Disfavored route progressions or locations

Information

  • Patent Grant
  • 9702709
  • Patent Number
    9,702,709
  • Date Filed
    Friday, February 22, 2013
    11 years ago
  • Date Issued
    Tuesday, July 11, 2017
    7 years ago
Abstract
Adaptive route guidance can include analyzing route progressions associated with one or more routes based on multiple user preferences. The adaptive route guidance can provide one or more preferred routes based on the user preferences, which can be presented to a user for navigation purposes.
Description
BACKGROUND

This disclosure relates to navigation using a mobile device.


Navigation systems have begun to include functionality for inclusion of traffic data overlaying a navigation interface. Such navigation systems, however, provide little intelligence other than the ability to navigate from an origination point to a destination point. Because a user often has some intelligence about routes to a location, in many instances the user ignores navigation routes provided by the navigation system in favor of the routes the user knows. Additionally, current navigation systems do not readily facilitate navigation to a destination if a user desires to travel a different route while enroute on the route recommended by the navigation system.


SUMMARY

In one aspect, systems, methods, apparatuses and computer program products are provided. In one aspect, methods are disclosed, which comprise: receiving a preference comprising disfavored route progressions or disfavored locations associated with a user; identifying destination information associated with a user; identifying one or more potential routes comprising a plurality of route progressions based on a current location and the destination information; analyzing the plurality of route progressions associated with the one or more potential routes based on the disfavored route progressions or disfavored locations associated with the user; and presenting one or more routes to the user based on the analysis.


Systems can include a preference engine, a destination engine, a routing engine, an analysis engine, and a presentation engine. The preference engine can receive disfavored route progressions or disfavored locations associated with a user. The routing engine can identify routes, each route including a plurality of route progressions. The identification of the routes can be based on a current location and the destination information. The analysis engine can analyze the plurality of route progressions associated with the potential routes based upon the disfavored route progressions or disfavored locations. The presentation engine can present preferred routes to the user, the preferred routes being based on results from the analysis engine


Systems and methods as described can facilitate navigation of roads by directing a user to use routes that do not include disfavored route progressions or locations associated with the user.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of an example mobile device.



FIG. 2 is a block diagram of an example network operating environment for the mobile device of FIG. 1.



FIG. 3 is a block diagram of an example implementation of the mobile device of FIG. 1.



FIG. 4A is a block diagram illustrating an example implementation of routing instructions.



FIG. 4B is a block diagram of a plurality of route progressions.



FIG. 5 is a block diagram illustrating an example implementation of a preferences engine.



FIG. 6 is a flowchart illustrating an example method for routing.



FIG. 7 is a flowchart illustrating another example method for routing.





DETAILED DESCRIPTION


FIG. 1 is a block diagram of an example mobile device 100. The mobile device 100 can be, for example, a handheld computer, a personal digital assistant, a cellular telephone, a network appliance, a camera, a smart phone, an enhanced general packet radio service (EGPRS) mobile phone, a network base station, a media player, a navigation device, an email device, a game console, or other device or a combination of any two or more of these data processing devices or other data processing devices.


Mobile Device Overview

In some implementations, the mobile device 100 includes a touch-sensitive display 102. The touch-sensitive display 102 can implement liquid crystal display (LCD) technology, light emitting polymer display (LPD) technology, or some other display technology. The touch-sensitive display 102 can be sensitive to haptic and/or tactile contact with a user.


In some implementations, the touch-sensitive display 102 can comprise a multi-touch-sensitive display 102. A multi-touch-sensitive display 102 can, for example, process multiple simultaneous touch points, including processing data related to the pressure, degree and/or position of each touch point. Such processing facilitates gestures and interactions with multiple fingers, chording, and other interactions. Other touch-sensitive display technologies can also be used, e.g., a display in which contact is made using a stylus or other pointing device. Some examples of multi-touch-sensitive display technology are described in U.S. Pat. Nos. 6,323,846, 6,570,557, 6,677,932, and U.S. Patent Publication 2002/0015024A1, each of which is incorporated by reference herein in its entirety.


In some implementations, the mobile device 100 can display one or more graphical user interfaces on the touch-sensitive display 102 for providing the user access to various system objects and for conveying information to the user. In some implementations, the graphical user interface can include one or more display objects 104, 106. In the example shown, the display objects 104, 106, are graphic representations of system objects. Some examples of system objects include device functions, applications, windows, files, alerts, events, or other identifiable system objects.


Example Mobile Device Functionality

In some implementations, the mobile device 100 can implement multiple device functionalities, such as a telephony device, as indicated by a phone object 110; an e-mail device, as indicated by the e-mail object 112; a network data communication device, as indicated by the Web object 114; a Wi-Fi base station device (not shown); and a media processing device, as indicated by the media player object 116. In some implementations, particular display objects 104, e.g., the phone object 110, the e-mail object 112, the Web object 114, and the media player object 116 can be displayed in a menu bar 118. In some implementations, device functionalities can be accessed from a top-level graphical user interface, such as the graphical user interface illustrated in FIG. 1. Touching one of the objects 110, 112, 114 or 116 can, for example, invoke corresponding functionality.


In some implementations, the mobile device 100 can implement network distribution functionality. For example, the functionality can enable the user to take the mobile device 100 and its associated network while traveling. In particular, the mobile device 100 can extend Internet access (e.g., Wi-Fi) to other wireless devices in the vicinity. For example, mobile device 100 can be configured as a base station for one or more devices. As such, mobile device 100 can grant or deny network access to other wireless devices.


In some implementations, upon invocation of device functionality, the graphical user interface of the mobile device 100 changes, or is augmented or replaced with another user interface or user interface elements, to facilitate user access to particular functions associated with the corresponding device functionality. For example, in response to a user touching the phone object 110, the graphical user interface of the touch-sensitive display 102 may present display objects related to various phone functions; likewise, touching of the email object 112 may cause the graphical user interface to present display objects related to various e-mail functions; touching the Web object 114 may cause the graphical user interface to present display objects related to various Web-surfing functions; and touching the media player object 116 may cause the graphical user interface to present display objects related to various media processing functions.


In some implementations, the top-level graphical user interface environment or state of FIG. 1 can be restored by pressing a button 120 located near the bottom of the mobile device 100. In some implementations, each corresponding device functionality may have corresponding “home” display objects displayed on the touch-sensitive display 102, and the graphical user interface environment of FIG. 1 can be restored by pressing the “home” display object.


In some implementations, the top-level graphical user interface can include additional display objects 106, such as a short messaging service (SMS) object 130, a calendar object 132, a photos object 134, a camera object 136, a calculator object 138, a stocks object 140, a weather object 142, a maps object 144, a notes object 146, a clock object 148, an address book object 150, and a settings object 152. Touching the SMS display object 130 can, for example, invoke an SMS messaging environment and supporting functionality; likewise, each selection of a display object 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150 and 152 can invoke a corresponding object environment and functionality.


Additional and/or different display objects can also be displayed in the graphical user interface of FIG. 1. For example, if the device 100 is functioning as a base station for other devices, one or more “connection” objects may appear in the graphical user interface to indicate the connection. In some implementations, the display objects 106 can be configured by a user, e.g., a user may specify which display objects 106 are displayed, and/or may download additional applications or other software that provides other functionalities and corresponding display objects.


In some implementations, the mobile device 100 can include one or more input/output (I/O) devices and/or sensor devices. For example, a speaker 160 and a microphone 162 can be included to facilitate voice-enabled functionalities, such as phone and voice mail functions. In some implementations, a loud speaker 164 can be included to facilitate hands-free voice functionalities, such as speaker phone functions. An audio jack 166 can also be included for use of headphones and/or a microphone.


In some implementations, a proximity sensor 168 can be included to facilitate the detection of the user positioning the mobile device 100 proximate to the user's ear and, in response, to disengage the touch-sensitive display 102 to prevent accidental function invocations. In some implementations, the touch-sensitive display 102 can be turned off to conserve additional power when the mobile device 100 is proximate to the user's ear.


Other sensors can also be used. For example, in some implementations, an ambient light sensor 170 can be utilized to facilitate adjusting the brightness of the touch-sensitive display 102. In some implementations, an accelerometer 172 can be utilized to detect movement of the mobile device 100, as indicated by the directional arrow 174. Accordingly, display objects and/or media can be presented according to a detected orientation, e.g., portrait or landscape. In some implementations, the mobile device 100 may include circuitry and sensors for supporting a location determining capability, such as that provided by the global positioning system (GPS) or other positioning systems (e.g., systems using Wi-Fi access points, television signals, cellular grids, Uniform Resource Locators (URLs)). In some implementations, a positioning system (e.g., a GPS receiver) can be integrated into the mobile device 100 or provided as a separate device that can be coupled to the mobile device 100 through an interface (e.g., port device 190) to provide access to location-based services.


The mobile device 100 can also include a camera lens and sensor 180. In some implementations, the camera lens and sensor 180 can be located on the back surface of the mobile device 100. The camera can capture still images and/or video.


The mobile device 100 can also include one or more wireless communication subsystems, such as an 802.11b/g communication device 186, and/or a Bluetooth™ communication device 188. Other communication protocols can also be supported, including other 802.x communication protocols (e.g., WiMax, Wi-Fi, 3G), code division multiple access (CDMA), global system for mobile communications (GSM), Enhanced Data GSM Environment (EDGE), etc.


In some implementations, a port device 190, e.g., a Universal Serial Bus (USB) port, or a docking port, or some other wired port connection, can be included. The port device 190 can, for example, be utilized to establish a wired connection to other computing devices, such as other communication devices 100, network access devices, a personal computer, a printer, or other processing devices capable of receiving and/or transmitting data. In some implementations, the port device 190 allows the mobile device 100 to synchronize with a host device using one or more protocols, such as, for example, the TCP/IP, HTTP, UDP and any other known protocol. In some implementations, a TCP/IP over USB protocol can be used.


Network Operating Environment


FIG. 2 is a block diagram of an example network operating environment 200 for the mobile device 100 of FIG. 1. The mobile device 100 of FIG. 1 can, for example, communicate over one or more wired and/or wireless networks 210 in data communication. For example, a wireless network 212, e.g., a cellular network, can communicate with a wide area network (WAN) 214, such as the Internet, by use of a gateway 216. Likewise, an access point 218, such as an 802.11g wireless access point device, can provide communication access to the wide area network 214. In some implementations, both voice and data communications can be established over the wireless network 212 and the access point 218. For example, the mobile device 100a can place and receive phone calls (e.g., using VoIP protocols), send and receive e-mail messages (e.g., using POP3 protocol), and retrieve electronic documents and/or streams, such as web pages, photographs, and videos, over the wireless network 212, gateway 216, and wide area network 214 (e.g., using TCP/IP or UDP protocols). Likewise, the mobile device 100b can place and receive phone calls, send and receive e-mail messages, and retrieve electronic documents over the access point 218 and the wide area network 214. In some implementations, the mobile device 100 can be physically connected to the access point 218 using one or more cables and the access point 218 can be a personal computer. In this configuration, the mobile device 100 can be referred to as a “tethered” device.


The mobile devices 100a and 100b can also establish communications by other means. For example, the wireless device 100a can communicate with other wireless devices, e.g., other wireless devices 100, cell phones, etc., over the wireless network 212. Likewise, the mobile devices 100a and 100b can establish peer-to-peer communications 220, e.g., a personal area network, by use of one or more communication subsystems, such as the Bluetooth™ communication device 188 shown in FIG. 1. Other communication protocols and topologies can also be implemented.


The mobile device 100 can, for example, communicate with one or more services 230, 240, 250, and 260 and/or one or more content publishers 270 over the one or more wired and/or wireless networks 210. For example, a navigation service 230 can provide navigation information, e.g., map information, location information, route information, and other information, to the mobile device 100. In the example shown, a user of the mobile device 100b has invoked a map functionality, e.g., by pressing the maps object 144 on the top-level graphical user interface shown in FIG. 1, and has requested and received a map for the location “1 Infinite Loop, Cupertino, Calif.”


A messaging service 240 can, for example, provide e-mail and/or other messaging services. A media service 250 can, for example, provide access to media files, such as song files, movie files, video clips, and other media data. One or more other services 260 can also be utilized by the mobile device 100.


The mobile device 100 can also access other data and content over the one or more wired and/or wireless networks 210. For example, content publishers 270, such as news sites, RSS feeds, web sites, blogs, social networking sites, developer networks, etc., can be accessed by the mobile device 100. Such access can be provided by invocation of a web browsing function or application (e.g., a browser) in response to a user touching the Web object 114.


Example Mobile Device Architecture


FIG. 3 is a block diagram 300 of an example implementation of the mobile device 100 of FIG. 1. The mobile device 100 can include a memory interface 302, one or more data processors, image processors and/or central processing units 304, and a peripherals interface 306. The memory interface 302, the one or more processors 304 and/or the peripherals interface 306 can be separate components or can be integrated in one or more integrated circuits. The various components in the mobile device 100 can be coupled by one or more communication buses or signal lines.


Sensors, devices and subsystems can be coupled to the peripherals interface 306 to facilitate multiple functionalities. For example, a motion sensor 310, a light sensor 312, and a proximity sensor 314 can be coupled to the peripherals interface 306 to facilitate the orientation, lighting and proximity functions described with respect to FIG. 1. Other sensors 316 can also be connected to the peripherals interface 306, such as a positioning system (e.g., GPS receiver), a temperature sensor, a biometric sensor, or other sensing device, to facilitate related functionalities.


In some implementations, the mobile device can receive positioning information from a positioning system 318. The positioning system 318, in various implementations, can be located on the mobile device, or can be coupled to the mobile device (e.g., using a wired connection or a wireless connection). In some implementations, the positioning system 318 can include a global positioning system (GPS) receiver and a positioning engine operable to derive positioning information from received GPS satellite signals. In other implementations, the positioning system 318 can include a compass and an accelerometer, as well as a positioning engine operable to derive positioning information based on dead reckoning techniques. In still further implementations, the positioning system 318 can use wireless signals (e.g., cellular signals, IEEE 802.11 signals, etc) to determine location information associated with the mobile device, such as those provided by Skyhook Wireless, Inc. of Boston, Mass. Hybrid positioning systems using a combination of satellite and television signals, such as those provided by Rosum Corporation of Mountain View, Calif., can also be used. Other positioning systems are possible.


A camera subsystem 320 and an optical sensor 322, e.g., a charged coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS) optical sensor, can be utilized to facilitate camera functions, such as recording photographs and video clips.


Communication functions can be facilitated through one or more wireless communication subsystems 324, which can include radio frequency receivers and transmitters and/or optical (e.g., infrared) receivers and transmitters. The specific design and implementation of the communication subsystem 324 can depend on the communication network(s) over which the mobile device 100 is intended to operate. For example, a mobile device 100 may include communication subsystems 324 designed to operate over a GSM network, a GPRS network, an EDGE network, a Wi-Fi or WiMax network, and a Bluetooth™ network. In particular, the wireless communication subsystems 324 may include hosting protocols such that the device 100 may be configured as a base station for other wireless devices.


An audio subsystem 326 can be coupled to a speaker 328 and a microphone 330 to facilitate voice-enabled functions, such as voice recognition, voice replication, digital recording, and telephony functions.


The I/O subsystem 340 can include a touch screen controller 342 and/or other input controller(s) 344. The touch-screen controller 342 can be coupled to a touch screen 346. The touch screen 346 and touch screen controller 342 can, for example, detect contact and movement or break thereof using any of a plurality of touch sensitivity technologies, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with the touch screen 346.


The other input controller(s) 344 can be coupled to other input/control devices 348, such as one or more buttons, rocker switches, thumb-wheel, infrared port, USB port, and/or a pointer device such as a stylus. The one or more buttons (not shown) can include an up/down button for volume control of the speaker 328 and/or the microphone 330.


In one implementation, a pressing of the button for a first duration may disengage a lock of the touch screen 346; and a pressing of the button for a second duration that is longer than the first duration may turn power to the mobile device 100 on or off. The user may be able to customize a functionality of one or more of the buttons. The touch screen 346 can, for example, also be used to implement virtual or soft buttons and/or a keyboard.


In some implementations, the mobile device 100 can present recorded audio and/or video files, such as MP3, AAC, and MPEG files. In some implementations, the mobile device 100 can include the functionality of an MP3 player, such as an iPod™. The mobile device 100 may, therefore, include a 36-pin connector that is compatible with the iPod. Other input/output and control devices can also be used.


The memory interface 302 can be coupled to memory 350. The memory 350 can include high-speed random access memory and/or non-volatile memory, such as one or more magnetic disk storage devices, one or more optical storage devices, and/or flash memory (e.g., NAND, NOR). The memory 350 can store an operating system 352, such as Darwin, RTXC, LINUX, UNIX, OS X, WINDOWS, or an embedded operating system such as VxWorks. The operating system 352 may include instructions for handling basic system services and for performing hardware dependent tasks. In some implementations, the operating system 352 can be a kernel (e.g., UNIX kernel).


The memory 350 may also store communication instructions 354 to facilitate communicating with one or more additional devices, one or more computers and/or one or more servers. The memory 350 may include graphical user interface instructions 356 to facilitate graphic user interface processing; sensor processing instructions 358 to facilitate sensor-related processing and functions; phone instructions 360 to facilitate phone-related processes and functions; electronic messaging instructions 362 to facilitate electronic-messaging related processes and functions; web browsing instructions 364 to facilitate web browsing-related processes and functions; media processing instructions 366 to facilitate media processing-related processes and functions; GPS/Navigation instructions 368 to facilitate GPS and navigation-related processes and instructions; camera instructions 370 to facilitate camera-related processes and functions; and/or other software instructions 372 to facilitate other processes and functions.


