Motorized motion furniture exists that moves an article of furniture, such as, for example, a seating unit such as a recliner chair or a portion of a sectional, between a closed position, an open or TV position, and a reclined position. These furniture items typically have a pair of metal linkage mechanisms that control the positioning of an ottoman, a seat and a backrest. In the closed position, the seat is generally horizontal, with the ottoman stored in a closed position and the back generally upright. In the TV position, the ottoman is extended, and the seat and back generally maintain their respective positions. In the reclined position, the ottoman is further extended, the seat may move forward and down, and the back is reclined. In the motorized versions of this furniture, a linear actuator or motor is connected to the linkage mechanisms that control the movement of the ottoman, seat and back. By engaging the actuator, the furniture item is moved between positions, such as from the closed position to the TV position and to the reclined position (and back).
Generally, if a user of such a piece of motion furniture wishes to exit the motion furniture, the user will engage the actuator (such as with a button, or switch) to return the motion furniture to the closed position. For example, if the user has the motion furniture in a TV position, and wishes to exit the motion furniture, the user will press an appropriate button (possibly labeled “back” or “return” or “close”) to engage the actuator, which moves the linkage mechanisms to control the ottoman, seat and back as the motion furniture returns to the closed position. But, the movement of the actuator can be somewhat slow. It would be useful and advantageous to allow a user to return the motion furniture to the closed position in a faster, manual way. As an example, if a user needs to answer a phone located remotely from the motion furniture, or needs to answer the door, or if the user is simply impatient, the user may not want to wait for the actuator to return the motion furniture to the closed position before exiting the motion furniture. It would also be advantageous and useful for the motion furniture to again be useable in a motorized way, even after such a manual return of the motion furniture to the closed position.
An aspect of the present disclosure includes a motorized positioning apparatus for a seating unit that includes a motor assembly that is configured to move a pair of linkage mechanisms through a series of positions that arrange the seating unit in a closed position, TV position, or extended position. The motor assembly is selectively and releasably coupled to the linkage mechanisms, to allow the motor assembly to be selectively de-coupled from the linkage mechanisms to allow the seating unit to be manually closed by a user. The term “selectively and releasably coupled” may also be referred to as a selectively coupled state and a releasably coupled state, respectively. In some aspects, a drive block of the motor assembly is selectively coupled and de-coupled from a motor tube that is, in turn, coupled to the pair of linkage mechanisms. In some aspects, coupling mechanisms such as solenoids are used to control pins to selectively couple and de-couple the drive block and the motor tube.
Embodiments of the disclosure are defined by the claims below, not this summary. A high-level overview of various aspects of the disclosure is provided here for that reason, to provide an overview of the disclosure, and to introduce a selection of concepts that are further described below in the detailed-description section below. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in isolation to determine the scope of the claimed subject matter.
This disclosure includes various details that may reference the attached drawing figures, which are incorporated herein by reference, wherein:
Subject matter is described throughout this disclosure in detail and with specificity in order to meet statutory requirements. But the aspects described throughout this disclosure are intended to be illustrative rather than restrictive, and the description itself is not intended necessarily to limit the scope of the claims. Rather, the claimed subject matter might be practiced in other ways to include different elements or combinations of elements that are similar to the ones described in this disclosure and that are in conjunction with other present, or future, technologies. Upon reading the present disclosure, alternative aspects may become apparent to ordinary skilled artisans that practice in areas relevant to the described aspects, without departing from the scope of this disclosure. It will be understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations. This principle is contemplated by and is within the scope of the claims.
An example of a prior art motion furniture piece is shown and described in U.S. Pat. No. 9,845,852 (“the '852 patent”). As an example, FIG. 6 of the '852 patent is shown in simplified fashion here as
Many aspects are contemplated in the present application. As described, the pair of linkage mechanisms described herein may arrange a seating unit in a closed position, TV position, or an extended position. The linkage mechanisms may control the positioning of only the ottoman or a combination of the ottoman, a seat, and a backrest. In aspects where the linkage mechanism may only control the positioning of the ottoman, the backrest and the seat may be controlled by an independent linkage mechanism. Even in aspects where the linkage mechanism only controls the positions of the ottoman, the pair of linkage mechanisms may arrange only the ottoman in the closed position, TV position, or the extended position.
At another point, the linkage mechanism 12, and the opposite linkage mechanism are coupled together by a motor tube 16. Each end of the motor tube 16 is coupled to a part of the respective linkage mechanism 12, such that, as the motor tube 16 moves, the linkage mechanism 12 moves the seating unit 10 between the closed, TV and reclined positions, and back.
