The present subject matter relates generally to dishwasher appliances and, in particular, to dishwasher appliances with electrical components within a door of the appliance.
Dishwasher appliances are generally connected to a household electrical system that provides high voltage electrical power to operate the dishwasher appliance. In particular, the dishwasher appliance is generally wired to receive one hundred and twenty volt, alternating current (AC) electrical power from the household electrical system. The dishwasher appliance utilizes such high voltage electrical power to operate the various components of the appliance. For example, in certain dishwasher appliances, such high voltage electrical power is utilized to operate a circulation pump, a drain pump, a heating element, and/or a control board of the appliance.
In addition, such high voltage electrical power is also used to power dishwasher components located within a door of the dishwasher appliance. For example, in certain dishwasher appliances, such high voltage electrical power is utilized to operate a user control panel, a detergent dispenser motor, and/or a fan located within or attached to the appliance's door. However, an interior of the dishwasher door can be a corrosive environment due to many factors, for example, high humidity, high temperatures, and the presence of detergent and rinse aid.
Utilizing high voltage electrical power to operate dishwasher components located within the door's corrosive environment can decrease the reliability of the dishwasher appliance. In particular, a large number of dishwasher appliances have failed due to corrosion of high voltage electrical components located with the dishwashers' doors. Such failures have also led to expensive recalls of the dishwasher appliances.
Accordingly, a dishwasher appliance with features for improving reliability of the dishwasher appliance would be useful. In particular, a dishwasher appliance with features for improving reliability of electrical components within the dishwasher appliance's door would be useful. Further, a dishwasher appliance without high voltage electrical components located within a door of the appliance would be useful.
The present subject matter provides a dishwasher appliance with a door for providing access to a wash chamber of the dishwasher appliance. A low voltage electrical component is mounted within the door and is in electrical communication with a low voltage power source. By utilizing the low voltage power source and the low voltage electrical component, the reliability of the dishwasher appliance can be improved. Aspects and advantages of the invention will be set forth in part in the following description, or may be apparent from the description, or may be learned through practice of the invention.
In a first exemplary embodiment, a dishwasher appliance is provided. The dishwasher appliance includes a tub that defines a wash chamber. A door is mounted proximate to the tub and is configured for permitting selective access to the wash chamber of the tub. The door contains no high voltage electrical components. A low voltage power source is also provided. A low voltage electrical component is positioned proximate the door and is in electrical communication with the low voltage power source.
In a second exemplary embodiment, a dishwasher appliance is provided. The dishwasher appliance includes a tub that defines a wash chamber. A door is mounted proximate the tub. The door is configured for permitting selective access to the wash chamber of the tub. The door contains no high voltage electrical components. A control board is also provided. The control board is configured to be powered by a high voltage power supply. The control board has a low voltage power source for transforming high voltage power from the high voltage power supply to low voltage power. A low voltage electrical component is positioned proximate the door and is in electrical communication with the low voltage power source of the control board. A high voltage electrical component is mounted adjacent the tub and is in electrical communication with said control board.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Rack assemblies 130 and 132 are slidably mounted within wash chamber 106. Rack assemblies 130 and 132 are configured for receipt of articles for washing, e.g., plates, cups, bowls, or any suitable combination thereof. Each of the rack assemblies 130, 132 is fabricated into lattice structures including a plurality of elongated members 134. Each rack 130, 132 is adapted for movement between an extended loading position (not shown) in which rack is substantially positioned outside wash chamber 106 for facilitating loading of articles therein, and a retracted position (shown in
Dishwasher appliance 100 further includes a lower spray assembly 144 that is (e.g., rotatably) mounted within a lower region 146 of wash chamber 106 and above a sump portion 142 of tub 104 so as to be positioned in relatively close proximity to rack assembly 132. A mid-level spray assembly 148 is located in an upper region of wash chamber 106 and is located in close proximity to upper rack 130. Additionally, an upper spray assembly 150 is located above upper rack 130.