In some implementations, the mobile device can also include routing instructions 374. The routing instructions 374 can be used to provide navigation guidance to a user of the mobile device. In such implementations, the routing instructions 374 can provide intelligent routing based on disfavored routes/locations, traffic, user preferences, and/or history.


Each of the above identified instructions and applications can correspond to a set of instructions for performing one or more functions described above. These instructions need not be implemented as separate software programs, procedures or modules. The memory 350 can include additional instructions or fewer instructions. Furthermore, various functions of the mobile device 100 may be implemented in hardware and/or in software, including in one or more signal processing and/or application specific integrated circuits.



FIG. 4A is a block diagram illustrating an example implementation of a routing system (e.g., embodied in routing instructions stored in a memory). The system 400 can, for example receive multiple preferences including disfavored route progressions and/or locations from a user of a mobile device and arbitrate between competing preferences to provide the user with a route based on the preferences provided by the user.


In some implementations, the routing instructions, when executed, can implement a destination engine 410, a routing engine 420, an analysis engine 430 and a presentation engine 440. In an implementation, the destination engine 410 can receive destination information from a user interface 450. In various implementations, the user interface can include a graphical user interface such as could be provided by the GUI instructions and touch screen of FIG. 3.


In other implementations, the destination engine 410 can derive destination information based on historical data retrieved, for example, from a historical data store 460. The destination engine 410 can parse the historical data to derive navigation habits. For example, a user might drive to work every day. Thus, the destination engine 410 can determine that there is a probability that a destination associated with the user is a workplace. In other implementations, the destination engine 410 can use other algorithms to derive a destination, such as a Markov chain based algorithm. In various examples, the derived destination can include multiple destinations. In such examples, the destinations can include one or more waypoints along with a final destination. In other examples, the derived destination can also take into account a parking situation associated with a destination. Thus, if a user is headed for a stadium for a sporting event, the destination engine 410 can determine that while the stadium is the ultimate destination, the user might be directed to a parking lot as a waypoint to park his/her car before going to the stadium.


In some implementations, the destination engine 410 utilizes date information, time information, calendar information, history information, preference information, etc. to derive destination information. Date information can include, for example, the day of the week, holiday information, etc. For example, a user might have a history of navigating to/from work on Monday through Friday, navigating to/from a grocery store on Sundays, navigating to a parent's house on Mother's Day or Father's Day, etc.


In some implementations, the destination engine 410 can also use the time information such as, e.g., the time of day to derive a destination. For example, on Monday morning, it is likely that a user is navigating to work, on Wednesday night it is likely that the user is navigating to a softball field for a regularly scheduled game, etc.


In some implementations, the destination engine 410 can use calendar information such as appointments, tasks, etc. to derive destination information. For example, a user might have a calendar entry indicating a court date on Aug. 23, 2007 at 9:00 AM, and thus it is likely that on Aug. 23, 2007 at 8:30 am, the user is navigating to a courthouse. In additional implementations, the device can pull calendar information from a variety of sources. For example, a user might keep a business calendar and a personal calendar on separate systems. The device can pull information from both systems to derive a destination. In other examples, a husband and wife might each have separate calendars and the device can derive destination information based upon both of the calendars. In examples where the calendar information conflicts, the device can determine which calendar appointment to use, for example, based upon the current user of the device. In further examples, the calendar information can be pulled from the local device itself, a favorite sports team calendar, a shared calendar, etc.


In some implementations, the destination engine 410 can use history information to recognize patterns, and can use preference information to determine which of a plurality of destinations the user intends (e.g., a user might indicate a preference for destination information derived from calendar information over destination information derived from date information). In some implementations, the destination engine 410 can automatically recognize patterns without user input. In other implementations, the destination engine 410 can automatically recognize navigation patterns and allow users to confirm or reject a destination through a user interface.


In some implementations, the routing engine 420 can derive one or more routes based on current location information and destination information. The one or more routes can be derived using existing routing technology, e.g. map overlays. Current location information of the mobile device can be obtained, for example, using a positioning system 318. In various implementations, the positioning system 318 can be provided by a separate device coupled to the mobile device (e.g., mobile device 100 of FIG. 1). In other implementations, the positioning system 318 can be provided internal to the mobile device.


In one implementation, the positioning system 318 can be a global positioning system (GPS) device. In other implementations, the positioning system 318 can be provided by an accelerometer and a compass using dead reckoning techniques. In such implementations, the user can occasionally reset the positioning system by marking the devices presence at a known location (e.g., landmark, intersection, etc.). In still further implementations, the positioning system 318 can be provided by using wireless signal strength and one or more locations of known wireless signal sources to provide current location. Wireless signal sources can include access points and/or cellular towers. Other positioning systems can also be used.


The routing engine 420 can communicate one or more derived routes to an analysis engine 430. The analysis engine 430 can analyze the one or more routes received from the routing engine 420. In some implementations, the one or more routes can be analyzed based on user preferences received from a preference data store 470. Based on the complexity of a route, the route can include many route progressions. Route progressions, in some implementations, can include discrete lengths of roads which, when put together, make up a route.


In some implementations, the route progressions included in a route can be analyzed based upon user preferences retrieved from a preference data store 470. User preference data, for example, might include preferences to avoid certain route progressions or location. In other examples, the preference data can indicate a user preference for types of roads, distance, traffic, traffic control devices (e.g., traffic lights, stop signs, rotaries, etc.), navigation time, preferred routes, neighborhoods, highways, restaurants, etc. In some implementations, the analysis engine can use such preferences to select among the one or more routes provided by the routing engine.


In those implementations that analyze route progressions based on user preferences, route information can be retrieved and used to provide input by which to weight and compare routes based on the preferences. In some implementations, route information can include disfavored route progressions or locations or disfavor preferences (e.g., disfavored types of roads, disfavored neighborhoods, disfavor for taking the same route everyday, disfavored parking places (e.g., street parking, certain parking lots, etc.). In further implementations, route information can also include a probability that a route progression will include a certain type of activity (e.g., accidents, heavy traffic) even if the route progression is not currently exhibiting that type of activity. In those implementations that include disfavored route progressions or locations or preferences, the disfavored route progressions or locations or preferences can be avoided.


In some implementations, the routes can be analyzed based upon the traffic information associated with route progressions included in the route. For example, FIG. 4B is a block diagram of a plurality of route progressions. In the example of FIG. 4B, a first route includes progressions A, B and X, a second route includes progressions A, C, Q and Z, and a third route includes progressions A, C and E. However, route progressions M, T, R and W are not included in any of the routes according to a user preference. In those implementations using traffic preferences, the analysis engine 430 can send a request for traffic information associated with only route progressions A, B, C, E, Q, X and Z to the traffic information system 480, while omitting route progressions M, T, R and W because those route progressions are not included in any of the identified routes.


In other implementations using traffic preferences, the traffic information sent to a mobile device (e.g., mobile devices 100 of FIG. 1) can include a universe of traffic information including all available traffic information related to local roads. In such implementations the traffic signal can include many component parts (e.g., one for each available road), and the traffic information for the various roads can be encoded into the signal (e.g., using time division, code division, frequency division, etc.). Thus, the analysis engine 430 can parse (e.g., decode, demultiplex, etc.) the signal to obtain traffic information for a desired route progression. Thus, the mobile device might receive traffic information associated with route progressions A through Z (e.g., A, B, C, E, M, R, T, W, Q, X and Z). Based on the previous example, the analysis engine 430 can parse the traffic information to retrieve traffic related to route progressions A, B, C, E, Q, X and Z.


In some implementations, a user might have indicated a disfavor for route progressions M, Q and X. A routing engine 420, for example, might have determined three routes associated with an origin and destination. A first route might include route progressions A, B and X, a second route might include route progressions A, C, Q and Z, and a third route might include route progressions A, C and E. Based upon the example disfavored routes, the analysis engine 430 can remove the first and second routes from the potential routes, and present only the third route to the user through the presentation engine 440.


In other implementations, the presentation engine can reorder the presentation of all three routes based upon the analysis engine 430 results. Routes including disfavored route progressions can be listed after those routes that do not include disfavored route progressions. In those implementations including a degree of disfavor or weighting associated with the disfavored route progressions or locations or preferences, those routes including the most heavily disfavored route progressions or locations or preferences can be listed after those routes including less disfavored ones. In other implementations, a graphical representation of disfavor can be applied to presented routes. For example, a color spectrum might be applied to the route presentation, whereby green is used to depict most favorable routes, while red is used to depict most disfavored routes.


In some examples, routes might include more than one disfavored route progression or location. In some implementations, the route with the most heavily disfavored route progression or location can be listed after each of the other routes. In other implementations, the analysis engine 430 can derive an aggregation of disfavor associated with the entire route. For example, a first route might include a route progression rated 2 (e.g., on a scale from 1 to 10, “1” being most disfavored and “10” being slightly disfavored), while a second route might include several route progressions rated 3. In such implementations, the analysis engine can place the second route lower in priority because the second route can be inferred to produce more total disfavor based upon the traversal of several disfavored route progressions, while the first route only includes a single disfavored route progression. However, as mentioned above, in some implementations, the second route can be listed ahead of the first route based on the fact that the lowest route progression rating associated with the second route is “3,” while the lowest route progression rating associated with the first route is “2.”


In further implementations, a distance associated with a route progression can be factored into the determination of whether to give priority to the first route or the second route. For example, if the route progression rated “2” associated with the first route in the above example were the same total distance as an aggregation of the several route progressions rated “3” associated with the second route in the above example, the second route could be given priority over the first route. In such an example, an aggregation of the disfavor associated with the first route would rank the first route lower than an aggregation of the disfavor associated with the second route.


In some implementations, the route information can include historical data. For example, historical data can include information about the average time associated with navigating a route progression. The average time associated with each of the route progressions that are included in a route can combined to provide an estimated total time to navigate the route. The route may then be compared to similarly analyzed routes based on estimated total time to navigate the other routes, which can be used to recommend a route to a user.


In some implementations, the average time to navigate a route progression can be dependent upon the time of day the route progression is being navigated. For example, a section of highway in a large city may be slow at 8:00 am due to rush hour, while the same section of highway might be clear at 10:00 pm. Thus, the historical data can include a time of day for which the average is to be computed. For example, the analysis engine 430 can average the five navigations taken at the closest times of day to a current time. In further implementations, recency of a navigation can be factored in to the estimation of navigation time. For example, the five most recent navigations of a road may be used to calculate an estimated navigation time associated with the route progression. In other implementations, any of these factors can be combined. For example, the time of day can be balanced with the recency of a navigation to produce the five most recent navigations which are closest in time of day to a current time of day.


In further implementations, the route information can include map information received from map system 490. In these implementations, the map information can include distances associated with route progressions, traffic control devices associated with route progressions or portions of route progressions, speed limits associated with route progressions, etc. In some implementations, preferences can be provided which use map information as comparison points between potential routes. For example, if the user indicates a preference for neighborhood driving versus highway driving, the map information can be used to reorder the potential routes based upon such a user preference. The map information can therefore be used to weigh and compare routes based on the preferences.


The analysis engine 430 can provide one or more recommended routes to a presentation engine 440 based on user preferences from the preferences store 470. The presentation engine 440 can communicate with a map system 490 to retrieve map information. In some implementations, the map system 490 can be provided, for example, by a navigation service (e.g., navigation service 230 of FIG. 2). In other implementations, the map system 490 can be provided by a map store residing on the mobile device (e.g., mobile device 100 of FIG. 1). The presentation engine 440 uses map information provided by the map system 490 to overlay the recommended route information based on user preferences. In examples where multiple routes are provided to the user, the presentation engine 440 can receive a route preference from the user and display the preferred route.


In some implementations, the routing engine 420 can continue to analyze a current route to monitor for changing conditions. For example, an accident between the start of navigation of a route and the end of navigation of the route can change the analysis associated with the recommendation of the current route. In such situations, the routing engine 420 and analysis engine 430 can calculate estimated navigation times associated with alternative routes. In some implementations, the routing engine 420 and the analysis engine 430 can automatically communicate a new route to the user through the presentation engine 440. Such automatic rerouting can be provided to the user with notification of the change or without notification of the change to the user. In other implementations, the routing engine 420 and analysis engine 430 can present the estimated navigation times associated with alternative routes to the user through the presentation engine 440. The user can then choose an alternative route based upon the estimated navigation times. The user's choice, in various implementations, can be indicated by selecting a route using an I/O device (e.g., touch screen 346 of FIG. 3), or by navigating one of the alternative routes, among others.



FIG. 5 is a block diagram illustrating an example implementation of a preferences engine 376. The preferences engine 376 can receive preferences from a user through a user interface 450. The preferences engine 376 can be configured to receive preferences on a variety of different topics. In various implementations, the preferences engine 376 can be configured to receive preferences regarding disfavored routes or locations 500 and other preferences 510.


A disfavored routes or locations preference 500 can include a user's preferences with respect to the user's desire to avoid certain routes or cities. In some implementations, desire to avoid certain routes or locations can be rated on a non-binary scale. In some implementations, the user preference can include a strength associated with the traffic preferences 500. The strength, for example, could be a metric of how strongly a user holds a preference (e.g., on a scale from 1 to 10, how strongly they feel). In some implementations, disfavored routes or locations can include those routes or locations to which the user has negative preferences. For example, a user might be afraid of heights, and therefore wants to avoid route progressions that include high bridges (e.g., the Golden Gate Bridge in San Francisco, Calif.). In other examples, the user might want to avoid urban areas (e.g., large cities).


In some implementations, the user can provide input to the preferences engine 376 specifying those routes or areas that the user wants to avoid. For example, the user can use a user interface to enter locations or streets that the user wants to avoid. In some implementations, the user can provide input to the preferences engine based upon his or her adherence to a presented route. For example, if a user consistently deviates from a presented route at a certain location or route progression, the preferences engine can use this information as input specifying a disfavor with a route progression or location. In other implementations, the preferences engine 376 can analyze historical route information to identify routes or locations avoided by the user. For example, a preferences engine can analyze frequency of use associated with a street or location to determine which streets or locations a user tends to avoid.


In further implementations, a weighting can be applied to a disfavored route progression or location 500 based upon the extent to which a user goes to avoid a route or location. In some implementations, the preferences engine 376 can associate a route progression or location that has never been visited with a neutral rating, inferring that the user might not be familiar with the route progression or location rather than consciously avoiding the route progression or location. In these implementations, the preferences engine 376 can infer that a route progression or location visited only a few times in association with a commonly traveled route is disfavored. Such an inference can be based upon the ratio of the number of times the route has been traveled and not included the route progression. In other implementations, a disfavor preference 500 can be associated with route progressions or locations never visited.


By way of example, if a route from a first location to a second location has been traveled a hundred times, and included a third location only 4 times, an inference can be made that the user disfavors the third location. However, if for example, the route from the first location to the second location had only been traveled ten times, and included the third location four times, the third location is likely not disfavored. In some implementations a weighting associated with the disfavor of a route progression or location 500 can be set based upon the ratio between usage of a routes progressions/locations during a route and the total number of times the route has been traversed (e.g., excluding route progressions/locations that have never been used/visited).


In still further implementations, routing instructions (e.g., routing instructions 374 of FIG. 4A) can identify when a user avoids a route progression presented by the routing instructions and notify the preferences engine 376. In such implementations, the preferences engine 376 can infer from the user's rejection of the route progression that the user does not favor the route progression or location included within the route provided by the routing instructions. In those implementations including a weighting associated with a disfavored route progression or location 500, the preference engine 376 can infer that the avoidance of a route progression or location during presentation of a route is an indication that the route progression or location should be more heavily disfavored in comparison to other derivations of disfavored route progressions or locations 500.


Other preferences 510 can include many different types of preferences including: traffic preferences, road preferences, scenery preferences, traffic control device preferences, services preferences, city preferences, or speed preferences, new route preferences, among many others.


In those implementations including a strength associated with a user preference, the analysis engine (e.g., analysis engine 430 of FIG. 4A) can use the strength to weight the route progressions and use the weighted route progressions to compare routes. For example, the user's desire to avoid traffic can be rated on a scale from 1 to 10, with a rating of “1” corresponding to a highly disfavored route progression or location, and a rating of “10” corresponding to a slightly disfavored route progression or location. In examples where the user indicates a strong disfavor for a route progression or location, the analysis engine can weight the route progressions with higher disfavor more negatively than those with slight disfavor, thereby making it more likely that an analysis engine (e.g., analysis engine 430) will recommend routes having slight disfavor or no disfavor at all. However, in the implementations that include multiple preferences associated with the user, the strengths of other preferences could outweigh other preferences depending on a strength associated with the other preferences.


In some implementations, a group of users can rate a route progression in several categories. The route progression can be assigned a score based on the user ratings. In other implementations, route progressions can be assigned scores based on the individual route progression's popularity among users that have indicated a strong preference for a certain kind of route progression. For example, if a user or group of users indicate a strong preference for scenic roads, and each uses a certain road more frequently in comparison to other roads, the system can assign a high scenery score to the road. In still further implementations, the route progressions can be rated automatically based on measurable statistics. For example, traffic information can identify which route progression is the worst for traffic based upon the average speed associated with the road, or based upon a delta between average speed and speed limit. Similarly, the best route progression for traffic can be identified based on the average speed associated with the road, or based upon a delta between average speed and the speed limit. The worst route progression can be assigned the lowest possible score, and the best route progression can be assigned the highest possible score, while other route progressions are assigned scores which are scaled based upon the high and low scales. Such automatic scoring can be performed where there is an objective measure by which to compare route progressions.



