This disclosure relates to health care and more particularly to a disease risk decision support platform.
Family members share genes, behaviors, lifestyles, and environments that together may influence their health and their risk of chronic disease. Most people have a family health history of some chronic diseases (e.g., cancer, coronary heart disease, and diabetes) and health conditions (e.g., high blood pressure and hypercholesterolemia). People who have a close family member with a chronic disease may have a higher risk of developing that disease than those without such a family member. Family health history is a written or graphic record of the diseases and health conditions present in an individual's family. For example, a useful family health history shows three generations of biological relatives, the age at diagnosis, and the age and cause of death of diseased family members. Family health history is a useful tool for understanding health risks and preventing disease in individuals and their close relatives.
Many genetic disease risk assessment tools for clinicians are based on a single or a few complex clinical guidelines and/or published risk assessments derived from published literature and studies. From these guidelines, complex verbatim statements are used, for example, in a patient's chart to provide a clinician with guidance on whether a patient is at risk for a given specific disease and needs further treatment and/or evaluation. The verbatim statements are typically difficult to understand, can be counter intuitive, lack consistent logical structure or syntax, and in some cases can contradict one another. Therefore, the verbatim statements can be difficult for even the most seasoned clinician to consistently understand and apply.
This disclosure relates to health care and more particularly disease risk decision support platform systems and methods.
As one example, a system for providing a disease specific risk reference is disclosed. The system comprises a plurality of executable item modules that each define a different elementary disease to family structure relationship for a specific disease represented as a logical Boolean operation, and an item scoring engine that ranks positively scored item modules based on a risk level associated with a corresponding elementary disease to family structure relationship, wherein the positive scores identify an existence of a given disease to family structure relationship. The system further comprises a disease specific risk reference generator that extracts item content associated with a subset of the highest ranked positively scored item modules from memory and provides the extracted item content in a disease specific risk reference for review by a clinician.
In another example, a non transitory computer readable medium is provided that stores instructions for performing a method. The method comprises receiving family structure information and family disease history responses to family disease history questions for a specific disease, executing a plurality of item modules that each define a different elementary disease to family structure relationship represented as a logical Boolean operation for a specific disease based on the family structure information and the family disease history responses, and ranking positively scored item modules based on a risk level associated with a corresponding elementary disease to family structure relationship, wherein the positive scores identify an existence of a given disease to family structure relationship. The method further comprises selecting a disease risk category based on a positively scored item module ranked with the highest risk ranking, wherein the disease risk level category rates a patient's level of risk for the specific disease. The method further comprises extracting item content associated with a subset of the highest risk positively scored item modules, and providing the extracted item content and the selected disease risk category in a disease specific risk reference for review by a clinician.
In yet another example, a computer-implemented method is provided. The computer-implemented method comprises receiving an appointment specific information request that has an association with one or more specific diseases, providing patient general and personal health history questions, providing family structure questions, and providing family disease specific history questions. The method further comprises performing an intermediate scoring of one or more family disease history to family structure relationships based on answers to the family disease specific history questions, and providing family member disease specific history questions for each family member identified with a disease specific history that had an intermediate score that exceeded a predetermined threshold.
This disclosure relates to health care and more particularly to a disease risk decision platform.
For example, this item module may be assigned to one of the following disease risk categories “Genetic Risk Present”, which is considered a very high risk, “Familial Risk”, which is considered a high risk, “Raised Risk”, which is considered a medium risk, and “Population Risk”, which is considered a low risk. Each item module is derived from a simple interpreted statement that is derived from a plurality of clinical guidelines and/or published risk assessments for a given disease, which will be explained further below. Each interpreted statement is also employed to derive an associated question or set of questions corresponding to a given item module. Each item module can also have an associated disease risk level within a disease risk category. For example, one item module may be ranked “Genetic Risk Present” based upon published evidence of the ways the patterns of disease manifest within the family. Each item module would have a relative rank given the pattern of disease being expressed in the interpreted statement and what evidence is published about the associated risk of such a pattern of disease within the family.
The disease risk decision platform system 10 includes an invitation question and answer (Q&A) engine 12 and a patient Input/Output (I/O) Q&A graphical user interface (GUI) 14. The invitation rules Q&A engine 12 receives an appointment-specific information request from a patient master scheduling center. The appointment-specific information request initiates one or more invitation requests based on the specific appointment made by the patient. Each invitation request is related to the patient's scheduled encounter and invokes a question set or disease-related questionnaires including, for example, patient general questions, patient personal health history questions, family structure questions, and family disease specific history questions. For example, an appointment for a specialist may initiate a single question set or questionnaire, while a well check can encompass multiple question sets.