A motor (such an electric linear actuator) 18 is pivotally coupled to the rear base rail 14. For example, a rear motor mounting bracket 20 may be coupled to the rear base rail 14. Similarly, a motor housing 22 may have an integrally-formed bracket 24, or the bracket 24 may be coupled to the motor housing 22. The bracket 24 and the rear motor mounting bracket 20 may be pivotally coupled together, such as by placing a clevis pin 26 through holes in the bracket 24 and the rear motor mounting bracket 20. Other attachment arrangements could also be used to pivotally couple the motor 18 to the rear base rail 14.
In some contemplated aspects, other stationary rails other than the rear base rail 14 may be pivotally coupled to the motor. It is contemplated herein that the motor 18 may pivotally be coupled to the front base rail, described herein.
As best seen in
As best seen in
More specifically, as best seen in
Returning to back plate 40, a first pair of adjustment slots 62 are cut or formed on one end of back plate 40 and a second pair of adjustment slots 64 are cut or formed on the other end of back plate 40. The first pair of adjustment slots 62 and the second pair of adjustment slots 64 extend vertically on back plate 40. The first pair of adjustment slots 62 are used to couple a first solenoid bracket 66 to the back plate 40. First solenoid bracket 66 has a first member 68 that is oriented orthogonally to a second member 70. First member 68 and second member 70 can be integrally formed, such as from bent metal or angle-iron. First member 68 has a number of spaced, threaded mounting holes 72 formed therein. Mounting holes 72 are located, in some aspects, such that two mounting holes 72 are aligned with each of the slots in the first pair of adjustment slots 62. Bolts or other attaching mechanisms can then be placed through the first pair of adjustment slots 62 and threaded into mounting holes 72 to secure first solenoid bracket 66 to back plate 40. The first pair of adjustment slots 62 allow the first solenoid bracket 66 to be adjusted vertically on the back plate 40. Second member 70 of the first solenoid bracket 66 includes a pair of slots 74 that extend orthogonally from the plane of back plate 40 when first solenoid bracket 66 is coupled to back plate 40.
As best seen in
Similar to the discussion above, and as best seen in
As shown in
In a first state, (as shown in
If the motorized seating unit 10 is in the TV position of
Note that in
While first solenoid 76 and second solenoid 90 are described as moving first pin 78 and second pin 92 through apertures 34 and apertures 38, other coupling mechanisms could be used to selectively couple and de-couple drive block 28 and motor 18 to and from motor tube 16 and linkage mechanisms 12 from a remote location, such as a button on controller 96.
Other aspects of coupling between the drive block 28 and motor 18 to and from the motor tube 16 and linkage mechanisms 12 (referred to as a “coupling mechanism”) are also contemplated. Each of the aspects below may be used to couple the motor 18 and the drive block 28 to and from motor tube 16 and linkage mechanisms 12 among other implementations described herein. The below references various features shown in
One coupling mechanism may be a wrap-spring clutch used to couple the linkage mechanism to the actuator. In one aspect, the wrap-spring clutch may consist of an input and output hub that attach, respectively, to the motor 18 and drive block 28 to move the drive block 28 forward or backward along the body 30. A helical-wound spring may span the two hubs. The spring inside diameter may be slightly smaller than the outside diameter of the hubs to create an interference fit. Rotating the input hub in the direction of the spring helix may force the spring to wrap down onto the hubs, coupling the motor 18 and drive block 28 without slippage. Stopping the motor 18 or reversing its direction may unwrap the spring and releases the output hub, letting the drive block 28 freely rotate (overrun). Stated differently, wrap-spring clutches may be unidirectional.
Another coupling mechanisms includes a friction clutch. In one aspect, the friction clutch may consist of a receiving mechanism and an engaging mechanism that attach, respectively, to the motor 18 and the drive block 28 to move the drive block 28 forward or backward along the body. Engaging the receiving mechanism with the engaging mechanism may couple the receiving and engaging mechanisms, coupling the motor 18 to the drive block 28. In some aspects, engaging the receiving mechanism with the engaging mechanism may include rotating the engaging mechanism to engage the receiving mechanism. For example, the engaging mechanism may be threaded and be rotated by the motor 18. In that same example, the receiving mechanism may be configured to receive the threaded engaging mechanism, coupling the coupled motor 18 and the drive block 28. In the same example, reversing the rotation of the engaging mechanism may uncouple the engaging mechanism from the receiving mechanism. Stated differently, friction clutches may be bi-directional.
Another coupling mechanism includes the use of a magnetic clutch. In one aspect the magnetic clutch may consist of an armature and an output hub coupled, respectively, to the motor 18 and the drive block 28. The output hub may include a magnetic mechanism, such as a field coil, configured to engage the armature. When the output hub is engaged, a magnetic field may be generated to couple the armature to the output hub, in turn coupling the motor 18 and the drive block 28. The output hub may be disengaged, removing the magnetic field and uncoupling the armature to the output hub. The magnetic field may be generated using a electromagnet or permanent magnet.