FIG. 6 is a flowchart illustrating an example method for route guidance. At stage 600 disfavored route progressions or locations or preferences are received. Disfavored route progressions or locations can be received, for example, by a preferences engine (e.g., preferences engine 376 of FIG. 5) in conjunction with a user interface (e.g., user interface 450 of FIG. 5). The disfavored route progressions or locations can include, for example, any route progressions or locations indicated by the user (e.g., through a user interface, frequency of use, avoidance of presented routes, etc.).


At stage 610 the destination is identified. The destination can be identified, for example, by a destination engine (e.g., destination engine 410 of FIG. 4). In some implementations, the destination engine can identify destination information from user input received using a user interface (e.g., user interface 450 of FIG. 4). In such implementations, the user can provide destination information to a mobile device (e.g., mobile device 100 of FIG. 1). In other implementations, the destination engine can identify destination information based on historical data retrieved from a history data store (e.g., history data store 460 of FIG. 4). For example, the destination engine can mine the historical data to automatically derive navigation patterns based on such variables as day, time of day, holiday, and user calendar, among many others. In still further examples, the destination engine can identify destination information based on a combination of user input and historical information. For example, the destination engine can use the user interface to prompt the user to select a destination from among a group of destinations derived based on the historical data.


At stage 620, routes associated with the destination are identified. The routes can be identified, for example, using a routing engine (e.g., routing engine 420). In some implementations, the routing engine can receive position information from a positioning system (e.g., positioning system 318 of FIG. 4). The positioning information can be used as a starting point for the routing engine. In some implementations, the routing engine can use a navigation service (e.g., navigation service 230 of FIG. 2) to derive one or more routes. In other implementations, the routing engine can use GPS/navigation instructions 368 to derive one or more routes.


At stage 630, the route is analyzed based on disfavored route progressions or locations or preferences. The route can be analyzed, for example, using an analysis engine (e.g., analysis engine 430 of FIG. 4). The analysis can retrieve disfavored route progressions or locations from a preferences store (e.g., preferences store 470 of FIG. 4) and use the preferences to weight the route progressions included in the identified routes. The weighted route progressions can be used to rearrange the identified routes based on the user preferences. In some implementations, the analysis can retrieve route information from several different sources (e.g., history data store 460, traffic information system 480, map system 490, of FIG. 4) to use in conjunction with the preference information.


At stage 640, a route is presented. The route can be presented, for example, by a presentation engine (e.g., presentation engine 440) to a user of a mobile device. The presented route can be overlaid onto a map provided by a navigation system (e.g., map system 490 of FIG. 4, or navigation services 230 of FIG. 2). In other implementations, the route can be overlaid on a map provided by a local map data store. In some implementations, the map includes a number of road representations. In further implementations, the road representations, for example, can be overlaid by route information associated with respective route progressions. The presentation of the route can enable a user of the mobile device to navigate from a current position to a destination.



FIG. 7 is a flowchart illustrating another example method for route guidance. At stage 700 user preferences are received. Preferences can be received, for example, by a preferences engine (e.g., preferences engine 376 of FIG. 5) in conjunction with a user interface (e.g., user interface 450 of FIG. 5). The preferences can include, for example, disfavored route progressions or locations as well as other preferences. In various implementations, other preferences can include traffic preferences, road preferences, scenery preferences, traffic control device preference, services preferences, city preferences, speed preferences, or other preferences. Disfavored route progressions can include, for example, streets that the user does not want to take for some reason (e.g., a road that is in disrepair, etc.). Disfavored locations can include, for example, areas that the user wants to avoid (e.g., industrial areas, areas with high traffic, etc.). In some implementations, disfavored route progressions and/or locations can be disfavored dependent on a time of day. For example, a user might dislike driving on a particular road or through a particular area at night, while not disfavoring the road or area during the daytime. In further implementations, there can be multiple sets of preferences, each set of preferences being associated with a particular user of the device. In such implementations, the device can provide route guidance based upon the particular user who is logged into the system.


In some implementations, the preferences can be received directly from a user. For example, a user can use a user interface to enter his or her disfavored roads and/or areas. In other implementations, the preferences can be derived based upon the user's actions during previous route guidance. For example, if a user consistently refuses to follow a presented route, the device can determine that the user disfavors the route progression and/or location where he/she deviated from the route. In some implementations, the disfavor can be time-based. For example, a user might heavily disfavor a route progression in the morning, but favor the route progression at night. In other implementations, the preferences can be derived based upon historical data. For example, if a user travels from home to work every day for a year, and has used a particular road on that trip only once, a preference engine can derive that the user disfavors that road or area associated with the road. In some implementations, a combination of user input, deviation from route guidance and/or derivation from historical data can be used to determine preferences.


At stage 710 the destination is received/identified. The destination can be received, for example, by a destination engine (e.g., destination engine 410 of FIG. 4). In various implementations, the destination engine can operate based on user input received using a user interface (e.g., user interface 450 of FIG. 4), or can automatically derive a destination based on historical data, and combinations thereof.


At stage 720, routes associated with the destination are identified. The routes can be identified, for example, using a routing engine (e.g., routing engine 420). In some implementations, the routing engine can receive position information from a positioning system (e.g., positioning system 318 of FIG. 4). The positioning information can be used as a starting point for the routing engine, and the routing engine can use a navigation service (e.g., navigation service 230 of FIG. 2) to derive one or more routes. In other implementations, the routing engine can use GPS/navigation instructions 368 to derive one or more routes.


At stage 730, the route is analyzed based on user preferences. The route can be analyzed, for example, using an analysis engine (e.g., analysis engine 430 of FIG. 4) in conjunction with preference information retrieved from a preference store (e.g., preferences store 470 of FIG. 4). In some implementations, the analysis can receive several different routes and prioritize the routes based on the received user preferences, including, for example, disfavored route progressions and/or locations. In some implementations, the analysis engine can reorder the presentation of a plurality of identified routes based on analysis of the route progressions with respect to the user preferences.


At stage 740, a route is presented. The route can be presented, for example, by a presentation engine (e.g., presentation engine 440) to a user of a mobile device. The route can be presented in any of the ways discussed with reference to FIG. 6.


At stage 750, a determination can be made whether a destination has been reached. The determination can be made, for example, by an analysis engine (e.g., analysis engine 430 of FIG. 4) in conjunction with a positioning system (e.g., positioning system 318 of FIG. 4). Where the destination has been reached, the process ends at stage 760.


If the destination has not been reached, the method can return to stage 720, where alternative routes including a plurality of route progressions are retrieved. The route progressions associated with the alternative routes can then be analyzed, and one or more alternative routes are presented to a user based on the analysis (e.g., an accident, traffic build-up, traffic clearing up, time of day dependencies elapsing, etc.). Thus, a mobile device (e.g., mobile device 100 of FIG. 1) can reroute the user based on changing road conditions. In some implementations, an alternative route is automatically presented to the user without notification, and replaces the current route. In other implementations, a user can be notified that another route might be preferable, and the estimated navigation times associated with both routes can be compared and the user can decide whether to continue on a current route, or to take an alternative route.


The systems and methods disclosed herein may use data signals conveyed using networks (e.g., local area network, wide area network, internet, etc.), fiber optic medium, carrier waves, wireless networks (e.g., wireless local area networks, wireless metropolitan area networks, cellular networks, etc.), etc. for communication with one or more data processing devices (e.g., mobile devices). The data signals can carry any or all of the data disclosed herein that is provided to or from a device.


The methods and systems described herein may be implemented on many different types of processing devices by program code comprising program instructions that are executable by one or more processors. The software program instructions may include source code, object code, machine code, or any other stored data that is operable to cause a processing system to perform methods described herein.


The systems and methods may be provided on many different types of computer-readable media including computer storage mechanisms (e.g., CD-ROM, diskette, RAM, flash memory, computer's hard drive, etc.) that contain instructions for use in execution by a processor to perform the methods' operations and implement the systems described herein.


The computer components, software modules, functions and data structures described herein may be connected directly or indirectly to each other in order to allow the flow of data needed for their operations. It is also noted that software instructions or a module can be implemented for example as a subroutine unit of code, or as a software function unit of code, or as an object (as in an object-oriented paradigm), or as an applet, or in a computer script language, or as another type of computer code or firmware. The software components and/or functionality may be located on a single device or distributed across multiple devices depending upon the situation at hand.


This written description sets forth the best mode of the invention and provides examples to describe the invention and to enable a person of ordinary skill in the art to make and use the invention. This written description does not limit the invention to the precise terms set forth. Thus, while the invention has been described in detail with reference to the examples set forth above, those of ordinary skill in the art may effect alterations, modifications and variations to the examples without departing from the scope of the invention.


These and other implementations are within the scope of the following claims.

Claims
  • 1. A method performed by a mobile device, the method comprising: identifying a destination that a user intends to travel to;computing one or more routes for traveling to the destination, wherein each of the one or more routes includes route progressions, a route progression indicating a discrete length of a road that is part of a route;for each of the one or more routes, analyzing the included route progressions based on preferences for travel associated with the user, wherein the preferences include disfavored route progressions or disfavored locations, a disfavored route progression indicating a route progression to be avoided while driving to the destination, and a disfavored location indicating a geographical area that is to be avoided while driving to the destination; andselecting a route from the one or more routes based on an aggregate number of disfavored route progressions or disfavored locations included in each route.
  • 2. The method of claim 1, wherein the disfavored route progressions or disfavored locations are based on one or more of traffic preferences, road preferences, scenery preferences, traffic control device preference, services preferences, city preferences and speed preferences.
  • 3. The method of claim 2, comprising: examining historical data associated with the user's actions during previous route guidance;based on the examining, determining one or more of a route progression and location avoided by the user previously; andidentifying the determined route progression or the location as a disfavored route progression or disfavored location respectively.
  • 4. The method of claim 3, wherein a disfavored route progression or disfavored location is based on a diurnal time, the method comprising: determining a route progression or a location avoided by the user at a first time of a day, but favored by the user at a second time of the day; andidentifying the determined route progression or the location as a disfavored route progression or disfavored location respectively, wherein the identifying as a disfavored route progression or disfavored location is limited to the first time of the day.
  • 5. The method of claim 3, wherein a disfavored route progression or disfavored location is based on a frequency of traversal, the method comprising: determining a route progression or a location traversed by the user less than a predetermined number for traveling to a particular destination; andidentifying the determined route progression or the location as a disfavored route progression or disfavored location respectively for traveling to the particular destination.
  • 6. The method of claim 2, comprising: computing a probability that a particular route progression will include in future a certain type of activity that the particular route progression is not currently exhibiting; anddetermining the particular route progression to be a disfavored route progression based on computing the probability.
  • 7. The method of claim 1, wherein determining the preferences associated with the user comprises at least one of: receiving the preferences directly from the user, the preferences entered through a user interface that is coupled to the mobile device,automatically deriving the preferences based upon actions of the user during a previous route guidance, andautomatically deriving the preferences using historical route data associated with the user.
  • 8. The method of claim 1, wherein identifying the destination comprises automatically deriving destination information using historical data associated with the user, the method further comprising: examining the historical data associated with the user to derive navigation habits associated with the user; andautomatically determining destination information based on the navigation habits and utilizing one or more of date information, time information, calendar information, history information and preference information associated with the user.
  • 9. The method of claim 8, wherein automatically determining destination information utilizing calendar information comprises: retrieving one or more calendars associated with a first user and a second user, wherein both the first user and the second user are associated with operation of the mobile device for navigation;identifying one or more calendar entries included in the retrieved calendars that are within a predetermined range of a present date and time;determining one or more prospective destinations from the identified calendar entries; andselecting one of the prospective destinations as the destination for navigation, wherein the selected destination is associated with one of the first user or the second user who is currently operating the mobile device.
  • 10. The method of claim 8, wherein automatically determining destination information utilizing date information comprises: determining at least one of current day of the week or current time of the day;identifying, based on examining the historical data, a destination associated with at least one of the determined current day of the week or determined current time on the day; andselecting the identified destination.
  • 11. The method of claim 8, wherein automatically determining destination information utilizing date information comprises: determining that current date is a specific holiday;identifying, based on examining the historical data, a destination previously visited by the user on the determined specific holiday; andselecting the identified destination.
  • 12. The method of claim 1, further comprising: determining whether the destination has been reached;based on determining that the destination has not been reached, retrieving alternative routes for traveling to the destination;analyzing the route progressions included in the alternative routes based on route preferences associated with the user and metrics associated with the respective route preferences; andpresenting the one or more alternative routes to the user for rerouting to the destination.
  • 13. The method of claim 1, wherein selecting a route from the one or more routes comprises: assigning weights to the disfavored route progressions or disfavored locations based on user route preferences;for each route, computing a score based on a combined weight for the aggregate number of disfavored route progressions or disfavored locations included in the route;ordering the one or more routes based on the computed scores; andselecting the route from the ordering of the one or more routes.
  • 14. The method of claim 13, wherein assigning weights to the disfavored route progressions or disfavored locations comprises: determining that a first route preference is more strongly disfavored by the user compared to a second route preference; andbased on the determination, providing greater weight to a disfavored route progression or disfavored location associated with the first route preference compared to disfavored route progression or disfavored location associated with the second route preference.
  • 15. The method of claim 1, wherein selecting a route from the one or more routes comprises: displaying graphical representations of the one or more routes to the user, wherein the graphical representations are color-coded based on route preferences associated with the user and metrics associated with the route preferences.
  • 16. A method performed by a mobile device, the method comprising: determining preferences associated with a user of a mobile device for traveling;identifying a destination that the user intends to travel to;computing potential routes for traveling to the destination, each of the potential routes comprising route progressions, wherein a route progression includes a discrete length of a road that is part of a route for driving to a destination;for each of the potential routes, analyzing the route progressions associated with the potential route based on the preferences associated with the user and ratings for one or more of the route progressions, wherein a rating for a route progression is based on the route progression being used by a plurality of users more frequently than other similar route progressions; andbased on the analyzing, presenting one or more of the potential routes as recommended routes to the user for traveling to the destination.
  • 17. A device comprising: a processor; andinstructions stored in a machine-readable medium for execution by the processor and configured to cause the processor to perform operations comprising: identifying a destination that a user intends to travel to;computing one or more routes for traveling to the destination, wherein each of the one or more routes includes route progressions, a route progression indicating a discrete length of a road that is part of a route;for each of the one or more routes, analyzing the included route progressions based on preferences for travel associated with the user, wherein the preferences include disfavored route progressions or disfavored locations, a disfavored route progression indicating a route progression to be avoided while driving to the destination, and a disfavored location indicating a geographical area that is to be avoided while driving to the destination; andselecting a route from the one or more routes based on an aggregate number of disfavored route progressions or disfavored locations included in each route.
  • 18. The device of claim 17, wherein the disfavored route progressions or disfavored locations are based on one or more of traffic preferences, road preferences, scenery preferences, traffic control device preference, services preferences, city preferences and speed preferences.
  • 19. The device of claim 18, wherein the instructions are configured to cause the processor to perform operations further comprising: computing a probability that a particular route progression will include in future a certain type of activity that the particular route progression is not currently exhibiting; anddetermining the particular route progression to be a disfavored route progression based on computing the probability.
  • 20. The device of claim 18, wherein the instructions are configured to cause the processor to perform operations comprising: examining historical data associated with the user's actions during previous route guidance;based on the examining, determining one or more of a route progression and location avoided by the user previously; andidentifying the determined route progression or the location as a disfavored route progression or disfavored location respectively.
  • 21. The device of claim 20, wherein a disfavored route progression or disfavored location is based on a diurnal time, and wherein the instructions are configured to cause the processor to perform operations comprising: determining a route progression or a location avoided by the user at a first time of a day, but favored by the user at a second time of the day; andidentifying the determined route progression or the location as a disfavored route progression or disfavored location respectively, wherein the identifying as a disfavored route progression or disfavored location is limited to the first time of the day.
  • 22. The device of claim 20, wherein a disfavored route progression or disfavored location is based on a frequency of traversal, and wherein the instructions are configured to cause the processor to perform operations comprising: determining a route progression or a location traversed by the user less than a predetermined number for traveling to a particular destination; andidentifying the determined route progression or the location as a disfavored route progression or disfavored location respectively for traveling to the particular destination.
  • 23. The device of claim 17, wherein the instructions that are configured to cause the processor to perform operations comprising determining the preferences associated with the user include instructions that are configured to cause the processor to perform operations comprising at least one of: receiving the preferences directly from the user, the preferences entered through a user interface that is coupled to the device,automatically deriving the preferences based upon actions of the user during a previous route guidance, andautomatically deriving the preferences using historical route data associated with the user.
  • 24. The device of claim 17, wherein identifying the destination comprises automatically deriving destination information using historical data associated with the user, and wherein the instructions are configured to cause the processor to perform operations further comprising: examining the historical data associated with the user to derive navigation habits associated with the user; andautomatically determining destination information based on the navigation habits and utilizing one or more of date information, time information, calendar information, history information and preference information associated with the user.
  • 25. The device of claim 24, wherein the instructions that are configured to cause the processor to perform operations comprising automatically determining destination information utilizing calendar information include instructions that are configured to cause the processor to perform operations comprising: retrieving one or more calendars associated with a first user and a second user, wherein both the first user and the second user are associated with operation of the device for navigation;identifying one or more calendar entries included in the retrieved calendars that are within a predetermined range of a present date and time;determining one or more prospective destinations from the identified calendar entries; andselecting one of the prospective destinations as the destination for navigation, wherein the selected destination is associated with one of the first user or the second user who is currently operating the device.
  • 26. The device of claim 24, wherein the instructions that are configured to cause the processor to perform operations comprising automatically determining destination information utilizing calendar information include instructions that are configured to cause the processor to perform operations comprising: determining at least one of current day of the week or current time of the day;identifying, based on examining the historical data, a destination associated with at least one of the determined current day of the week or determined current time on the day; andselecting the identified destination.
  • 27. The device of claim 24, wherein the instructions that are configured to cause the processor to perform operations comprising automatically determining destination information utilizing calendar information include instructions that are configured to cause the processor to perform operations comprising: determining that current date is a specific holiday;identifying, based on examining the historical data, a destination previously visited by the user on the determined specific holiday; andselecting the identified destination.
  • 28. The device of claim 17, wherein the instructions are configured to cause the processor to perform operations further comprising: determining whether the destination has been reached;based on determining that the destination has not been reached, retrieving alternative routes for traveling to the destination;analyzing the route progressions included in the alternative routes based on route preferences associated with the user and metrics associated with the respective route preferences; andpresenting the one or more alternative routes to the user for rerouting to the destination.
  • 29. The device of claim 17, wherein selecting a route from the one or more routes comprises: assigning weights to the of disfavored route progressions or disfavored locations based on user route preferences;for each route, computing a score based on a combined weight for the aggregate number of disfavored route progressions or disfavored locations included in the route;ordering the one or more routes based on the computed scores; andselecting the route from the ordering of the one or more routes.
  • 30. The device of claim 17, wherein selecting a route from the one or more routes comprises: displaying graphical representations of the one or more routes to the user, wherein the graphical representations are color-coded based on route preferences associated with the user and metrics associated with the route preferences.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation (and claims the benefit of priority under 35 USC 120) of U.S. application Ser. No. 12/020,168, filed Jan. 25, 2008, now U.S. Pat. No. 8,385,946, issued Feb. 26, 2013, which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/946,837 filed Jun. 28, 2007, and entitled “DISFAVORED ROUTE PROGRESSIONS OR LOCATIONS”. The disclosures of the prior applications are considered part of (and are incorporated by reference in) the disclosure of this application.

