rectangular voltage pulse so as to generate a magnetic pulse, which is induced in a passing coin. The eddy currents thus generated in the coin give rise to a magnetic field, which is monitored or detected by a receiver coil. The receiver coil may be a separate coil or may alternatively be constituted by the transmitter coil having two operating modes. By monitoring the decay of the eddy currents induced in the coin, a value representative of the coin conductivity may be obtained, since the rate of decay is a function thereof.
Prior art coin discriminators often employ a small coil with a diameter smaller than the diameter of the coin. The coil induces and detects eddy currents in an arbitrary point of the coin (the actual part of the coin which is subject to the conductivity measurement above will vary depending on the orientation, speed, angle, etc., of the coin relative to the coil). This approach is sufficient for a normal homogeneous coin made of a single metal or metal alloy.
However, in recent years bimetallic coins have been issued on the market in different countries. A well known example of a bimetallic coin is the French 10 Franc.
Furthermore, some of the Euro coins to be issued within the European Community within a near future are planned to be of a bimetallic type.
Bimetallic coins are made as follows. Outer rings and central discs are punched from sheets (also known as blanks) of the two metal or metal alloys, of which the bimetallic coin is to be made. The disc is then fitted into the ring, and the coin is minted. Minting consists of pressing the coin between two hardened dies. The dies stamp the head and tail pattern onto the coin and also force the disc and ring together. The joint between the disc and ring is called a bond.
If the disc and ring are clean and free from oxide, the bond between the metals will have near zero electrical resistance. Ideally, the resistance of the metals or alloys is much greater than the resistance across the bond. However, if the ring or the disc is covered in an oxide layer before minting, the resistance of the bond will be greater than the resistance of the metals or alloys. Thus, by controlling the handling and storage conditions of the blanks between punching and minting, it is possible to control the bond resistance (or, alternatively, the conductivity, which is basically the inverse of resistance) in the finished bimetallic coin.
To control the resistance of the bond in this way may be particularly desired as an anti-fraud measure. At the production coins with too low or too high resistance will not be issued. To make such a controlled production practical, a method of repeatedly measuring the bond resistance of large volumes of coins would be required.
The prior art coin discriminators described above fail to provide a sufficiently accurate determination of the bond resistance or conductivity, since the measurement results obtained would vary to a large extent depending on the actual spot of measurement on the coin. In other words, if the conductivity for a given coin would happen to be measured in a spot located in the ring, the measurement results would differ from the results obtained if the measurement would take place in the disc. Furthermore, if the measurement spot would embrace a portion of the bond between the ring and the disc, yet another measurement result would be obtained. A coin discriminator according to the prior art is cited in the introductory part of claim 1.
It is therefore an object of the present invention to allow repeatable and accurate determination of the bond conductivity or resistance in a coin comprising a first and a second portion made of different metals or metal alloys, e.g. a bimetallic coin.
The object is achieved for a coin discriminator, comprising: a coin path along which a coin is arranged to pass; coil means positioned adjacent to the coin path; electrical means for supplying time varying drive signals to the coil means; and detection means for detecting eddy currents induced in the coin by the coil means, by arranging the coil means so that an eddy current loop is induced in the coin in such a way that it crosses, in a predetermined region of the coin, the bond between the first and second portions of the coin.
Furthermore, the object above is achieved through a method of measuring the conductivity at the bond between the first and second portions of the coin, wherein the coin is subjected to a magnetic field by coil means external to the coin and wherein eddy currents induced in the coin are detected by detection means external to the coin, the magnetic field being generated such that a loop of eddy currents crosses the bond in a predetermined region of the coin.
The solutions described above are defined by the appended independent patent claims. Preferred embodiments of the invention are the subject of dependent claims.
The invention will now be described in more detail, reference being made to the accompanying drawing, in which:
As shown in
As shown in
As seen in
The adjacent portions 19a and 19b of the two halves 1a, 1b of the coil contain winding wires, which run essentially parallel to each other and are symmetrically arranged with respect to the coil plane 21. Furthermore, since the windings 15a, 15b are formed by one single contiguous conductor, a common electric current will flow through the entire windings 15a, 15b, when driven by a voltage pulse from the electrical means 7. In response thereto, a pulsed magnetic field will be generated around the windings 15a, 15b. In the central region of the coil, i.e. around the adjacent portions 19a, 19b and the center plane 21, the current will flow in the same direction in both windings 15a, 15b and will hence cooperate in generating a magnetic field.
The bond conductivity is measured when the coin is in the middle of the coil, as shown in
Thanks to the arrangement above an eddy current loop 27 is generated in the coin 5 along a path, which approximately corresponds to the wire pattern of the two windings 15a, 15b (i.e. the symmetric double semi-circular shape), as is schematically illustrated in FIG. 3. The exact shape of an eddy current loop generated in a coin is a complex subject, which is difficult to model mathematically. However, tests have indicated that the eddy current loop has a flow approximate to the one described below.
The coil illustrated in
By the use of a coin discriminator according to the present invention it is possible to reduce the risk of forgeries, since the coin discriminator may be used during the production of the coins for sorting out such coins, the bond of which is found to have a resistance or conductivity, which falls outside predetermined limits. Preferably, the coin discriminator is operatively connected to storage means not disclosed in the drawing for storing predetermined maximum and minimum values of the bond conductivity or resistance for the current type of coin. After having measured the conductivity or resistance of the coin, the output of the detection device 9 is compared to the predetermined limits so as to determine whether the bond conductivity or resistance falls within an acceptable range, wherein the coin will be allowed to be issued, or does not fall within the acceptable range, in which case the coin will be prevented from being issued.
According to an alternative embodiment, the coin discriminator described above may be used for determining the authenticity of bimetallic coins already present on the market, by determining the bond conductivity or resistance thereof and comparing a detected value to predetermined limits.
The invention has been described above with reference to a few embodiment examples. However, embodiments other than the ones described above are possible within the scope of the invention, as defined by the appended independent patent claims. For instance, the coil means may be driven by electrical signals other than voltage pulses, such as sine waves or square waves. In order to generate the desired eddy currents in the coin, virtually any kind of time varying electric drive signals may be used, as will be readily realized by the skilled man.
Furthermore, the coil means may comprise more than two coil frames and windings. For instance, the coils means may be formed by four frames and windings, preferably symmetrically arranged about any coil center plane(-s).
Number | Date | Country | Kind |
---|---|---|---|
9800284 | Jan 1998 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCTSE99/00103 | 1/26/1999 | WO | 00 | 10/12/2000 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO9939311 | 8/5/1999 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4235707 | Burke, Jr. | Nov 1980 | A |
4601380 | Dean et al. | Jul 1986 | A |
4625166 | Steingroever et al. | Nov 1986 | A |
5199545 | Takamisawa et al. | Apr 1993 | A |
5353906 | Takamisawa et al. | Oct 1994 | A |
5452785 | Iwamoto et al. | Sep 1995 | A |
5458225 | Iwamoto et al. | Oct 1995 | A |
5489015 | Wood | Feb 1996 | A |
5630494 | Strauts | May 1997 | A |
5662205 | Levasseur | Sep 1997 | A |
5743373 | Strauts | Apr 1998 | A |
5833042 | Baitch et al. | Nov 1998 | A |
6068102 | Kawase | May 2000 | A |
6196371 | Martin et al. | Mar 2001 | B1 |
6398001 | Hutchinson et al. | Jun 2002 | B1 |
Number | Date | Country |
---|---|---|
0639288 | Feb 1995 | EP |
2135095 | Aug 1984 | GB |
62265561 | Nov 1987 | JP |
04012266 | Jan 1992 | JP |