Matzke and Matzke. Plant Physiol. 1995. vol. 107: 679-685.* |
Finnegan and McElory. Bio/Technology. 1994. vol. 12: 883-888.* |
Carvalho et al. The EMBO Journal. 1992. vol. 11: 5995-5602).* |
Hopkin. Phytopathology. 1985. vol. 75. 713-717.* |
Colby et al. American Journal of Horticultural Science. 1991b. vol. 116: 356-361.* |
Gray and Meredith. Biotechnology of Perennial Fruit Crops. Edited by: Hammerschlag and Litz. 1992. Chapter 9. p. 254.* |
Mullins et al. Bio/technology. 1990. vol. 8: 1041-1045.* |
Jaynes. Acta Horticulturae. 1993. vol. 336: 33-39.* |
Hill et al., “Multiplication and movement of Xylella fastidosa within grapevine and four other plants”, Phytopathology, 85:1368-1372 (1995). |
Williams et al., “Growth of Thompson Seedless grapevines II. Nitrogen distribution”, Journal of the American Society of Horticultural Science, vol. 112 No. 2 (1987). |
Allefs et al., “Erwinia Soft Rot Resistance of Potato Cultivars Transformed With a Gene Construct Coding for Antimicrobial Peptide Cecropin B Is Not Altered”, American Potato Journal, 72: 437-445 (1995). |
Colby et al., “Cellular Differences in Agrobacterium Susceptibility and Regenerative Capacity Restrict the Development of Transgenic Grapevines”, J. Amer. Soc. Hort. Sci., 116: 356-361 (1991). |
Gray et al., “Grape”, Biotechnology of Perennial Fruit Crops, Chapter 9: 229-262. |
Hightower et al., “The expression of cecropin peptides in transgenic tobacco does not confer resistance to Pseudomonas syringae pv tabaci”, Plant Cell Reports, 13: 295-299 (1994). |
Jaynes et al., “Expression of a Cecropin B lytic peptide analog in transgenic tobacco confers enhanced resistance to bacterial wilt caused by Pseudomonas solanacearum”, Plant Science, 89: 43-53 (1993). |
Mullins et al., “Agrobacterium-Mediated Genetic Transformation of Grapevines: Transgenic Plants of Vitis Rupestris Scheele and Buds of Vitis Vinifera L.”, The International Monthly for Industrial Biology, 8: 1041-1045 (1990). |
Perl et al., “Establishment of an Agrobacterium-mediated transformation system for grape (Vitis vinifera L.): The role of antioxidants during grape-Agrobacterium interactions”, Nature Biotechnology, 14: 624-628. |
Scorza et al., “Transformation of grape (Vitis vinifera L.) zygotic-derived somatic embryos and regeneration of transgenic plants”, Plant Cell Reports, 14: 589-592 (1995). |
Scorza et al., “Producing Transgenic ‘Thompson Seedless’ Grape (Vitis vinifera L.) Plants”, J. Amer. Soc. Hort. Sci., 121: 616-619 (1996). |