US Referenced Citations (963)
Number Name Date Kind
4644351 Zabarsky et al. Feb 1987 A
4903212 Yokouchi et al. Feb 1990 A
4907159 Mauge et al. Mar 1990 A
4999783 Tenmoku et al. Mar 1991 A
5031104 Ikeda et al. Jul 1991 A
5046011 Kakihara et al. Sep 1991 A
5067081 Person Nov 1991 A
5126941 Gurmu et al. Jun 1992 A
5164904 Sumner Nov 1992 A
5170165 Iihoshi et al. Dec 1992 A
5173691 Sumner Dec 1992 A
5182555 Sumner Jan 1993 A
5187810 Yoneyama et al. Feb 1993 A
5195031 Ordish Mar 1993 A
5208763 Hong et al. May 1993 A
5218629 Dumond, Jr. et al. Jun 1993 A
5243652 Teare et al. Sep 1993 A
5274560 LaRue Dec 1993 A
5289572 Yano et al. Feb 1994 A
5295064 Malec et al. Mar 1994 A
5307278 Hermans et al. Apr 1994 A
5317311 Martell et al. May 1994 A
5337044 Folger et al. Aug 1994 A
5339391 Wroblewski et al. Aug 1994 A
5371678 Nomura Dec 1994 A
5374933 Kao Dec 1994 A
5379057 Clough et al. Jan 1995 A
5390125 Sennott et al. Feb 1995 A
5406490 Braegas Apr 1995 A
5416712 Geier et al. May 1995 A
5416890 Beretta May 1995 A
5440484 Kao Aug 1995 A
5463725 Henckel Oct 1995 A
5469362 Hunt et al. Nov 1995 A
5479600 Wroblewski et al. Dec 1995 A
5504482 Schreder Apr 1996 A
5508707 LeBlanc et al. Apr 1996 A
5510801 Engelbrecht et al. Apr 1996 A
5519760 Borkowski et al. May 1996 A
5523950 Peterson Jun 1996 A
5537460 Holliday, Jr. et al. Jul 1996 A
5539395 Buss et al. Jul 1996 A
5539647 Shibata et al. Jul 1996 A
5552989 Bertrand Sep 1996 A
5559520 Barzegar et al. Sep 1996 A
5570412 LeBlanc Oct 1996 A
5598572 Tanikoshi et al. Jan 1997 A
5627547 Ramaswamy et al. May 1997 A
5627549 Park May 1997 A
5628050 McGraw et al. May 1997 A
5630206 Urban et al. May 1997 A
5636245 Ernst et al. Jun 1997 A
5642303 Small et al. Jun 1997 A
5646853 Takahashi et al. Jul 1997 A
5654908 Yokoyama Aug 1997 A
5663732 Stangeland et al. Sep 1997 A
5675362 Clough et al. Oct 1997 A
5675573 Karol et al. Oct 1997 A
5677837 Reynolds Oct 1997 A
5684859 Chanroo et al. Nov 1997 A
5689252 Ayanoglu et al. Nov 1997 A
5689269 Norris Nov 1997 A
5689270 Kelley et al. Nov 1997 A
5689431 Rudow et al. Nov 1997 A
5708478 Tognazzini Jan 1998 A
5717392 Eldridge Feb 1998 A
5727057 Emery et al. Mar 1998 A
5732074 Spaur et al. Mar 1998 A
5742666 Alpert Apr 1998 A
5745865 Rostoker et al. Apr 1998 A
5748109 Kosaka et al. May 1998 A
5748148 Heiser et al. May 1998 A
5748149 Kawahata May 1998 A
5752186 Malackowski et al. May 1998 A
5754430 Sawada May 1998 A
5758049 Johnson et al. May 1998 A
5760773 Berman et al. Jun 1998 A
5767795 Schaphorst Jun 1998 A
5771280 Johnson Jun 1998 A
5774824 Streit et al. Jun 1998 A
5774829 Cisneros et al. Jun 1998 A
5793630 Theimer et al. Aug 1998 A
5796365 Lewis et al. Aug 1998 A
5796613 Kato et al. Aug 1998 A
5799061 Melcher et al. Aug 1998 A
5806018 Smith et al. Sep 1998 A
5825306 Hiyokawa et al. Oct 1998 A
5825884 Zdepski et al. Oct 1998 A
5831552 Sogawa et al. Nov 1998 A
5835061 Stewart Nov 1998 A
5839086 Hirano Nov 1998 A
5845227 Peterson Dec 1998 A
5848373 DeLorme et al. Dec 1998 A
5862244 Kleiner et al. Jan 1999 A
5867110 Naito et al. Feb 1999 A
5870686 Monson Feb 1999 A
5872526 Tognazzini Feb 1999 A
5873068 Beaumont et al. Feb 1999 A
5883580 Briancon et al. Mar 1999 A
5887269 Brunts et al. Mar 1999 A
5892454 Schipper et al. Apr 1999 A
5893898 Tanimoto Apr 1999 A
5898680 Johnstone et al. Apr 1999 A
5899954 Sato May 1999 A
5905451 Sakashita May 1999 A
5908465 Ito et al. Jun 1999 A
5910799 Carpenter et al. Jun 1999 A
5923861 Bertram et al. Jul 1999 A
5933094 Goss et al. Aug 1999 A
5933100 Golding Aug 1999 A
5936572 Loomis et al. Aug 1999 A
5938721 Dussell et al. Aug 1999 A
5941930 Morimoto et al. Aug 1999 A
5941934 Sato Aug 1999 A
5946618 Agre et al. Aug 1999 A
5948040 DeLorme et al. Sep 1999 A
5948041 Abo et al. Sep 1999 A
5948061 Merriman et al. Sep 1999 A
5955973 Anderson Sep 1999 A
5959577 Fan et al. Sep 1999 A
5959580 Maloney et al. Sep 1999 A
5968109 Israni et al. Oct 1999 A
5969678 Stewart Oct 1999 A
5982298 Lappenbusch et al. Nov 1999 A
5982324 Watters et al. Nov 1999 A
5987381 Oshizawa Nov 1999 A
5991692 Spencer, II et al. Nov 1999 A
5999126 Ito Dec 1999 A
6002932 Kingdon et al. Dec 1999 A
6002936 Roel-Ng et al. Dec 1999 A
6005928 Johnson Dec 1999 A
6014090 Rosen et al. Jan 2000 A
6014607 Yagyu et al. Jan 2000 A
6018697 Morimoto et al. Jan 2000 A
6023653 Ichimura et al. Feb 2000 A
6026375 Hall et al. Feb 2000 A
6028550 Froeberg et al. Feb 2000 A
6029069 Takaki Feb 2000 A
6031490 Forssen et al. Feb 2000 A
6041280 Kohli et al. Mar 2000 A
6052645 Harada Apr 2000 A
6058350 Ihara May 2000 A
6064335 Eschenbach May 2000 A
6067502 Hayashida et al. May 2000 A
6069570 Herring May 2000 A
6073013 Agre et al. Jun 2000 A
6073062 Hoshino et al. Jun 2000 A
6076041 Watanabe Jun 2000 A
6078818 Kingdon et al. Jun 2000 A
6081206 Kielland Jun 2000 A
6085090 Yee et al. Jul 2000 A
6085148 Jamison et al. Jul 2000 A
6087965 Murphy Jul 2000 A
6088594 Kingdon et al. Jul 2000 A
6091956 Hollenberg Jul 2000 A
6091957 Larkins et al. Jul 2000 A
6092076 McDonough et al. Jul 2000 A
6094607 Diesel Jul 2000 A
6101443 Kato et al. Aug 2000 A
6104931 Havinis et al. Aug 2000 A
6108555 Maloney et al. Aug 2000 A
6111541 Karmel Aug 2000 A
6115611 Kimoto et al. Sep 2000 A
6115754 Landgren Sep 2000 A
6119014 Alperovich et al. Sep 2000 A
6122520 Want et al. Sep 2000 A
6125279 Hyziak et al. Sep 2000 A
6127945 Mura-Smith Oct 2000 A
6128482 Nixon et al. Oct 2000 A
6128571 Ito et al. Oct 2000 A
6134548 Gottsman et al. Oct 2000 A
6138003 Kingdon et al. Oct 2000 A
6138142 Linsk Oct 2000 A
6140957 Wilson et al. Oct 2000 A
6151309 Busuioc et al. Nov 2000 A
6151498 Roel-Ng et al. Nov 2000 A
6154152 Ito Nov 2000 A
6157381 Bates et al. Dec 2000 A
6157841 Bolduc et al. Dec 2000 A
6163749 McDonough et al. Dec 2000 A
6166627 Reeley Dec 2000 A
6167266 Havinis et al. Dec 2000 A
6169552 Endo et al. Jan 2001 B1
6175740 Souissi et al. Jan 2001 B1
6177905 Welch Jan 2001 B1
6177938 Gould Jan 2001 B1
6181934 Havinis et al. Jan 2001 B1
6185427 Krasner et al. Feb 2001 B1
6188959 Schupfner Feb 2001 B1
6195557 Havinis et al. Feb 2001 B1
6195609 Pilley et al. Feb 2001 B1
6199014 Walker et al. Mar 2001 B1
6199045 Giniger et al. Mar 2001 B1
6199099 Gershman et al. Mar 2001 B1
6202008 Beckert et al. Mar 2001 B1
6202023 Hancock et al. Mar 2001 B1
6208866 Rouhollahzadeh et al. Mar 2001 B1
6212473 Stefan et al. Apr 2001 B1
6216086 Seymour et al. Apr 2001 B1
6222483 Twitchell et al. Apr 2001 B1
6233518 Lee May 2001 B1
6236365 LeBlanc et al. May 2001 B1
6236933 Lang May 2001 B1
6246948 Thakker Jun 2001 B1
6249252 Dupray Jun 2001 B1
6252543 Camp Jun 2001 B1
6252544 Hoffberg Jun 2001 B1
6256498 Ludwig Jul 2001 B1
6259405 Stewart et al. Jul 2001 B1
6266612 Dussell et al. Jul 2001 B1
6266614 Alumbaugh Jul 2001 B1
6266615 Jin Jul 2001 B1
6272342 Havinis et al. Aug 2001 B1
6278884 Kim Aug 2001 B1
6281807 Kynast et al. Aug 2001 B1
6282491 Bochmann et al. Aug 2001 B1
6282496 Chowdhary Aug 2001 B1
6295454 Havinis et al. Sep 2001 B1
6298306 Suarez et al. Oct 2001 B1
6304758 Iierbig et al. Oct 2001 B1
6313761 Shinada Nov 2001 B1
6314369 Ito et al. Nov 2001 B1
6314406 O'Hagan et al. Nov 2001 B1
6317684 Roeseler et al. Nov 2001 B1
6321158 DeLorme et al. Nov 2001 B1
6323846 Westerman et al. Nov 2001 B1
6324692 Fiske Nov 2001 B1
6326918 Stewart Dec 2001 B1
6332127 Bandera et al. Dec 2001 B1
6334090 Fujii Dec 2001 B1
6339437 Nielsen Jan 2002 B1
6339746 Sugiyama et al. Jan 2002 B1
6343317 Glorikian Jan 2002 B1
6345288 Reed et al. Feb 2002 B1
6351235 Stilp Feb 2002 B1
6353398 Amin et al. Mar 2002 B1
6353406 Lanzl Mar 2002 B1
6353743 Karmel Mar 2002 B1
6353837 Blumenau Mar 2002 B1
6356761 Huttunen et al. Mar 2002 B1
6356763 Kangas et al. Mar 2002 B1
6356836 Adolph Mar 2002 B1
6356838 Paul Mar 2002 B1
6370629 Hastings et al. Apr 2002 B1
6377810 Geiger et al. Apr 2002 B1
6377886 Gotou Apr 2002 B1
6381465 Chern et al. Apr 2002 B1
6381539 Shimazu Apr 2002 B1
6381603 Chan et al. Apr 2002 B1
6385458 Papadimitriou et al. May 2002 B1
6385465 Yoshioka May 2002 B1
6385535 Ohishi et al. May 2002 B2
6389288 Kuwahara et al. May 2002 B1
6401027 Xu et al. Jun 2002 B1
6401032 Jamison et al. Jun 2002 B1
6405034 Tijerino Jun 2002 B1
6405123 Rennard et al. Jun 2002 B1
6411899 Dussell et al. Jun 2002 B2
6414635 Stewart et al. Jul 2002 B1
6415207 Jones Jul 2002 B1
6415220 Kovacs Jul 2002 B1
6415227 Lin Jul 2002 B1
6427115 Sekiyama Jul 2002 B1
6430411 Lempio et al. Aug 2002 B1
6434530 Sloane et al. Aug 2002 B1
6438490 Ohta Aug 2002 B2
6446004 Cao et al. Sep 2002 B1
6449485 Anzil Sep 2002 B1
6452498 Stewart Sep 2002 B2
6456234 Johnson Sep 2002 B1
6456956 Xiong Sep 2002 B1
6459782 Bedrosian et al. Oct 2002 B1
6463289 Havinis et al. Oct 2002 B1
6477581 Carpenter et al. Nov 2002 B1
6487305 Kambe et al. Nov 2002 B2
6490454 Kangas et al. Dec 2002 B1
6490519 Lapidot et al. Dec 2002 B1
6501421 Dutta et al. Dec 2002 B1
6502033 Phuyal Dec 2002 B1
6505046 Baker Jan 2003 B1
6505048 Moles et al. Jan 2003 B1
6505123 Root et al. Jan 2003 B1
6507802 Payton et al. Jan 2003 B1
6516197 Havinis et al. Feb 2003 B2
6519463 Tendler Feb 2003 B2
6519571 Guheen et al. Feb 2003 B1
6526335 Treyz et al. Feb 2003 B1
6529143 Mikkola et al. Mar 2003 B2
6535140 Goss et al. Mar 2003 B1
6542812 Obradovich et al. Apr 2003 B1
6542819 Kovacs et al. Apr 2003 B1
6545638 Sladen Apr 2003 B2
6546336 Matsuoka et al. Apr 2003 B1
6546360 Gilbert et al. Apr 2003 B1
6552682 Fan Apr 2003 B1
6563430 Kemink et al. May 2003 B1
6564143 Alewine et al. May 2003 B1
6570557 Westerman et al. May 2003 B1
6571279 Herz et al. May 2003 B1
6574484 Carley Jun 2003 B1
6574550 Hashida Jun 2003 B2
6587688 Chambers et al. Jul 2003 B1
6587782 Nocek et al. Jul 2003 B1
6587835 Treyz et al. Jul 2003 B1
6594480 Montalvo et al. Jul 2003 B1
6597305 Szeto et al. Jul 2003 B2
6611687 Clark et al. Aug 2003 B1
6611788 Hussa Aug 2003 B1
6615131 Rennard et al. Sep 2003 B1
6615213 Johnson Sep 2003 B1
6643587 Brodie et al. Nov 2003 B2
6647257 Owensby Nov 2003 B2
6650902 Richton Nov 2003 B1
6650997 Funk Nov 2003 B2
6662016 Buckham et al. Dec 2003 B1
6662023 Helle Dec 2003 B1
6667963 Rantalainen et al. Dec 2003 B1
6671377 Havinis et al. Dec 2003 B1
6674849 Froeberg Jan 2004 B1
6677894 Sheynblat et al. Jan 2004 B2
6678516 Nordman et al. Jan 2004 B2
6679932 Birler et al. Jan 2004 B2
6680694 Knockeart et al. Jan 2004 B1
6681120 Kim Jan 2004 B1
6683538 Wilkes, Jr. Jan 2004 B1
6697018 Stewart Feb 2004 B2
6697734 Suomela Feb 2004 B1
6711408 Raith Mar 2004 B1
6711474 Treyz et al. Mar 2004 B1
6714791 Friedman Mar 2004 B2
6718344 Hirono Apr 2004 B2
6721572 Smith et al. Apr 2004 B1
6731236 Hager et al. May 2004 B1
6731238 Johnson May 2004 B2
6732047 de Silva May 2004 B1
6738808 Zellner et al. May 2004 B1
6741188 Miller et al. May 2004 B1
6741926 Zhao et al. May 2004 B1
6748226 Wortham Jun 2004 B1
6748318 Jones Jun 2004 B1
6750883 Parupudi et al. Jun 2004 B1
6759960 Stewart Jul 2004 B2
6762772 Imamura et al. Jul 2004 B1
6766174 Kenyon Jul 2004 B1
6766245 Padmanabhan Jul 2004 B2
6781575 Hawkins et al. Aug 2004 B1
6782278 Chen et al. Aug 2004 B2
6789012 Childs et al. Sep 2004 B1
6795686 Master et al. Sep 2004 B2
6801855 Walters et al. Oct 2004 B1
6810323 Bullock et al. Oct 2004 B1
6813501 Kinnunen et al. Nov 2004 B2
6813503 Zillikens et al. Nov 2004 B1
6813582 Levi et al. Nov 2004 B2
6816782 Walters et al. Nov 2004 B1
6819919 Tanaka Nov 2004 B1
6823188 Stern Nov 2004 B1
6834195 Brandenberg et al. Dec 2004 B2
6845318 Moore et al. Jan 2005 B1
6847891 Pietras et al. Jan 2005 B2
6847969 Mathai et al. Jan 2005 B1
6853911 Sakarya Feb 2005 B1
6853917 Miwa Feb 2005 B2
6859149 Ohta Feb 2005 B1
6865483 Cook, III et al. Mar 2005 B1
6868074 Hanson Mar 2005 B1
6871144 Lee Mar 2005 B1
6879838 Rankin et al. Apr 2005 B2
6882313 Fan et al. Apr 2005 B1
6888536 Westerman et al. May 2005 B2
6909902 Sawada et al. Jun 2005 B1
6912398 Domnitz Jun 2005 B1
6914626 Squibbs Jul 2005 B2
6915208 Garin et al. Jul 2005 B2
6931322 Jung et al. Aug 2005 B2
6933841 Muramatsu et al. Aug 2005 B2
6941222 Yano et al. Sep 2005 B2
6944447 Portman et al. Sep 2005 B2
6948656 Williams Sep 2005 B2
6950746 Yano et al. Sep 2005 B2
6952181 Karr et al. Oct 2005 B2
6954646 Churt Oct 2005 B2
6954735 Djupsjobacka et al. Oct 2005 B1
6957072 Kangras et al. Oct 2005 B2
6975959 Dietrich et al. Dec 2005 B2
6980909 Root et al. Dec 2005 B2
6990495 Grason et al. Jan 2006 B1
6999779 Hashimoto Feb 2006 B1
7003289 Kolls Feb 2006 B1
7009556 Stewart Mar 2006 B2
7031725 Rorabaugh Apr 2006 B2
7044372 Okuda et al. May 2006 B2
7058594 Stewart Jun 2006 B2
7069319 Zellner et al. Jun 2006 B2
7076255 Parupudi et al. Jul 2006 B2
7082365 Sheha et al. Jul 2006 B2
7089264 Guido et al. Aug 2006 B1
7096029 Parupudi et al. Aug 2006 B1
7096030 Huomo Aug 2006 B2
7103470 Mintz Sep 2006 B2
7103472 Itabashi Sep 2006 B2
7117015 Scheinert et al. Oct 2006 B2
7120469 Urakawa Oct 2006 B1
7123189 Lalik et al. Oct 2006 B2
7123926 Himmelstein Oct 2006 B2
7130630 Enzmann et al. Oct 2006 B1
7130743 Kudo et al. Oct 2006 B2
7136853 Kohda et al. Nov 2006 B1
7146298 Motamedi et al. Dec 2006 B2