In one aspect the coupling mechanism may be a residual magnetic clutch used to couple the linkage mechanism and the actuator. Implementing a residual magnetic clutch, residual magnetic force may be provided to engage the output hub, and when the output hub is disengaged, magnetic force may be stored. In some aspects, the residual magnetic clutch may include a coil with a magnetization current to create a magnetic force to couple the armature with the output hub.
In another aspect, a spring loaded clutch collet may be used as a coupling mechanism. In one aspect, the spring loaded clutch collet may include a round driving member and a receiving member. Each of the round driving member and the receiving member may be coupled, respectively, to the motor 18 and the drive block 28. A spring may be coupled to round driving member and fit closely around the round driving member. The receiving member may be configured to receive the spring and similarly the spring may closely fit around the round driving member. In some aspects the spring is not coupled to the receiving member. The round driving member may engage and couple the receiving member by rotating, via the motor 18, the coupled spring in the direction of the spring helix. When the spring is closely fit around the receiving member the spring may tighten, and couple the round driving member to the receiving member. The round driving member may similarly rotate the opposite direction to disengage the spring from the receiving member. In this way, the spring loaded clutch may couple and uncouple the motor 18 from the drive block 28.
In yet another aspect of a coupling mechanism, a sprag clutch (also referred to as a “one-way clutch”) may be implemented. The sprag clutch may include a driving unit and a receiving unit coupled, respectively, to the motor 18 and the drive block 28. The receiving unit may include a plurality of non-revolving asymmetric figure-eight shaped sprags or some other single direction elements. Each of the sprags may tilt slightly when a torque is applied opposite the single direction. The receiving unit may be configured to receive the drive block while engaging the sprags. For example, the sprags may tilt slightly when a torque is applied in a clockwise direction, but each of the sprags may slip or free-wheel when the torque is applied in a counter-clockwise direction. When the drive block rotates clockwise, via the motor 18, the sprags may tilt preventing the drive block from disengaging the receiving unit. In this way, the sprag clutch may couple the linkage mechanism and the actuator.
In another aspect, the control box 93 may automatically re-couple the drive block 28. The control box 93 receives a position of the drive block 28. In some aspects the control box 93 includes a plurality of sensors for determining the position of the drive block 28. In some aspects the plurality of sensors may be in communication with the control box 93 to automatically re-couple the drive block 28.
When the coupling mechanism is uncoupled, the drive block 28 may freely move from the linkage mechanism 12. The controller 96 may be in communication with a control box 93 to engage or disengage a coupling mechanism such as with first solenoid 76 and second solenoid 90, or the other coupling mechanisms described herein. The control box 93 may disengage the coupling mechanism, uncoupling the drive block 28 from the linkage mechanism 12. When the drive block 28 is uncoupled from the linkage mechanism 12, a user may manually move the linkage mechanisms 12, such as to close the linkage mechanisms 12. For example, when the drive block 28 is uncoupled from the linkage mechanism 12, a user may apply force on the linkage mechanisms 12, such as at the ottoman link 102 (described in
The indication of the position may be received from a plurality of sources. As illustrated in
The control box 93 may determine, based on the received position of the first sensor 104 and/or second sensor 106, an aligned position. The aligned position may indicate a position of the first sensor 104 and/or second sensor 106 where the coupling mechanism may be engaged, coupling the drive block 28 to the motor tube 16. For example, the control box 93 may determine the aligned position by receiving an indication of a position from the first sensor 104 on the drive block 28 that it is at a distal position along the body 30 relative to the motor 18. The second sensor 106 may be on the motor tube 16 and indicate it is at a proximate position along the body 30 relative to the motor 18. The control box 93 may determine the motor tube 16 and drive block 28 are not in a position where the coupling mechanism may be engaged to couple the motor tube 16 to the drive block 28. Instead, when the control box 93 receives a position of the first sensor 104 (on the drive block 28) and second sensor 106 (on the motor tube 16) are at the same location along the body 30, such as at the proximate position along the body 30 relative to the motor 18, the control box 93 may cause to engage the coupling mechanism.
In some aspects, the motor 18 may be a linear actuator with an integrated sensor such as the second sensor 106. For example, the motor 18 may be a linear actuator, where the extension of the motor may move the drive block 28 a commensurate distance. The position of the drive block 28 may be determined by the indication of the position by the motor 18. In another aspect, the motor 18 is a worm gear and rack arrangement where the position of the drive block 28 may be commensurate with a number of rotations of the motor 18. The motor 18 may send the indications of the rotation and/or position of the drive block 28 to the control box 93. The position of the drive block 28 may be determined by the indication of position from the motor 18. In these aspects, the first sensor 104 may be placed on the motor tube 16. The control box 93 may be in communication with the motor 18 and first sensor 104 in these aspects. The control box 93 may determine an aligned position by determining a position of the drive block 28 from the motor 18 and the first sensor 104 on the motor tube 16.