Lower and mid-level spray assemblies 144 and 148 and upper spray assembly 150 are fed by a fluid circulation assembly 152 for circulating water and washing liquid (e.g., a solution of detergent, water, and/or rinse aid) within wash chamber 106 of tub 104. Fluid circulation assembly 152 includes a recirculation pump 161 positioned within a machinery compartment 140 located below sump portion 142 of tub 104. Lower and mid-level spray assembly 144 and 148 includes an arrangement of discharge ports or orifices for directing washing liquid onto dishes or other articles located in upper and lower rack assemblies 130 and 132. The arrangement of the discharge ports in lower and mid-level spray assemblies 144 and 148 provides a rotational force by virtue of washing liquid flowing through the discharge ports. The resultant rotation of lower and mid-level spray assemblies 144 and 148 can provide coverage of dishes and other dishwasher contents with a spray of washing liquid.
Dishwasher appliance 100 is equipped with a heating element 160. Heating element 160 is configured for heating wash liquid and/or water within dishwasher appliance 100. As an example, heating element 160 can function as a booster water heater to increase the temperature of wash liquid within the wash chamber 106, e.g., to a suitable or appropriate temperature for the desired cycle of dishwasher appliance 100. Further, heating element 160 may function to assist drying of articles in upper and lower rack assemblies 130 and 132 during a drying cycle of dishwasher appliance 100. In particular, heating element 160 may be activated to raise the ambient temperature within wash chamber 106 thereby facilitating or expediting drying of articles in upper and lower rack assemblies 130 and 132.
In the exemplary embodiment shown in
Dishwasher appliance 100 is further equipped with a control board or controller 165 to regulate operation of dishwasher appliance 100. The controller 165 may include a memory and microprocessor, such as a general or special purpose microprocessor operable to execute programming instructions or micro-control code associated with a cleaning cycle. The memory may represent random access memory such as DRAM, or read only memory such as ROM or FLASH. In one embodiment, the processor executes programming instructions stored in memory. The memory may be a separate component from the processor or may be included onboard within the processor.
Controller 165 may be positioned in a variety of locations throughout dishwasher appliance 100. In the illustrated embodiment, controller 165 is located within machinery compartment 140 below tub 104. In particular, controller 165 is mounted within a container or case 180 mounted to tub 104 within machinery compartment 140. Case 180 protects and isolates controller 165 within machinery compartment 140. For example, case 180 is constructed of a metal or other non-flammable material in order to provide for safer operation of dishwasher appliance 100. In particular, by enclosing controller 165 inside a metal case, any failure of the controller 165 will be contained within the case, and potential damage to the dishwasher appliance 100 due to such failure can be mitigated. However, in alternative exemplary embodiments, case 180 may be mounted at any other suitable location within dishwasher appliance 100, e.g., to cabinet 102.
In the embodiment shown in
User input panel 216 shown herein is generally referred to a “front-control” control panel. However, as will be understood by those skilled in the art, dishwasher appliance 100 may be provided with other suitable control panels, e.g., “top-control” control panels. Similarly, it should be appreciated that the present subject matter is not limited to any particular style, model, or configuration of dishwasher, and that the embodiment depicted in
Inner door panel 210 includes a detergent and/or rinse aid dispenser 275 mounted to inner door panel 210 with a bracket 276. A user can fill detergent and/or rinse aid dispenser 275 with detergent prior to starting dishwasher appliance 100 (
As discussed in greater detail below, door assembly 200 contains only low voltage electrical components 172 (
As will be understood by those skilled in the art, high voltage power supply 164 may be a residential or commercial electrical system for a building (not shown) housing dishwasher appliance 100. In particular, high voltage power supply 164 may include an individual circuit of a breaker panel box (not shown). As an example, such individual circuit can deliver one hundred and twenty volt nominal AC power to controller 165. However, in alternative exemplary embodiments, such individual circuit can deliver two hundred and forty volt nominal AC power or any other suitable voltage of AC or DC electrical power.