7149503 Aarnio et al. Dec 2006 B2
7151921 Otsuka Dec 2006 B2
7165725 Casey Jan 2007 B2
7171190 Ye et al. Jan 2007 B2
7181189 Hotta et al. Feb 2007 B2
7187997 Johnson Mar 2007 B2
7200409 Ichikawa et al. Apr 2007 B1
7200566 Moore et al. Apr 2007 B1
7213048 Parupudi et al. May 2007 B1
7215967 Kransmo et al. May 2007 B1
7222293 Zapiec et al. May 2007 B1
7236883 Garin et al. Jun 2007 B2
7254481 Yamada et al. Aug 2007 B2
7256711 Sheha et al. Aug 2007 B2
7257392 Tang et al. Aug 2007 B2
7260378 Holland et al. Aug 2007 B2
7266376 Nakagawa Sep 2007 B2
7269601 Kinno et al. Sep 2007 B2
7271765 Stilp et al. Sep 2007 B2
7272403 Creamer et al. Sep 2007 B2
7272404 Overy et al. Sep 2007 B2
7274332 Dupray Sep 2007 B1
7274939 Ruutu et al. Sep 2007 B2
7280822 Fraccaroli Oct 2007 B2
7286933 Cho Oct 2007 B2
7295556 Roese et al. Nov 2007 B2
7295925 Breed et al. Nov 2007 B2
7298327 Dupray et al. Nov 2007 B2
7299008 Gluck Nov 2007 B2
7310516 Vacanti et al. Dec 2007 B1
7313405 Tanabe Dec 2007 B2
7313467 Breed et al. Dec 2007 B2
7319412 Coppinger et al. Jan 2008 B1
7336928 Paalasmaa et al. Feb 2008 B2
7336949 Nasielski Feb 2008 B2
7339496 Endo et al. Mar 2008 B2
7343564 Othmer Mar 2008 B2
7349706 Kim et al. Mar 2008 B2
7353034 Haney Apr 2008 B2
7359713 Tiwari Apr 2008 B1
7370283 Othmer May 2008 B2
7373246 O'Clair May 2008 B2
7386396 Johnson Jun 2008 B2
7389179 Jin et al. Jun 2008 B2
7392017 Chu et al. Jun 2008 B2
7395031 Ritter Jul 2008 B1
7418402 McCrossin et al. Aug 2008 B2
7421422 Dempster et al. Sep 2008 B1
7421486 Parupudi et al. Sep 2008 B1
7426437 Breed et al. Sep 2008 B2
7427021 Kemper et al. Sep 2008 B2
7433694 Morgan et al. Oct 2008 B2
7440842 Vorona Oct 2008 B1
7441203 Othmer et al. Oct 2008 B2
7466235 Kolb et al. Dec 2008 B1
7483944 Parupudi et al. Jan 2009 B2
7486201 Kelly et al. Feb 2009 B2
7500607 Williams Mar 2009 B2
7512487 Golding et al. Mar 2009 B1
7522927 Fitch et al. Apr 2009 B2
7525484 Dupray et al. Apr 2009 B2
7536388 Jung et al. May 2009 B2
7545281 Richards et al. Jun 2009 B2
7558696 Vilppula et al. Jul 2009 B2
7565132 Ben Ayed Jul 2009 B2
7565157 Ortega et al. Jul 2009 B1
7574222 Sawada et al. Aug 2009 B2
7577448 Pande et al. Aug 2009 B2
7587345 Mann et al. Sep 2009 B2
7593740 Crowley et al. Sep 2009 B2
7593991 Friedman et al. Sep 2009 B2
7596450 Hong Sep 2009 B2
7599795 Blumberg et al. Oct 2009 B1
7603233 Tashiro Oct 2009 B2
7606580 Granito et al. Oct 2009 B2
7617044 Lee Nov 2009 B2
7620404 Chesnais et al. Nov 2009 B2
7623848 Rosenfelt et al. Nov 2009 B2
7624358 Kim et al. Nov 2009 B2
7647174 Kwon Jan 2010 B2
7680591 Nagata et al. Mar 2010 B2
7683893 Kim et al. Mar 2010 B2
7689916 Goel et al. Mar 2010 B1
7710290 Johnson May 2010 B2
7711478 Gluck May 2010 B2
7714778 Dupray May 2010 B2
7729691 Newville Jun 2010 B2
7739040 Horvitz Jun 2010 B2
7742774 Oh et al. Jun 2010 B2
7743074 Parupudi et al. Jun 2010 B1
7756639 Colley et al. Jul 2010 B2
7768395 Gold Aug 2010 B2
7783421 Arai et al. Aug 2010 B2
7792273 Fano et al. Sep 2010 B2
7811203 Unuma et al. Oct 2010 B2
7822547 Lindroos Oct 2010 B2
7840347 Noguchi Nov 2010 B2
7848388 Tudosoiu Dec 2010 B2
7848765 Phillips et al. Dec 2010 B2
7860758 McCrossin et al. Dec 2010 B2
7890089 Fujisaki Feb 2011 B1
7890123 Granito et al. Feb 2011 B2
7929010 Narasimhan Apr 2011 B2
7933612 Counts et al. Apr 2011 B2
7933929 McClendon et al. Apr 2011 B1
7941188 Jung et al. May 2011 B2
7962280 Kindo et al. Jun 2011 B2
7991432 Silverbrook et al. Aug 2011 B2
8031050 Johnson Oct 2011 B2
8036630 Park et al. Oct 2011 B2
8046009 Bodmer et al. Oct 2011 B2
8073565 Johnson Dec 2011 B2
8082094 Gao Dec 2011 B2
8095152 Sheha et al. Jan 2012 B2
8108144 Forstall et al. Jan 2012 B2
8229458 Busch Jul 2012 B2
8250634 Agarwal et al. Aug 2012 B2
8385946 Forstall et al. Feb 2013 B2
8386655 Luers Feb 2013 B2
8538685 Johnson Sep 2013 B2
8762056 Forstall et al. Jun 2014 B2
8774825 Forstall et al. Jul 2014 B2
8963686 Johnson Feb 2015 B2
9066199 Forstall et al. Jun 2015 B2
9100793 Johnson Aug 2015 B2
9109904 Forstall et al. Aug 2015 B2
9250092 Blumenberg et al. Feb 2016 B2
20010018349 Kinnunen et al. Aug 2001 A1
20010043148 Stewart Nov 2001 A1
20010046884 Yoshioka Nov 2001 A1
20020026289 Kuzunuki et al. Feb 2002 A1
20020030698 Baur et al. Mar 2002 A1
20020032035 Teshima Mar 2002 A1
20020035493 Mozayeny et al. Mar 2002 A1
20020035609 Lessard et al. Mar 2002 A1
20020042266 Heyward et al. Apr 2002 A1
20020046069 Mozayeny et al. Apr 2002 A1
20020046077 Mozayeny et al. Apr 2002 A1
20020046084 Steele et al. Apr 2002 A1
20020055373 King et al. May 2002 A1
20020067353 Kenyon et al. Jun 2002 A1
20020077144 Keller et al. Jun 2002 A1
20020087505 Smith et al. Jul 2002 A1
20020091632 Turock et al. Jul 2002 A1
20020091991 Castro Jul 2002 A1
20020095486 Bahl Jul 2002 A1
20020098849 Bloebaum et al. Jul 2002 A1
20020118112 Lang Aug 2002 A1
20020126146 Burns et al. Sep 2002 A1
20020128773 Chowanic et al. Sep 2002 A1
20020132625 Ogino et al. Sep 2002 A1
20020140560 Altman et al. Oct 2002 A1
20020160815 Patel et al. Oct 2002 A1
20020164999 Johnson Nov 2002 A1
20020167442 Taylor Nov 2002 A1
20020173905 Jin et al. Nov 2002 A1
20020183927 Odamura Dec 2002 A1
20030001827 Gould Jan 2003 A1
20030006914 Todoriki et al. Jan 2003 A1
20030008662 Stern et al. Jan 2003 A1
20030014181 Myr Jan 2003 A1
20030016804 Sheha et al. Jan 2003 A1
20030018427 Yokota et al. Jan 2003 A1
20030032404 Wager et al. Feb 2003 A1
20030055560 Phillips et al. Mar 2003 A1
20030060211 Chern et al. Mar 2003 A1
20030060212 Thomas Mar 2003 A1
20030060215 Graham Mar 2003 A1
20030060973 Mathews et al. Mar 2003 A1
20030060976 Sato et al. Mar 2003 A1
20030065934 Angelo et al. Apr 2003 A1
20030069029 Dowling et al. Apr 2003 A1
20030069683 Lapidot et al. Apr 2003 A1
20030078054 Okuda Apr 2003 A1
20030078055 Smith et al. Apr 2003 A1
20030078057 Watanabe et al. Apr 2003 A1
20030093217 Petzold et al. May 2003 A1
20030096620 Ozturk et al. May 2003 A1
20030100326 Grube et al. May 2003 A1
20030100334 Mazzara, Jr. May 2003 A1
20030101225 Han et al. May 2003 A1
20030105826 Mayraz Jun 2003 A1
20030120423 Cochlovius et al. Jun 2003 A1
20030134657 Norta et al. Jul 2003 A1
20030139150 Rodriguez et al. Jul 2003 A1
20030140136 Nakamura Jul 2003 A1
20030144793 Melaku et al. Jul 2003 A1
20030148774 Naghian et al. Aug 2003 A1
20030158655 Obradovich et al. Aug 2003 A1
20030191578 Paulauskas et al. Oct 2003 A1
20030229446 Boscamp et al. Dec 2003 A1
20030236106 Master et al. Dec 2003 A1
20040010358 Oesterling et al. Jan 2004 A1
20040019582 Brown Jan 2004 A1
20040036649 Taylor Feb 2004 A1
20040054428 Sheha et al. Mar 2004 A1
20040059502 Levi et al. Mar 2004 A1
20040068439 Elgrably Apr 2004 A1
20040072557 Paila et al. Apr 2004 A1
20040072577 Myllymaki et al. Apr 2004 A1
20040073361 Tzamaloukas et al. Apr 2004 A1
20040082351 Westman Apr 2004 A1
20040083050 Biyani Apr 2004 A1
20040093155 Simonds May 2004 A1
20040093392 Nagamatsu et al. May 2004 A1
20040093566 McElligott May 2004 A1
20040098175 Said et al. May 2004 A1
20040104842 Drury et al. Jun 2004 A1
20040110488 Komsi Jun 2004 A1
20040110515 Blumberg et al. Jun 2004 A1
20040128066 Kudo et al. Jul 2004 A1
20040128067 Smith Jul 2004 A1
20040137893 Muthuswamy et al. Jul 2004 A1
20040151151 Kubler et al. Aug 2004 A1
20040158401 Yoon Aug 2004 A1
20040158584 Necsoiu et al. Aug 2004 A1
20040172409 James Sep 2004 A1
20040176907 Nesbitt Sep 2004 A1
20040180669 Kall Sep 2004 A1
20040192299 Wilson et al. Sep 2004 A1
20040192351 Duncan Sep 2004 A1
20040198335 Campen Oct 2004 A1
20040198379 Magee et al. Oct 2004 A1
20040198397 Weiss Oct 2004 A1
20040203569 Jijina et al. Oct 2004 A1
20040203746 Knauerhase et al. Oct 2004 A1
20040203836 Gorday et al. Oct 2004 A1
20040203880 Riley Oct 2004 A1
20040203909 Koster Oct 2004 A1
20040204842 Shinozaki Oct 2004 A1
20040215707 Fujita et al. Oct 2004 A1
20040225436 Yoshihashi Nov 2004 A1
20040228330 Kubler et al. Nov 2004 A1
20040236504 Bickford et al. Nov 2004 A1
20040242149 Luneau Dec 2004 A1
20040246940 Kubler et al. Dec 2004 A1
20040248586 Patel et al. Dec 2004 A1
20040260457 Kawase et al. Dec 2004 A1
20040260939 Ichikawa et al. Dec 2004 A1
20040263084 Mor et al. Dec 2004 A1
20040264442 Kubler et al. Dec 2004 A1
20050002419 Doviak et al. Jan 2005 A1
20050004838 Perkowski et al. Jan 2005 A1
20050009511 Bostrom et al. Jan 2005 A1
20050020223 Ellis et al. Jan 2005 A1
20050020315 Robertson et al. Jan 2005 A1
20050027442 Kelley et al. Feb 2005 A1
20050033509 Clapper Feb 2005 A1
20050033515 Bozzone Feb 2005 A1
20050037781 Ozugur et al. Feb 2005 A1
20050039140 Chen Feb 2005 A1
20050046584 Breed Mar 2005 A1
20050071078 Yamada et al. Mar 2005 A1
20050071702 Morisawa Mar 2005 A1
20050075116 Laird Apr 2005 A1
20050085272 Anderson et al. Apr 2005 A1
20050091408 Parupudi et al. Apr 2005 A1
20050096840 Simske May 2005 A1
20050114021 Krull et al. May 2005 A1
20050130677 Meunier et al. Jun 2005 A1
20050134440 Breed Jun 2005 A1
20050134578 Chambers et al. Jun 2005 A1
20050149250 Isaac Jul 2005 A1
20050153681 Hanson Jul 2005 A1
20050176411 Taya Aug 2005 A1
20050186954 Kenney Aug 2005 A1
20050190789 Salkini et al. Sep 2005 A1
20050192025 Kaplan Sep 2005 A1
20050197767 Nortrup Sep 2005 A1
20050203698 Lee Sep 2005 A1
20050216184 Ehlers Sep 2005 A1
20050221799 Tervo et al. Oct 2005 A1
20050221808 Karlsson et al. Oct 2005 A1
20050221843 Friedman et al. Oct 2005 A1
20050222756 Davis et al. Oct 2005 A1
20050222763 Uyeki Oct 2005 A1
20050227709 Chang et al. Oct 2005 A1
20050228553 Tryon Oct 2005 A1
20050228860 Hamynen et al. Oct 2005 A1
20050234637 Obradovich et al. Oct 2005 A1
20050239477 Kim et al. Oct 2005 A1
20050250440 Zhou et al. Nov 2005 A1
20050256639 Aleksic et al. Nov 2005 A1
20050267676 Nezu et al. Dec 2005 A1
20050272473 Sheena et al. Dec 2005 A1
20050286421 Janacek Dec 2005 A1
20060009908 Tomita et al. Jan 2006 A1
20060015249 Gieseke Jan 2006 A1
20060022048 Johnson Feb 2006 A1
20060025158 Leblanc et al. Feb 2006 A1
20060026536 Hotelling et al. Feb 2006 A1
20060029109 Moran Feb 2006 A1
20060038719 Pande et al. Feb 2006 A1
20060041374 Inoue Feb 2006 A1
20060041377 Jung et al. Feb 2006 A1
20060041378 Cheng et al. Feb 2006 A1
20060056388 Livingwood Mar 2006 A1
20060058955 Mehren Mar 2006 A1
20060063539 Beyer, Jr. Mar 2006 A1
20060064239 Ishii Mar 2006 A1
20060068809 Wengler et al. Mar 2006 A1
20060069503 Suomela Mar 2006 A1
20060072542 Sinnreich et al. Apr 2006 A1
20060084414 Alberth, Jr. et al. Apr 2006 A1
20060085392 Wang et al. Apr 2006 A1
20060094353 Neilsen et al. May 2006 A1
20060101005 Yang et al. May 2006 A1
20060111122 Carlson et al. May 2006 A1
20060116137 Jung Jun 2006 A1
20060116965 Kudo et al. Jun 2006 A1
20060148463 Zhu et al. Jul 2006 A1
20060149461 Rowley Jul 2006 A1
20060150119 Chesnais et al. Jul 2006 A1
20060156209 Matsuura et al. Jul 2006 A1
20060166679 Karaoguz et al. Jul 2006 A1
20060168300 An et al. Jul 2006 A1
20060172769 Oh Aug 2006 A1
20060172778 Sundararajan et al. Aug 2006 A1
20060179114 Deeds Aug 2006 A1
20060180649 Casey Aug 2006 A1
20060183486 Mullen Aug 2006 A1
20060184320 Hong Aug 2006 A1
20060184978 Casey Aug 2006 A1
20060195481 Arrouye et al. Aug 2006 A1
20060199567 Alston Sep 2006 A1
20060199612 Beyer et al. Sep 2006 A1
20060202819 Adamczyk et al. Sep 2006 A1
20060206264 Rasmussen Sep 2006 A1
20060211453 Schick Sep 2006 A1
20060218209 Arrouye et al. Sep 2006 A1
20060223518 Haney Oct 2006 A1
20060227047 Rosenberg Oct 2006 A1
20060229802 Vertelney et al. Oct 2006 A1
20060229889 Hodjat et al. Oct 2006 A1
20060247855 de Silva et al. Nov 2006 A1
20060251034 Park Nov 2006 A1
20060270421 Phillips et al. Nov 2006 A1
20060271280 O'Clair Nov 2006 A1
20060284767 Taylor Dec 2006 A1
20060286971 Maly et al. Dec 2006 A1
20060287824 Lin Dec 2006 A1
20060291639 Radziewicz et al. Dec 2006 A1
20060293029 Jha et al. Dec 2006 A1
20060293083 Bowen Dec 2006 A1
20070001875 Taylor Jan 2007 A1
20070003040 Radziewicz et al. Jan 2007 A1
20070005188 Johnson Jan 2007 A1
20070005233 Pinkus et al. Jan 2007 A1
20070006098 Krumm et al. Jan 2007 A1
20070008515 Otani et al. Jan 2007 A1
20070010942 Bill Jan 2007 A1
20070016362 Nelson Jan 2007 A1
20070027614 Reeser et al. Feb 2007 A1
20070027628 Geelen Feb 2007 A1
20070038364 Lee et al. Feb 2007 A1
20070038369 Devries et al. Feb 2007 A1
20070042790 Mohi et al. Feb 2007 A1
20070055684 Stevens Mar 2007 A1
20070060328 Zrike et al. Mar 2007 A1
20070061245 Ramer et al. Mar 2007 A1
20070061301 Ramer et al. Mar 2007 A1
20070061363 Ramer et al. Mar 2007 A1
20070071114 Sanderford et al. Mar 2007 A1
20070073480 Singh Mar 2007 A1
20070073719 Ramer et al. Mar 2007 A1
20070087726 McGary et al. Apr 2007 A1
20070093258 Steenstra et al. Apr 2007 A1
20070093955 Hughes Apr 2007 A1
20070106465 Adam et al. May 2007 A1
20070106466 Noguchi May 2007 A1
20070109323 Nakashima May 2007 A1
20070115868 Chen et al. May 2007 A1
20070123280 McGary et al. May 2007 A1
20070124043 Ayoub et al. May 2007 A1
20070124058 Kitagawa et al. May 2007 A1
20070124066 Kikuchi et al. May 2007 A1
20070127661 Didcock Jun 2007 A1
20070129888 Rosenberg Jun 2007 A1