The aligned position may not be a position where the motor tube 16 and the drive block 28 are “aligned”. As described herein, the aligned position may be a collinear position of the motor tube 16 and drive block 28 where the coupling mechanism may engage and disengage. In some aspects the motor tube 16 and drive block 28 may not be collinear but offset, where engaging the coupling mechanism may slightly move the motor tube 16 and/or drive block 28 to align the motor tube 16 and drive block 28.
In some aspects, the first sensor 104 may be a proximity sensor to receive a position relative to the second sensor 106. In these aspects, the first sensor 104 may be placed on the drive block 28 and the second sensor 106 may be placed on the motor tube 16. For example, the first sensor 104 may be a proximity sensor that provides an indication of alignment to the control box 93 when the second sensor 106 is within a specified distance.
The control box 93 may determine an aligned position using any combination of the methods and systems described herein. The control box 93 may implement a computer apparatus including processors and memory to reference a data store of conditions (e.g., relative positions as described herein) of the first and or second sensors 104 and 106 that indicate an aligned position. Further, in some aspects, the control box 93 may be electronic mechanical system where an aligned position forms a circuit to engage the coupling mechanism. In some further aspects, the control box 93 may be an electronic mechanical system where an aligned position submits a signal to engage the coupling mechanism.
In various aspects, the control box 93 may engage the coupling mechanism at various positions along the body 30. As described herein, the control box 93 may engage the coupling mechanism at an aligned position where the coupling mechanism may be engaged, coupling the drive block 28 to the motor tube 16. The aligned position may be at a mid-point along the body 30 or anywhere along the body 30. The aligned position may be at a proximate position along the body 30 relative to the motor 18 where the drive block 28 and motor tube 16 are fully drawn in, placing the linkage mechanism 12 in the closed position. In some embodiments, a specific position along the body 30 must be reached by the drive block 28 and motor tube 16 to engage the coupling mechanism. For example, a fully retracted position of the linkage mechanism 12 may position the motor tube 16 at a position along the body 30 at a proximate position from the motor 18. In this example, the drive block 28 may be in an aligned position with the motor tube 16 at the proximate position from the motor 18. In some aspects of this example, the control box 93 may only engage the coupling mechanism when there is an aligned position of the drive block 28 and motor tube 16 at the proximate.
In some aspects, the control box 93 may engage the coupling mechanism at an aligned position while the drive block 28 and/or motor tube 16 are in motion. In some aspects, a user or other external force may actuate the linkage mechanism 12, while the linkage mechanism 12 is actuated, the motor tube 16 may move along the body 30. In these aspects, if during the actuation of the linkage mechanism 12, the drive block 28 and motor tube 16 reach the alignment position, the control box 93 may engage the coupling mechanism while the linkage mechanism 12 and/or drive block 28 are in motion.
Other alternative aspects are also contemplated.
When the coupling mechanism is released (e.g., automatically or by the release button 94 illustrated and discussed in
The drive block 28 may contact the mounting bracket 36 to place the linkage mechanism 12 into the closed position. The drive block 28 may contact the mounting bracket 36 by the drive block 28 shifting toward the mounting bracket 36. The drive block 28 may shift, in some aspects, along the body 30 beyond the alignment position (as described with regard to
With reference to
From the foregoing, it will be seen that aspects herein are well adapted to attain all the ends and objects hereinabove set forth together with other advantages which are obvious and which are inherent to the structure. It will be understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations. This is contemplated by and is within the scope of the claims. Since many possible aspects may be made without departing from the scope thereof, it is to be understood that all matter herein set forth or shown in the accompanying drawings is to be interpreted as illustrative and not in a limiting sense.
This application is a continuation-in-part of U.S. non-provisional application Ser. No. 16/834,321 entitled “DISENGAGEMENT AND REENGAGEMENT MECHANISM ON MOTORIZED SEATING UNIT FOR SELECTIVE MANUAL CONTROL” which was filed on Mar. 30, 2020 and claims the benefit of U.S. provisional application 62/826,335, entitled “DISENGAGEMENT AND REENGAGEMENT MECHANISM ON MOTORIZED SEATING UNIT FOR SELECTIVE MANUAL CONTROL” filed on Mar. 29, 2019, and wherein the entirety of the application has been incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
62826335 | Mar 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16834321 | Mar 2020 | US |
Child | 16943614 | US |