The invitation Q&A engine 12 retrieves question sets associated with the one or more invitations from a disease risk decision repository 16 and delivers a questionnaire to the patient I/O Q&A GUI for receiving answers from the patient. The invitation Q&A engine 12 stores the patient's responses to the questions in the disease risk decision repository 16. The invitation Q&A engine 12 can be configured to suppress redundant questions when providing multiple invitation question sets, such that the patient does not need to answer the same question multiple times. Furthermore, the invitation Q&A engine 12 can be configured to employ branch logic and filtering, such that additional questions can be added to the question set based on answers received from the patient, or that specific questions can be provided (e.g., female directed questions) and specific question can be omitted (e.g., male directed questions) based on answers received by the patient.
Additionally, the disease-specific questions can be intermediately scored to determine if they exceed a certain risk threshold, which could cause the invocation of additional questions to be provided to the patient. Once the questionnaire is completed and submitted by the patient, the set of answers are provided as disease related responses and family structure data or information to an item scoring/ranking engine 18. The term answers will be referred to as encompassing all answers to questions in a questionnaire, while the term responses will be referred to as answers to disease specific questions and family structure questions employed by the executable item modules 20.
The item scoring/ranking engine 18 executes a set of item modules of the plurality of item modules 20 associated with the specific disease employing the patient's responses and family structure information associated with the specific disease being evaluated. Each item module that provides an indication of a presence of a disease to family structure relationship can be scored as a positive scored item, while each item module that provides an indication of the absence of a given disease to family structure relationship can be scored as a false or negative scored item. Each positive scored item module is ranked based on the highest disease risk levels associated with the positive scored items. Based on the highest ranked disease risk positively scored item or items, item content (e.g., disease risk level category, recommendations, assessments, diagnosis codes, education links, disease overview, etc.) that resides in the disease risk decision repository 16 is identified for providing to a disease specific risk reference. Each item module may have multiple parts (e.g., up to 3 item parts). In the present example, an item module can be considered positive or true if each item module is positive or true. However, it is to be appreciated that other scoring methodologies can be employed.
The disease specific responses and family structure information can be formatted by a pedigree formatter 24. The formatter 24 formats the disease related responses and the family structure information in a format (e.g., XML) to be read by a pedigree image builder 22 that can generate a disease specific pedigree image 26 related to the specific disease being evaluated.
A disease specific risk reference generator 28 is configured to access the disease specific pedigree image to be provided to a clinician disease specific risk reference I/O GUI 30. Additionally, the disease specific risk reference generator 28 accesses formats and displays the associated item content in the clinician disease specific risk reference I/O GUI 30 as a disease specific risk reference (see
The assessment section can display textual versions of the elementary interpreted statements associated with the higher ranked positively scored item modules. After review of the disease specific risk reference page or pages by the clinician, the clinician can choose to accept the disease specific risk reference, which results in the storing of the disease specific risk reference evaluation in an electronic health record database 34 in an electronic health record system 32. Alternatively or additionally, the can choose to have the disease specific risk reference reviewed by a genetic expert or counselor. The alternative paths could repeat until a terminating action of acceptance by the clinician.
As stated above, each item module is derived from a simple interpreted statement that is derived from a plurality of clinical guidelines and/or published risk assessments for a given disease.
The present example is for Hereditary Non-Polyposis Colorectal Cancer (HPNCCC) Lynch Syndrome. In such an example, 20 disease/conditions can be determined from seven clinical guidelines and four risk assessments. A plurality of complex verbatim statements labeled 1 through M are determined for each of the plurality of disease/conditions. A plurality of interpreted statements labeled 1 through N can then be derived from the plurality of complex verbatim statements, where M and N are integers greater than one. For example, 200 or more verbatim statements can be derived from the 20 disease/conditions, and 2000 or more interpreted statements can be derived from the 200 or more verbatim statements. A subset of the interpreted statements can then be selected to be employed to derive a plurality of item modules and associated disease to family structure related questions.
Each disease specific question corresponds to at least one item module, labeled #1-#T, and each item module corresponds to item content also labeled #1-#T, where T is an integer greater than one. The disease specific question can include multiple sub-question parts that solicit responses that correspond to multiple item parts found in the related item module. In the present example, question #1 indicates a sub-question #1 and sub-question #2 and a sub-question #2a of sub-question #2, while the corresponding item module includes 3 item parts shown as Item Part #1 A, Item Part #1 B, and Item Part #1 C. Disease history responses 60 and family structure information 62 are provided from the patient I/O Q&A GUI 52 to a scoring/ranking engine 64.