20070130153 Nachman et al. Jun 2007 A1
20070135136 Ische Jun 2007 A1
20070135990 Seymour et al. Jun 2007 A1
20070142026 Kuz et al. Jun 2007 A1
20070146342 Medler et al. Jun 2007 A1
20070149212 Gupta et al. Jun 2007 A1
20070150174 Seymour et al. Jun 2007 A1
20070150192 Wakamatsu et al. Jun 2007 A1
20070150320 Huang Jun 2007 A1
20070153983 Bloebaum et al. Jul 2007 A1
20070153984 Bloebaum et al. Jul 2007 A1
20070153986 Bloebaum et al. Jul 2007 A1
20070155360 An Jul 2007 A1
20070155404 Yamane et al. Jul 2007 A1
20070156326 Nesbitt Jul 2007 A1
20070156337 Yanni Jul 2007 A1
20070162224 Luo Jul 2007 A1
20070179854 Ziv et al. Aug 2007 A1
20070184855 Klassen Aug 2007 A1
20070191029 Zarem et al. Aug 2007 A1
20070198304 Cohen et al. Aug 2007 A1
20070200713 Weber et al. Aug 2007 A1
20070202887 Counts et al. Aug 2007 A1
20070204162 Rodriguez Aug 2007 A1
20070204218 Weber et al. Aug 2007 A1
20070206730 Polk Sep 2007 A1
20070208492 Downs et al. Sep 2007 A1
20070208497 Downs et al. Sep 2007 A1
20070208498 Barker et al. Sep 2007 A1
20070208507 Gotoh Sep 2007 A1
20070218925 Islam et al. Sep 2007 A1
20070219706 Sheynblat Sep 2007 A1
20070219708 Brasche et al. Sep 2007 A1
20070229549 Dicke et al. Oct 2007 A1
20070232272 Gonsalves et al. Oct 2007 A1
20070232326 Johnson Oct 2007 A1
20070233387 Johnson Oct 2007 A1
20070237096 Vengroff et al. Oct 2007 A1
20070238491 He Oct 2007 A1
20070243853 Bumiller et al. Oct 2007 A1
20070247435 Benko et al. Oct 2007 A1
20070254676 Pedigo et al. Nov 2007 A1
20070259674 Neef et al. Nov 2007 A1
20070260751 Meesseman Nov 2007 A1
20070266116 Rensin et al. Nov 2007 A1
20070270159 Lohtia et al. Nov 2007 A1
20070271328 Geelen et al. Nov 2007 A1
20070276586 Jeon et al. Nov 2007 A1
20070276587 Johnson Nov 2007 A1
20070276596 Solomon et al. Nov 2007 A1
20070281664 Kaneko et al. Dec 2007 A1
20070282521 Broughton Dec 2007 A1
20070282565 Bye et al. Dec 2007 A1
20070290920 Shintai et al. Dec 2007 A1
20070296573 Schlesier et al. Dec 2007 A1
20070299601 Zhao et al. Dec 2007 A1
20080004789 Horvitz et al. Jan 2008 A1
20080004791 Sera Jan 2008 A1
20080004802 Horvitz Jan 2008 A1
20080005104 Flake et al. Jan 2008 A1
20080005301 Li et al. Jan 2008 A1
20080015422 Wessel Jan 2008 A1
20080019335 Wallace et al. Jan 2008 A1
20080021632 Amano Jan 2008 A1
20080024360 Taylor Jan 2008 A1
20080024364 Taylor Jan 2008 A1
20080027636 Tengler et al. Jan 2008 A1
20080030308 Johnson Feb 2008 A1
20080032703 Krumm et al. Feb 2008 A1
20080032721 MacDonald et al. Feb 2008 A1
20080045234 Reed Feb 2008 A1
20080046176 Jurgens Feb 2008 A1
20080052407 Baudino et al. Feb 2008 A1
20080055154 Martucci et al. Mar 2008 A1
20080065311 Bauchot et al. Mar 2008 A1
20080070593 Altman et al. Mar 2008 A1
20080071466 Downs et al. Mar 2008 A1
20080082254 Huhtala et al. Apr 2008 A1
20080085727 Kratz Apr 2008 A1
20080086240 Breed Apr 2008 A1
20080086455 Meisels et al. Apr 2008 A1
20080088486 Rozum et al. Apr 2008 A1
20080091347 Tashiro Apr 2008 A1
20080096518 Mock et al. Apr 2008 A1
20080097698 Arnold-Huyser et al. Apr 2008 A1
20080098090 Geraci et al. Apr 2008 A1
20080104634 Gajdos et al. May 2008 A1
20080109153 Gueziec May 2008 A1
20080113672 Karr et al. May 2008 A1
20080119200 McConnel May 2008 A1
20080129528 Guthrie Jun 2008 A1
20080132243 Spalink et al. Jun 2008 A1
20080132251 Altman et al. Jun 2008 A1
20080132252 Altman et al. Jun 2008 A1
20080140308 Yamane et al. Jun 2008 A1
20080140520 Hyder et al. Jun 2008 A1
20080153512 Kale et al. Jun 2008 A1
20080153513 Flake et al. Jun 2008 A1
20080155453 Othmer Jun 2008 A1
20080160956 Jackson et al. Jul 2008 A1
20080161034 Akiyama Jul 2008 A1
20080167078 Eibye Jul 2008 A1
20080167083 Wyld et al. Jul 2008 A1
20080167796 Narayanaswami Jul 2008 A1
20080167811 Geelen Jul 2008 A1
20080168347 Hallyn Jul 2008 A1
20080172173 Chang et al. Jul 2008 A1
20080172361 Wong et al. Jul 2008 A1
20080172374 Wolosin et al. Jul 2008 A1
20080176545 Dicke et al. Jul 2008 A1
20080177793 Epstein et al. Jul 2008 A1
20080178116 Kim Jul 2008 A1
20080186162 Rajan et al. Aug 2008 A1
20080189033 Geelen et al. Aug 2008 A1
20080194273 Kansal et al. Aug 2008 A1
20080200142 Abdel-Kader et al. Aug 2008 A1
20080207167 Bugenhagen Aug 2008 A1
20080209344 Knapp et al. Aug 2008 A1
20080225779 Bragiel et al. Sep 2008 A1
20080227473 Haney Sep 2008 A1
20080233919 Kenney Sep 2008 A1
20080242312 Paulson et al. Oct 2008 A1
20080248815 Busch Oct 2008 A1
20080249667 Horvitz et al. Oct 2008 A1
20080249983 Meisels et al. Oct 2008 A1
20080268876 Gelfand et al. Oct 2008 A1
20080271072 Rothschild et al. Oct 2008 A1
20080280600 Zhou Nov 2008 A1
20080284642 Seacat et al. Nov 2008 A1
20080287124 Karabinis Nov 2008 A1
20080288166 Onishi Nov 2008 A1
20080293397 Gajdos et al. Nov 2008 A1
20080301144 Boss et al. Dec 2008 A1
20080310850 Pederson et al. Dec 2008 A1
20080318550 DeAtley Dec 2008 A1
20080319644 Zehler Dec 2008 A1
20080319652 Moshfeghi Dec 2008 A1
20090003659 Forstall et al. Jan 2009 A1
20090005005 Forstall et al. Jan 2009 A1
20090005018 Forstall et al. Jan 2009 A1
20090005021 Forstall et al. Jan 2009 A1
20090005068 Forstall et al. Jan 2009 A1
20090005070 Forstall et al. Jan 2009 A1
20090005071 Forstall et al. Jan 2009 A1
20090005072 Forstall et al. Jan 2009 A1
20090005076 Forstall et al. Jan 2009 A1
20090005080 Forstall et al. Jan 2009 A1
20090005082 Forstall et al. Jan 2009 A1
20090005964 Forstall et al. Jan 2009 A1
20090005965 Forstall et al. Jan 2009 A1
20090005975 Forstall et al. Jan 2009 A1
20090005978 Forstall et al. Jan 2009 A1
20090005981 Forstall et al. Jan 2009 A1
20090006336 Forstall et al. Jan 2009 A1
20090030605 Breed Jan 2009 A1
20090031006 Johnson Jan 2009 A1
20090033540 Breed et al. Feb 2009 A1
20090042585 Matsuda Feb 2009 A1
20090197612 Kiiskinen Aug 2009 A1
20090228961 Wald et al. Sep 2009 A1
20090234743 Wald et al. Sep 2009 A1
20090259573 Cheng et al. Oct 2009 A1
20090271271 Johnson Oct 2009 A1
20100082820 Furukawa Apr 2010 A1
20100106397 Van Essen Apr 2010 A1
20100128935 Filley et al. May 2010 A1
20100131584 Johnson May 2010 A1
20100173647 Sheynblat Jul 2010 A1
20100207782 Johnson Aug 2010 A1
20100285817 Zhao et al. Nov 2010 A1
20110051658 Jin et al. Mar 2011 A1
20110159887 Lohtia et al. Jun 2011 A1
20110276591 Bliss et al. Nov 2011 A1
20120270567 Johnson Oct 2012 A1
20130225203 Johnson Aug 2013 A1
20140066100 Johnson Mar 2014 A1
Foreign Referenced Citations (134)
Number Date Country
9904979 Dec 2000 BR
2163215 Nov 1994 CA
2287596 Apr 2000 CA
2432239 Dec 2004 CA
1 412 573 Apr 2003 CN
3 621 456 Jan 1988 DE
4437360 Apr 1996 DE
19506890 Aug 1996 DE
19914257 Jan 2000 DE
10 141 695 Mar 2003 DE
0 288 068 Jul 1992 EP
05-071974 Mar 1993 EP
0 633 452 Jan 1995 EP
0 745 867 Dec 1996 EP
0 762 362 Mar 1997 EP
0 763 749 Mar 1997 EP
0 785 535 Jul 1997 EP
0 786 646 Jul 1997 EP
0 809 117 Nov 1997 EP
0 813 072 Dec 1997 EP
0 699 330 Apr 1998 EP
0 908 835 Apr 1999 EP
0 997 808 May 2000 EP
1 083 764 Mar 2001 EP
1 251 362 Oct 2002 EP
1 300 652 Apr 2003 EP
1 406 617 Mar 2004 EP
1 437 573 Jul 2004 EP
1 457 928 Sep 2004 EP
1 465 041 Oct 2004 EP
1 469 287 Oct 2004 EP
1 496 338 Jan 2005 EP
1 659 817 May 2006 EP
1 672 474 Jun 2006 EP
1 770 956 Apr 2007 EP
1 790 947 May 2007 EP
1 860 904 Nov 2007 EP
1 944 701 Jul 2008 EP
1 933 249 Aug 2008 EP
1 975 567 Oct 2008 EP
2730083 Aug 1996 FR
2754093 Apr 1998 FR
2772911 Jun 1999 FR
2810183 Dec 2001 FR
2 278 196 Nov 1994 GB
2 322 248 Aug 1998 GB
2 359 888 Sep 2001 GB
2 407 230 Apr 2005 GB
62142215 Jun 1987 JP
5-191504 Jul 1993 JP
08-069436 Mar 1996 JP
8510578 Nov 1996 JP
09-054895 Feb 1997 JP
9-062993 Mar 1997 JP
9-80144 Mar 1997 JP
09-098474 Apr 1997 JP
9-113288 May 1997 JP
09-153125 Jun 1997 JP
09-200850 Jul 1997 JP
9-210710 Aug 1997 JP
9-319300 Dec 1997 JP
10-021259 Jan 1998 JP
10-030933 Feb 1998 JP
11-234736 Aug 1999 JP
2000-163379 Jun 2000 JP
2001-008270 Jan 2001 JP
2001-160063 Jun 2001 JP
2001-313972 Nov 2001 JP
2002-174524 Jun 2002 JP
2002-310680 Oct 2002 JP
2002-329296 Nov 2002 JP
2003-228532 Aug 2003 JP
2004-045054 Feb 2004 JP
2004-219146 Aug 2004 JP
2004-362271 Dec 2004 JP
2005-106741 Apr 2005 JP
2005-182146 Jul 2005 JP
2005-241519 Sep 2005 JP
2005277764 Oct 2005 JP
2006-112338 Apr 2006 JP
2006-184007 Jul 2006 JP
2006-270889 Oct 2006 JP
2006-279838 Oct 2006 JP
2007-033220 Feb 2007 JP
2007-033331 Feb 2007 JP
2007-033368 Feb 2007 JP
2007-127439 May 2007 JP
2007-147439 Jun 2007 JP
2007-201699 Aug 2007 JP
2007-221433 Aug 2007 JP
2007-240400 Sep 2007 JP
2007-259291 Oct 2007 JP
2007-271299 Oct 2007 JP
2007-304009 Nov 2007 JP
2008-058917 Mar 2008 JP
2008-129774 Jun 2008 JP
2004-102440 Dec 2004 KR
2005-096746 Oct 2005 KR
200426387 Dec 2004 TW
WO 9320546 Oct 1993 WO
WO 9408250 Apr 1994 WO
WO 9707467 Feb 1997 WO
WO 9724577 Jul 1997 WO
WO 9741654 Nov 1997 WO
WO 9803951 Jan 1998 WO
WO 9807112 Feb 1998 WO
WO 9854682 Dec 1998 WO
WO 9916036 Apr 1999 WO
WO 9944183 Sep 1999 WO
WO 9961934 Dec 1999 WO
WO 0131966 May 2001 WO
WO 0137597 May 2001 WO
WO 0155994 Aug 2001 WO
WO 0233533 Apr 2002 WO
WO 02054813 Jul 2002 WO
WO 03023593 Mar 2003 WO
WO 03096055 Nov 2003 WO
WO 2004008792 Jan 2004 WO
WO 2004016032 Feb 2004 WO
WO 2004021730 Mar 2004 WO
WO 2004034194 Apr 2004 WO
WO 2004061576 Jul 2004 WO
WO 2004076977 Sep 2004 WO
WO 2005006258 Jan 2005 WO
WO 2005084052 Sep 2005 WO
WO 2006065856 Jun 2006 WO
WO 2006113125 Oct 2006 WO
WO 2007021071 Feb 2007 WO
WO 2007027065 Mar 2007 WO
WO 2007052285 May 2007 WO
WO 2008051929 May 2008 WO
WO 2008085740 Jul 2008 WO
WO 2009002942 Dec 2008 WO
WO 2009140031 Nov 2009 WO
Non-Patent Literature Citations (186)
Entry
“3rd Generation Partnership Project (3GPP); Technical Specification Group (TSG) RAN; Working Group 2 (WG2); Report on Location Services (LCS),” 3G TR 25.923 v.1.0.0, Apr. 1999, 45 pages.
“3rd Generation Partnership Project (3GPP); Technical Specification Group (TSG) RAN; Working Group 2 (WG2); Report on Location Services,” TS RAN R2.03 V0.1.0, Apr. 1999, 43 pages.
“3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Stage 2 Functional Specification of Location Services in UTRAN,” 3G TS 25.305 v.3.1.0, Mar. 2000, 45 pages.
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Functional stage 2 description of location services in UMTS,” 3G TS 23.171 v.1.1.0, Nov. 1999, 42 pages.
“Animated Transition,” [online] [Retrieved on Oct. 16, 2006]; Retrieved from the Internet URL: http://designinginterfaces.com/Animated—Transition; 2 pages.
“DaimlerCrysler Guide5 Usecases Overview Map,” 1 page.
Digital cellular telecommunications system (Phase 2+); Location Services (LCS); Service description, Stage 1 (GSM 02.71) ETSI, Apr. 1999, 22 pages.
“Enabling UMTS / Third Generation Services and Applications,” No. 11 Report from the UMTS Forum, Oct. 2000, 72 pages.
“Error: could not find a contact with this e-mail address.” Outlookbanter.com. Dec. 2006, 12 pages.
“Estonian operator to launch world's first Network-based location services,” Ericsson Press Release, Oct. 11, 1999, 2 pages.
“FM 3-25.26 Map Reading and Land Navigation,” Headquarters Department of the Army, Washington, DC [online] [Retrieved on Apr. 9, 2004]; Retrieved from the Internet URL: http://155.217.58.58/cgi-bin/atdl.dll/fm/3-25.26/toc.htm; Jul. 20, 2001, pp. 1-7 and J-1 to J-3.
“Frontiers in Electronic Media,” Interactions, 1997, 4(4):32-64.
“GPS 12 Personal NavigatorTM Owner's Manual & Reference”, Garmin Corporation, 1999, 66 pages.
“International Numbering and SMS—Type of Numbering, TON, Numbering Plan Indicator, NPI,” ActiveXperts SMS and Pager Toolkit 4.1, [online] [Retrieved on Jan. 5, 2007]; Retrieved from the Internet URL: http://www.activexperts.com/support/activsms/tonnpi/; 2 pages.
“International Roaming Guide—Personal Experience(s) from Customer and Community Member,” [online] [Retrieved Jun. 26, 2006]; Retrieved from the Internet URL: http://forums.cingular.com/cng/board/message?board.id=international&message.id=1185; 6 pages.
“iPhone Software/Hardware Hack: LocoGPS—GPS Add-on for the iPhone,” [online] [Retrieved on Dec. 25, 2007]; Retrieved from the Internet URL: http://www.iphonehacks.com/iphone—applications/index.html; 41 pages.
“LaBarge in joint venture on bus system,” Internet: URL: http://www.bizjournals.com/stlouis/stories/1998/08/10/focus2.html?t-printable, Aug. 7, 1998, 1 page.
“New Handsets Strut Their Stuff at Wireless '99,” Internet: URL: http://findarticles.com/p/articles/mi—m0BMD/is—1999—Feb—11/ai—n27547656/ downloaded from Internet on Feb. 11, 1999, 3 pages.
“New program for mobile blogging for Pocket PC released: My Blog,” [online] [Retrieved on Apr. 5, 2006]; Retrieved from the Internet URL: http://msmobiles.com/news.php/4067.html; 1 page.
“Numbering and Dialing Plan Within the United States,” Alliance for Telecommunications Industry Solutions, 2005, 17 pages.
“Report on Location Service feature (LCS) 25.923 v1.0.0,” TSG-RAN Working Group 2 (Radio layer 2 and Radio layer 3), Berlin, May 25-28, 1999, 45 pages.
“Review Guide—Google Maps for mobile (beta),” Google, 2006, 7 pages.
“Revised CR to 09/31 on work item LCS,” ETSI SMG3 Plenary Meeting #6, Nice, France, Dec. 13-15, 1999. 18 pages.