Controller 165 is in electrical communication with a plurality of low voltage electrical components 172 and a plurality of high voltage electrical components 170. Controller 165 is in electrical communication with high voltage and low voltage electrical components 170 and 172 in order to provide electrical power and enable operation of the high voltage and low voltage electrical components 170 and 172. In particular, a high voltage harness 171 electrically connects the high voltage components 170 to controller 165. Similarly, a low voltage harness 173 (also shown in
In the particular embodiment shown in
Controller 165 is configured for selectively operating high voltage and low voltage electrical components 170 and 172. For example, controller 165 may selectively activate heating element 160 to heat liquid or dry articles within wash chamber 106 (
Controller 165 also includes a low voltage power source 166. Low voltage power source 166 is configured for transforming high voltage electrical power (e.g., about one hundred and twenty volt AC electrical power) to low voltage electrical power (e.g., about twenty-four volt DC electrical power). In particular, low voltage power source 166 may be configured to transform high voltage electrical power received from high voltage power supply 164 to low voltage electrical power in order to provide such low voltage electrical power to low voltage electrical components 172. Low voltage power source 166 is also designed to provide isolation from high voltage power supply 164 and meet applicable regulatory standards, e.g. UL or NEC. Low voltage power source 166 may have a maximum, nominal output voltage of between about forty-two volts and about zero volts between conductors and between conductors and earth, e.g., about twenty-four volts AC or DC between conductors and between conductors and earth.
As an example, low voltage power source 166 may be a Class II power source. As used herein, the term “Class II” power source means a power source configured in accordance with UL Standard 60730-1, Section 2.7.5. Thus, low voltage power source 166 may include protective features such as double insulation and/or reinforced insulation of conducting components of low voltage power source 166. Also, low voltage power source 166 need not be grounded to earth. In a configuration with low voltage power source 166 configured as a Class II power source, low voltage harness 173 comprises a Class II circuit with the corresponding safety features that will be well understood by those skilled in the art, e.g., electrical shock safety.
The maximum volt-ampere output of low voltage power source 166 may also be limited to one hundred volt-amperes, e.g., to increase reliability of dishwasher appliance 100. Similarly, the output power capability of the low voltage power source 166 may be hardware (HW) limited, e.g., using a fuse or breaker, to prevent any of the low voltage electrical components 172 from exceeding a particular power output, e.g, of about fifteen watts of power. Conversely, low voltage power source 166 may include multiple branches that each powers a respective one of the low voltage electrical components 172. Each branch of low voltage power source 166 may be HW limited to prevent any of the low voltage electrical components 172 from exceeding a particular power output, e.g, of about fifteen watts of power.
In addition, it should be understood that dishwasher appliance 100 may include multiple low voltage power sources 166 configured to transform high voltage electrical power received from high voltage power supply 164 to low voltage electrical power in order to provide low voltage electrical power to low voltage electrical components 172. For example, each one of the multiple low voltage sources 166 may power a respective one of the low voltage electrical components 172. Each one of the multiple low voltage sources 166 may also be limited to fifteen watts of power.
Low voltage power source 166 is in electrical communication with low voltage electrical components 172 via low voltage harness 173. In particular, low voltage power source 166 provides low voltage electrical power to operate low voltage electrical components 172. As discussed above, low voltage electrical components 172 are located within or on door assembly 200. By providing low voltage electrical power to low voltage electrical components 172 rather than high voltage electrical power from high voltage power supply 164, the reliability or robustness of dishwasher appliance 100 can be improved.
In particular, door assembly 200 can contain a relatively corrosive environment compared to other sections dishwasher appliance 100, e.g., due to high humidity, high temperatures, and the presence of detergent and/or rinse aid. By operating only low voltage electrical components 172 within door assembly 200, the reliability of dishwasher appliance 100 can be improved. Further, by hardware limiting the output power capability of the low voltage power source 166, the risk of excessive power on any of the low voltage electrical component 172 can be further mitigated, and the reliability of the dishwasher appliance 100 can be similarly improved.
In alternative exemplary embodiments, dishwasher appliance 100 need not include any high voltage electrical components 170 such that dishwasher appliance 100 operates with only low voltage electrical components 172, e.g., to further improve reliability of dishwasher appliance 100. For example, in such embodiments, heating element 160 and/or recirculation pump 161 may be low voltage electrical components 172 such that they operate on low voltage electrical power.
In further alternative exemplary embodiments, low voltage electrical components 172 may include additional components of dishwasher appliance 100 not shown in
In additional alternative exemplary embodiments, door assembly 200 may include at least one switch (not shown). The at least one switch is electrically connected to low voltage power source 166, e.g., with low voltage harness 173. Further, the at least one switch is electrically connected to a hardware interlock (not shown), e.g., on controller 165. Such hardware interlock removes or disconnects power, e.g., to any of the high voltage and/or low voltage electrical components 170 and 172 when door assembly 200 is the open position.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.