The scoring/ranking engine 64 can invoke the execution of the plurality of item modules associated with the specific diseases being evaluated and employing the patient's responses and family structure information. Each positive scored item module is ranked based on the highest disease risk levels associated with the positive scored items. Based on the highest ranked disease risk positively scored item or items, item content associated with those item modules is provided to a disease risk reference generator 66 for generation of a disease risk reference to be provided in one or both of a clinician I/O GUI 68 and a clinician EHR GUI 70. The clinician can accept the disease risk reference to be stored along with other patient information in an EHR database 72.
Referring again to
Referring again to
The methodology 100 of
The methodology 100 of
At 114, the methodology 100 provides family member disease specific history questions to the patient for each family member determined in 112 to be of risk interest.
It is to be appreciated that different types of genetic disease histories can contribute to a given disease specific risk for a patient, especially for various types of cancer. Therefore, 110-114 may be repeated for additional disease components as illustrated by the dash line indicating a possible entry of a next component disease. For example,
In this regard and in view of the foregoing structural and functional features described above, an example method will be better appreciated with reference to
Furthermore, the clinician can view a disease overview page 270 as illustrated in
The architecture 300 also employs one or more user interfaces at least including a patient I/O Q&A GUI 322 and a clinician disease risk reference I/O GUI 324 for reviewing one or more disease specific risk references. The user interfaces can be programmed for accessing the system 302 and implementing the functions and methods shown and described herein. For example, in response to a user input provided via the clinician disease risk reference I/O GUI 324, the one or more disease specific risk references can be provided to an EHR system 326 in which EHR data 328 is stored. Additionally, personal health questions, family structure questions and disease specific questions can be provided to patients and answers stored at the system 302 via the patient I/O Q&A GUI 322.
The system 302 can also communicate (e.g., retrieve and send) information relative to one or more other services 330. Such other services, for example, can include billing systems, insurance systems (internal to the organization or third party insurers), Personal Health Records, scheduling systems, prediction services, patient health portals or the like. In this way, the system can leverage information from a variety or resources and present users with current information that can be relevant to each patient or to groups of patients.
As will be appreciated by those skilled in the art, portions of the invention may be embodied as a method, data processing system, or computer program product. Accordingly, these portions of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware. Furthermore, portions of the invention may be a computer program product on a computer-usable storage medium having computer readable program code on the medium. Any suitable computer-readable medium may be utilized including, but not limited to, static and dynamic storage devices, hard disks, optical storage devices, and magnetic storage devices.
Certain embodiments of the invention are described herein with reference to flowchart illustrations of methods, systems, and computer program products. It will be understood that blocks of the illustrations, and combinations of blocks in the illustrations, can be implemented by computer-executable instructions. These computer-executable instructions may be provided to one or more processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus (or a combination of devices and circuits) to produce a machine, such that the instructions, which execute via the processor, implement the functions specified in the block or blocks.
These computer-executable instructions may also be stored in computer-readable memory that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture including instructions which implement the function specified in the flowchart block or blocks. The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide steps for implementing the functions specified in the flowchart block or blocks. The example systems and methods can be implemented as computer-readable instructions that can be stored in a non-transitory computer readable medium such as can be computer program product. The computer readable instructions corresponding can also be executed by one or more processors and/or across one or more computers.
What have been described above are examples. It is, of course, not possible to describe every conceivable combination of components or methodologies, but one of ordinary skill in the art will recognize that many further combinations and permutations are possible. Accordingly, the invention is intended to embrace all such alterations, modifications, and variations that fall within the scope of this application, including the appended claims. As used herein, the term “includes” means includes but not limited to, the term “including” means including but not limited to. The term “based on” means based at least in part on. Additionally, where the disclosure or claims recite “a,” “an,” “a first,” or “another” element, or the equivalent thereof, it should be interpreted to include one or more than one such element, neither requiring nor excluding two or more such elements.
This application claims the benefit of U.S. Provisional Patent Application No. 61/549,278, filed Oct. 20, 2011, and entitled CLINICAL DECISION SUPPORT PLATFORM, the entire contents of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61549278 | Oct 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13655816 | Oct 2012 | US |
Child | 14611792 | US |