“School Buses to Carry Noticom's First Application,” Internet: URL: http://findarticles.com/p/articles/mi—m0BMD/is—1999—Feb—17/ai—n27547754/ downloaded from the Internet on Feb. 17, 1999, 2 pages.
“Travel Time Data Collection Handbook—Chapter 5: ITS Probe Vehicle Techniques,” FHWA-PL-98-035 Report, Department of Transport, University of Texas, Mar. 1998; [online] [Retrieved from the Internet at http://www.fhwa.dot.gov/ohim/handbook/chap5.pdf, 70 pages.
“User-centered design of mobile solutions,” NAMAHN, 2006, 18 pages.
“Windows Live Search for Mobile Goes Final, Still Great,” [online] [Retrieved on Mar. 11, 2007]; Retrieved from the Internet URL: http://gizmodo.com/gadgets/software/windows-live-search-for-mobile-goes-final-still-great-236002.php; 3 pages.
“Windows Mobile 6 Professional Video Tour,” [online] [Retrieved on Mar. 11, 2007]; Retrieved from the Internet URL: http://gizmodo.com/gadgets/cellphones/windows-mobile-6-professional-video-tour-237039.php; 4 pages.
“Windows Mobile,” Microsoft, 2007, 2 pages.
Abowd et al., “Context-awareness in wearable and ubiquitous computing,” 1st International Symposium on Wearable Computers, Oct. 13-14, 1997, Cambridge, MA, 9 pages.
Abowd et al., “Cyberguide: A mobile context-aware tour guide,” Wireless Networks, 1997, 3(5):421-433.
Akerblom, “Tracking Mobile Phones in Urban Areas,” Goteborg University Thesis, Sep. 2000, 67 pages.
Anand et al., “A Quantitative Analysis of Power Consumption for Location-Aware Applications on Smart Phones,” IEEE International Symposium on Industrial Electronics, Jun. 4-7, 2007, pp. 1986-1991.
Authorized officer Cristina Novelli, International Search Report/Written Opinion in PCT/US2009/041298 mailed Oct. 1, 2009, 15 pages.
Authorized officer E Pascual Vallés, International Search Report/Written Opinion in Application No. PCT/US2007/088880 mailed Jun. 16, 2008, 5 pages.
Authorized officer Matthew Davies, Invitation to Pay Additional Fees and, Where Applicable, Protest Fee, PCT/US2008/050295 mailed Jul. 29, 2008, 10 pages.
Ayatsuka et al., “UbiquitousLinks: Hypermedia Links Embedded in the Real World, Technical Report of Information Processing Society, 96-HI-67,” Information Processing Society of Japan, Jul. 11, 1996, 96(62):23-30.
Balliet, “Transportation Information Distribution System,” IBM Technical Disclosure Bulletin, [online] [Retrieved on Nov. 7, 2008]; Retrieved from the Internet URL: https://www.delphion.com/tdbs/tdb?order=86A+61395; Jun. 1986; 2 pages.
Balsiger et al., “MOGID: Mobile Geo-depended Information on Demand,” Workshop on Position Dependent Information Services (W3C-WAP), 2000, 8 pages.
Beard and Palancioglu, “Estimating Positions and Paths of Moving Objects,” IEEE, 2000, pp. 1-8.
Bederson, “Audio Augmented Reality: A Prototype Automated Tour Guide,” CHI '95 Mosaic of Creativity, May 7-11, 1995, Chicago, IL, pp. 210-211.
Beeharee and Steed, “Minimising Pedestrian Navigational Ambiguities Through Geoannotation and Temporal Tagging,” Human-Computer Interaction, Interaction Platforms and Techniques, Springer, 2007, pp. 748-757.
Beeharee and Steed, “Natural Wayfinding—Exploiting Photos in Pedestrian Navigation Systems,” Mobile HCI, Sep. 12, 2006, pp. 81-88.
Benefon ESC! GSM+GPS Personal Navigation Phone, benefon.com, Copyright 2001, 4 pages.
Berman and Powell, “The Role of Dead Reckoning and Inertial Sensors in Future General Aviation Navigation,” IEEE, 1998, pp. 510-517.
Bevly and Parkinson, “Cascaded Kalman Filters for Accurate Estimation of Multiple Biases, Dead-Reckoning Navigation, and Full State Feedback Control of Ground Vehicles,” IEEE Transactions on Control Systems in Technology, 2007, 15(2):199-208.
Binzhuo and Bin, “Mobile Phone GIS Based on Mobile SVG,” IEEE, 2005, pp. 889-892.
Bokharouss et al., “A Location-Aware Mobile Call Handling Assistant,” 21st International Conference on Advanced Information Networking and Applications Workshops, 2007, 8 pages.
Bonsignore, “A Comparative Evaluation of the Benefits of Advanced Traveler Information System (ATIS) Operational Tests,” MIT Masters Thesis, Feb. 1994, 140 pps.
Boonsrimuang et al., “Mobile Internet Navigation System,” IEEE, 2002, pp. 325-328.
Borsodi, “Super Resolution of Discrete Arrivals in a Cellular Geolocation System,” University of Calgary Thesis, Apr. 2000, 164 pages.
Brown, “The stick-e document: a framework for creating context-aware applications,” Electronic Publishing, 1995, 8:259-272.
Brown, “Triggering Information by Context,” Personal Technologies, 1998, 2:18-27.
Budka et al., “A Bayesian Method to Improve Mobile Geolocation Accuracy,” IEEE 56th Vehicular Technology Conference Proceedings, Sep. 24-28, 2002, Vancouver, CA, 2:1021-1025.
Burnett, “Usable Vehicle Navigation Systems: Are We There Yet?” Vehicle Electronic Systems 2000, Jun. 29-30, 2000, 3.1.1-3.1.12.
Camp and DeHayes, Jr., “A computer-based method for predicting transit time parameters using grid systems,” Decision Sciences, 1974, 5:339-346.
Carew, “Phones that tell you where to drive, meet, eat,” [online] [Retrieved May 26, 2007]; Retrieved from the Internet URL http://news.yahoo.com/s/nm/20070525/wr—nm/column—pluggedin—dc—2&printer=1;—ylt=Ahqaftn7xmlS2r0FZFeu9G4ht.cA; 2 pages.
Challe, “CARMINAT—An Integrated information and guidance system,” Vehicle Navigation and Information Systems Conference, Oct. 20-23, 1991, Renault—Direction de la Recherche, Rueil-Malmaison, France.
Change Request for “U.S. specific Emergency Services requirements included as an informative annex,” Nov. 29, 1999, 2 pages.
Charny, “AT&T puts 411 to the text,” [online] [Retrieved Mar. 4, 2009]; Retrieved from the Internet URL http://news.cnet.com/ATT-puts-411-to-the-text/2100-1039—3-1000669.html; May 8, 2003; 2 pages.
Cheverst et al., “Architectural Ideas for the Support of Adaptive Context-Aware Applications,” Proceedings of Workshop on Infrastructure for Smart Devices—How to Make Ubiquity an Actuality, HUC'00, Bristol, Sep. 2000, 3 pages.
Cheverst et al., “Design of an Object Model for a Context Sensitive Tourist Guide,” Computers and Graphics, 1999, 23(6):883-891.
Cheverst et al., “Developing Interfaces for Collaborative Mobile Systems,” 1999, 15 pages.
Cheverst et al., “Experiences of Developing and Deploying a Context-Aware Tourist Guide: The GUIDE Project,” 2000, pp. 20-31.
Cheverst et al., “Exploiting Context to Support Social Awareness and Social Navigation,” SIGGROUP Bulleting Dec. 2000, 21(3):43-48.
Cheverst et al., “Services to Support Consistency in Mobile Collaborative Applications,” Proc. 3rd International Workshop on Services in Distributed Networked Environments, 1996, 8 pages.
Cheverst et al., “Sharing (Location) Context to Facilitate Collaboration Between City Visitors,” 2000, 8 pages.
Cheverst et al., “Supporting Collaboration in Mobile-aware Groupware,” Workshop on Handheld CSCW, 1998, 6 pages.
Cheverst et al., “The Role of Connectivity in Supporting Context-Sensitive Applications,” HUC'99, LNCS 1707, 1999, pp. 193-209.
Cheverst et al., “The Support of Mobile-Awareness in Collaborative Groupware,” Personal Technologies, 1999, 3:33-42.
Cho et al., “A Traveler Information Service Structure in Hybrid T-DMB and Cellular Communication Network,” IEEE, 2006, pp. 747-750.
Christie et al., “Development and Deployment of GPS wireless devices for E911 and Location based services,” Position, location and Navigation Symposium, Palm Springs, CA, Apr. 15-18, 2002, pp. 60-65w.
Chua et al., “Intelligent Portal for Event-triggered SMS Alerts,” 2nd International Conference on Mobile Technology, Applications and Systems, 2005, 7 pages.
{hacek over (C)}ivilis et al., “Efficient Tracking of Moving Objects with Precision Guarantees,” Proc. First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous '04), 2004, 10 pages.
Clarke et al., “Development of Human Factors Guidelines for Advanced Traveler Information Systems (ATIS) and Commercial Vehicle Operations (CVO): Comparable Systems Analysis,” U.S. Department of Transportation Federal Highway Administration, Publication No. FHWA-RD-95-197, Dec. 1996, 212 pages.
Costa et al., “Experiments with Reflective Middleware,” Proceedings of the ECOOP'98 Workshop on Reflective Object-Oriented Programming and Systems, ECOOP'98 Workshop Reader, 1998, 13 pages.
Dalrymple, “Google Maps adds locator, but not for iPhone,” [online] [Retrieved Nov. 30, 2007]; Retrieved from the Internet URL: http://news.yahoo.com/s/macworld/20071130/tc—macworld/googlemaps20071130—0&printer=1;—ylt=Auvf3s6LQK—pOaJlb954T—DQn6gB; 1 page.
Davies et al., “‘Caches in the Air’: Disseminating Tourist Information in the Guide System,” Second IEEE Workshop on Mobile Computer Systems and Applications, Feb. 25-26, 1999, 9 pages.
Davies et al., “L2imbo: A distributed systems plastform for mobile computing,” Mobile Networks and Applications, 1998, 3:143-156.
Dey et al., “CyberDesk: a framework for providing self-integrating context-aware services,” Knowledge-Based Systems, 1998, 11:3-13.
Dey, “Context-Aware Computing: The CyberDesk Project,” [online] Retrieved from the Internet: URL: http://www.cc.gatech.edu/fce/cyberdesk/pubs/AAAI98/AAAI98.html;AAAI '98 Spring Symposium, Stanford University, Mar. 23-25, 1998, downloaded from the Internet on Aug. 6, 2010, 8 pages.
Dibdin, “Where are mobile location based services?” CM316 Multimedia Systems Paper, Dec. 14, 2001, 8 pages.
Dix et al., “Exploiting Space and Location as a Design Framework for Interactive Mobile Systems,” ACM Transactions on Computer-Human Interaction (TOCHI)—Special issue on human-computer interaction with mobile systems, 2000, 7(3):285-321.
Dommety and Jain, “Potential Networking Applications of Global Positioning Systems (GPS),” [online] [Retrieved on Nov. 18, 2008]; [Retrieved from the Internet URL: http://arxiv.org/ftp/cs/papers/9809/9809079.pdf; OSU Technical Report TR-24, Apr. 1996, 41 pages.
Drane and Rizos, “Role of Positioning Systems in ITS,” Positioning Systems in Intelligent Transportation Systems, Dec. 1997, pp. 312, 346-349.
Drane et al., “Positioning GSM Telephones,” IEEE Communications Magazine, Apr. 1998, pp. 46-59.
Drane et al., “The Accurate Location of Mobile Telephones,” Third Annual World Congress on Intelligent Transport Systems, Orlando, Florida, Oct. 1996, 8 pages.
Dunn and Toohey, “Wireless Emergency Call System,” IBM Technical Disclosure Bulletin, Sep. 1994; 1 page.
Ebine, “Dual frequency resonant base station antennas for PDC systems in Japan,” IEEE, 1999, pp. 564-567.
Efstratiou and Cheverst, “Reflection: A Solution for Highly Adaptive Mobile Systems,” 2000 Workshop on Reflective Middleware, 2000, 2 pages.
Efstratiou et al., “Architectural Requirements for the Effective Support of Adaptive Mobile Applications,” 2000, 12 pages.
Evans et al., “In-Vehicle Man-Machine Interaction. The Socrates Approach,” Vehicle Navigation & Information System Conference Proceedings, 1994, Aug. 31-Sep. 2, 1994, pp. 473-477.
International Preliminary Report on Patentability in PCT/US2009/055065 mailed Mar. 31, 2011, 8 pages.
Feddema et al., “Cooperative Sentry Vehicles and Differential GPS Leapfrog,” 2000, United States Department of Energy, pp. 1-12.
Fischer et al., “System Performance Evaluation of Mobile Positioning Methods,” IEEE, Aug. 2002, pp. 1962-1966.
Flinn and Satyanarayanan, “PowerScope: A Tool for Profiling the Energy Usage of Mobile Applications,” Proc. WMCSA '99 Second IEEE Workshop on Mobile Computing Systems and Applications, Feb. 25-26, 1999, 9 pages.
French and Driscoll, “Location Technologies for ITS Emergency Notification and E911,” Proc. 1996 National Technical Meeting of The Institute of Navigation, Jan. 22-24, 1996, pp. 355-359.
Freundschuh, “Does ‘Anybody’ Really Want (or Need) Vehicle Navigation Aids?” First Vehicle Navigation and Information System Conference, Sep. 11-13, 1989, Toronto, Canada, 5 pages.
Friday et al., “Developing Adaptive Applications: The MOST Experience,” J. Integrated Computer-Aided Engineering, 1999, pp. 143-157.
Gould, “The Provision of Usable Navigation Assistance: Considering Individual Cognitive Ability,” First Vehicle Navigation and Information System Conference, Sep. 11-13, 1989, Toronto, Canada, 7 pages.
Green et al., “Suggested Human Factors Design Guidelines for Driver Information Systems,” Technical Report UMTRI-93-21, Nov. 1993, 119 pages.
Gunnarsson et al., “Location Trial System for Mobile Phones,” IEEE, 1998, pp. 2211-2216.
Guo et al., “An Intelligent Query System Based on Chinese Short Message Service for Restaurant Recommendation,” Sixth International Conference on the Management of Mobile Business (ICMB 2007), 2007, 1 page.
Hameed and Shabnam, “An Intelligent Agent-Based Medication and Emergency System,” IEEE, 2006, pp. 3326-3330.
Helal et al., “Drishti: An Integrated Navigation System for Visually Impaired and Disabled,” Fifth International Symposium on Wearable Computers (ISWC'01), 2001, pp. 149-156.
Hodes and Katz, “Composable ad hoc location-based services for heterogeneous mobile clients,” Wireless Networks, 1999, 5:411-427.
Hohman et al., “GPS Roadside Integrated Precision Positioning System,” Position Location and Navigation Symposium, 2000, pp. 221-230.
Hoogenraad, “Location Dependent Services,” 3rd AGILE Conference on Geographic Information Science, Helsinki/Espoo, Finland, May 25-27, 2000, pp. 74-77.
Jirawimut et al., “A Method for Dead Reckoning Parameter Correction in Pedestrian Navigation System,” IEEE Transactions on Instrumentation and Measurement, 2003, 52(1):209-215.
Jose and Davies, “Scalabe and Flexible Location-Based Services for Ubiquitous Information Access,” HUC'99, LNCS 1707, 1999, pp. 52-66.
Ju et al., “RFID Data Collection and Integration Based on Mobile Agent,” IEEE, 2006, 4 pages.
Kbar and Mansoor, “Mobile Station Location based on Hybrid of Signal Strength and Time of Arrival,” Proc. International Conference on Mobile Business (ICMB'05), 2005, 7 pages.
Khattak et al., “Bay Area ATIS Testbed Plan,” Research Reports, California Partners for Advanced Transit and Highways (PATH), Institute of Transportation Studies, UC Berkeley, Jan. 1, 1992, 83 pages.
Klinec and Nolz, “Nexus-Positioning and Communication Environment for Spatially Aware Applications,” IAPRS, Amsterdam, 2000, 7 pages.
Koide and Kato, “3-D Human Navigation System with Consideration of Neighboring Space Information,” 2006 IEEE International Conference on Systems, Man and Cybernetics, Oct. 8-11, 2006, Taipei, Taiwan, pp. 1693-1698.
Kovacs et al., “Adaptive Mobile Access to Context-aware Services,” Proc. ASAMA '99 Proc. First International Symposium on Agent Systems and Applications Third International Symposium on Mobile Agents, IEEE Computer Society Washington, DC, 1999, 12 pages.
Kreller et al., “A Mobile-Aware City Guide Application,” ACTS Mobile Communication Summit, 1998, Rhodes, Greece, 7 pages.
Kreller et al., “UMTS: A Middleware Architecture and Mobile API/Approach,” IEEE Personal Communications, Apr. 1998, pp. 32-38.
Kugler and Lechner, “Combined Use of GPS and LORAN-C in Integrated Navigation Systems,” Fifth International Conference on Satellite Systems for Mobile Communications and Navigation, London, UK, May 13-15, 1996, pp. 199-207.
Kyriazakos et al., “Optimization of the Handover Algorithm based on the Position of the Mobile Terminals,” Communications and Vehicular Technology, Oct. 2000, pp. 155-159.
Leonhardt and Magee, “Multi-Sensor Location Tracking,” MOBICOM 98, Dallas, TX, pp. 203-214.
Leonhardt and Magee, “Towards a general location service for mobile environments,” Proc. Third International Workshop on Services in Distributed and Networked Environments, Jun. 3-4, 1996, 8 pages.
Lloyd and Tianlin, “Cellular phone base stations installation violate the Electromagnetic Compatibility regulations,” 2004 4th International Conference on Microwave and Millimeter Wave Technology Proceedings, 2004, pp. 920-922.
Long et al., “Rapid Prototyping of Mobile Context-Aware Applications: The Cyberguide Case Study,” MobiCom '96, 1996, 11 pages.
Lusky et al., “Mapping the Present,” ColoradoBiz, Nov. 1999, 26(11):16-17.
Maaβ, “Location-Aware Mobile Applications based on Directory Services,” MOBICOM 97, 1997, Budapest, Hungary, pp. 23-33.
Mahmassani et al., “Providing Advanced and Real-Time Travel/Traffic Information to Tourists,” Center for Transportation Research, Bureau of Engineering Research, The University of Texas at Austin, Oct. 1998, 15 pages.
Manabe et al., “On the M-CubITS Pedestrian Navigation System,” Proc. IEEE Intelligent Transportation Systems Conference, Toronto, Canada, Sep. 17-20, 2006, pp. 793-798.
Mark, “A Conceptual Model for Vehicle Navigation Systems,” First Vehicle Navigation and Information System Conference, Sep. 11-13, 1989, Toronto, Canada 11 pages.
Maxwell et al., “Alfred: The Robot Waiter Who Remembers You,” AAAI Technical Report WS-99-15, 1999, 12 pages.
McCarthy and Meidel, “ACTIVEMAP: A Visualization Tool for Location Awareness to Support Informal Interactions,” HUC '99, LNCS 1707, 1999, pp. 158-170.
Meier and Cahill, “Location-Aware Event-Based Middleware: A Paradigm for Collaborative Mobile Applications?” 8th CaberNet Radicals Workshop, 2003, 5 pages.
Microsoft Outlook 2003 User's Guide, http://opan.admin.ufl.edu/user—guides/outlook2003.htm. Aug. 2004, 17 pages.
Miller et al., “Integrating Hierarchical Navigation and Querying: A User Customizable Solution,” ACM Multimedia Workshop on Effective Abstractions in Multimedia Layout, Presentation, and Interaction, San Francisco, CA, Nov. 1995, 8 pages.
Miller et al., “Synchronization of Mobile XML Databases by Utilizing Deferred Views,” IEEE, 2004, pp. 186-191.
Mio Technology “User's Manual MioMap 2.0,” Mio DigiWalker, 2005, 59 pages.
Mio Technology: “27 Countries in your pocket,” [online] [Retrieved on Jul. 9, 2008]; Retrieved from the Internet URL: http://www.mio-tech.be/en/printview/press-releases-2005-09-29.htm>; 1 page.
Mio Technology: “Mio 269+ User's Manual,” [online] [Retrieved on Jul. 9, 2008]; Retrieved from the Internet URL: http://www.mio-tech.be/Manuals/269+/Device-Manual/268-plus-269-plus-Device-Manual-EN.pdf> Mio DigiWalker, Aug. 2005, 44 pages.
Muraskin, “Two-Minute Warnings for School Bus Riders,” Internet: URL: http://www.callcentermagazine.com/shared/printableArticle.jhtml;jsessionid=PQH1SZXW . . . Jul. 1, 1999, 3 pages.
Nagao et al., Walk Navi: A Location-Aware Interactive Navigation/Guideline System and Software III, First edition, pp. 9-48, published by Kindai-Kagaku-Sya Co. Ltd., Dec. 10, 1995.
Nardi et al., “Integrating Communication and Information Through Contact Map,” Communications of the ACM, 2002, 45(4):89-95.
Ni and Deakin, “On-Board Advanced Traveler Information Systems,” Dec. 1, 2002, 10 pages.
Noonan and Shearer, “Intelligent Transportation Systems Field Operational Test Cross-Cutting Study Advance Traveler Information systems,” Intelligent Transportation Systems Field Operational Test Cross-Cutting Study, Sep. 1998, 26 pages.
Northard, “Docking Station Communication Link,” IBM Technical Disclosure Bulletin, 1994, 4 pages.
O'Grady et al., “A Tourist-Centric Mechanism for Interacting with the Environment,” Proceedings of the First International Workshop on Managing Interactions in Smart Environments (MANSE '99), Dublin, Ireland, Dec. 1999, pp. 56-67.
Oh et al., “Spatial Applications Using 4S Technology for Mobile Environment,” IEEE, 2002, 3 pages.
Paksoy et al., “The Global Position System-Navigation Tool of the Future,” J Electrical & Electronics, 2002, 2(1):467-476.
Parikh, “Tele Locate,” IBM Technical Disclosure Bulletin, [online] [Retrieved on Nov. 7, 2008]; Retrieved from the Internet URL: https://www.delphion.com/tdbs/tdb?order=92A+62775; 1992, 1 page.
Pascoe et al., “Developing Personal Technology for the Field,” Personal Technologies, 1998, 2:28-36.
Pfoser et al., “Dynamic Travel Time Maps—Enabling Efficient Navigation,” Proc. 18th International Conference on Scientific and Statistical Database Management (SSDBM'06), 2006, 10 pages.
Popescu-Zeletin et al., “Applying Location-Aware Computing for Electronic Commerce: Mobile Guide,” Proc. 5th Conference on Computer Communications, AFRICOM-CCDC'98, Oct. 20-22, 1998, 14 pages.
Portfolio 2007; [online] [Retrieved on Jun. 14, 2007]; Retrieved from the Internet URL: http://eric.wahlforss.com/folio; 3 pages.
Pungel, “Traffic control-beat the jam electronically,” Funkschau, 1988, 18:43-45 (w/English translation).
RD 409052, Research Disclosure Alerting Abstract, “Location dependent information for satellite based vehicle communication—required application of Global Position System (GPS) to automatically extract relevant portions of data package as vehicle changes position,” May 10, 1998, 1 page.
Rekimoto et al., “Augment-able Reality: Situated Communication through Physical and Digital Spaces,” Second International Symposium on Wearable Computers (ISWC'98), 1998, pp. 1-8.
Rillings and Betsold, “Advanced driver information systems,” Vehicular Technology, IEEE Vehicular Technology Society, 1991, 40:31-40.
Rogers et al., “Adaptive User Interfaces for Automotive Environments,” Proc. IEEE Intelligent Vehicles Symposium 2000, Oct. 3-5, 2000, Dearborn, MI, pp. 662-667.
Rozier et al. “Hear&There: An Augmented Reality System of Linked Audio,”Proceedings of the International Conference on Auditory Display, Atlanta, GA, Apr. 2000, pp. 1-5.
Samadani et al., “PathMarker: systems for capturing trips,” 2004 IEEE International Conference on Multimedia and Expo (ICME), Jun. 27-30, 2004, 3:2123-2126.
Schreiner, “Where We At? Mobile Phones Bring GPS to the Masses,” IEEE Computer Society, May/Jun. 2007, pp. 6-11.
Serafin et al., “Functions and Features of Future Driver Information Systems,” Technical Report UMTRI-91-16, May 1991, 104 pages.
Shekhar and Liu, “Genesis and Advanced Traveler Information Systems (ATIS): Killer Applications for Mobile Computing?” NSF Mobidata Workshop on Mobile and Wireless Information Systems, Nov. 1994, 20 pages.
Shibata et al., “Development and Integration of Generic Components for a Teachable Vision-Based Mobile Robot,” IEEE/ASME Transactions on Mechatronics, 1996, 1(3):230-236.
Spohrer, “New Paradigms for Using Computers (Abstract),” 1997; [online]; Retrieved from the Internet URL: http://www.almaden.ibm.com/almaden/npuc97/1997/spohrer.htm; 1 page.
Sung et al., “Towards Reliable Peer-to-Peer Data Sharing over Mobile Ad hoc Networks,” IEEE, 2005, 5 pages.
Tarumi et al., “Public Applications of SpaceTag and Their Impacts,” Digital Cities, LNCS 1765, 2000, pp. 350-363.
Tebbutt, “Dial your way out of the woods,” The Australian, Feb. 2000, 1 page.
Tijerina et al., “Driver Workload Assessment of Route Guidance System Destination Entry While Driving: A Test Track Study,” Proceedings of the 5th ITS World Congress, Oct. 12-16, 1998, Seoul, Korea, 9 pages.
Tso et al., “Always on, Always Connected Mobile Computing,” Mobile Communications Operation—Mobile Handheld Products Group, 1996, pp. 918-924.
Tsuzawa and Okamoto, “Advanced Mobile Traffic Information and Communication System,” First Vehicle Navigation and Information Systems Conference, Sep. 11-13, 1989, Toronto, Canada, Abstract only.
Wang and Huang, “An Unified Vehicle Supervising and Traffic Information System,” IEEE, 1996, pp. 968-972.
Wang and Lin, “Location Aware Information Agent over WAP,” Tamkang Journal of Science and Engineering, 2000, 3(2):107-115.
Weinberg, “Using the ADXL202 in Pedometer and Personal Navigation Applications,” AN-602, Analog Devices, Jul. 2002, 8 pages.
Weiβ et al., “Zone Services—An Approach for Location-based Data Collection,” Proceedings of the 8th IEEE International Conference on E-Commerce Technology and the 3rd IEEE International Conference on Enterprise Computing, E-Commerce and E-Services (CEC/EEE'06), 2006, 8 pages.
Wheeler et al., “Development of Human Factors Guidelines for Advanced Traveler Information Systems and Commercial Vehicle Operations: Task Analysis of ATIS/CVO Functions,” US Dept. Transportation Federal Highway Administration Research and Development, Publication No. FHWA-RD-95-176, Nov. 1996, 124 pps.
Wong, “GPS: making roads safer and solving traffic tangles,” Asia Engineer, 1995, 23(9):31-32.
Wu et al., “A Multimedia System for Route Sharing and Video-Based Navigation,” IEEE, 2006, pp. 73-76.
Yamamoto et al., “Position Location Technologies Using Signal Strength in Cellular Systems,” IEEE 53rd Vehicular Technology Conference, May 6-9, 2001, Rhodes, Greece, 53:2570-2574.
Yang and Marsland, “Global Snapshots for Distributed Debugging,” IEEE, 1992, pp. 436-440.
Yanyan et al., “The Model of Optimum Route Selection in Vehicle Automatic Navigation System Based on Unblocked Reliability Analyses,” IEEE, 2003, pp. 975-978.
Ygnace et al., “Travel Time Estimation on the San Francisco Bay Area Network Using Cellular Phones as Probes,” Working Paper, Institute of Transportation Studies, University of California, Berkeley, 2000, 58 pages.
Yim et al., “Travinfo Field Operational Test: Work Plan for the Target, Network, and Value Added Reseller (VAR) Customer Studies,” Working Papers, California Partners for Advanced Transit and Highways (PATH), Institute of Transportation Studies, UC Berkeley, Apr. 1, 1997, 49 pages.
Yogesh C. Rathod, Third Party Submission in U.S. Appl. No. 12/233,358 mailed Mar. 30, 2010, 12 pages.
Yokote, “The Apertos Reflective Operating System: The Concept and Its Implementation,” OOPSLA'92, pp. 414-434.
Zhao, “Mobile Phone Location Determination and Its Impact on Intelligent Transportation Systems,” IEEE Transactions on Intelligent Transportation Systems, Mar. 2000, 1(1):55-64.
Zubac and Strahonja, “Theory and Development of an Online Navigation System,” 18th International Conference on Information and Intelligent Systems, University of Zagreb, Sep. 12-14, 2007.
Related Publications (1)
Number Date Country
20130166208 A1 Jun 2013 US
Provisional Applications (1)
Number Date Country
60946837 Jun 2007 US
Continuations (1)
Number Date Country
Parent 12020168 Jan 2008 US
Child 13773866 US