Dishwashers are used in many single-family and multi-family residential applications to clean dishes, silverware, cutlery, cups, glasses, pots, pans, etc. (collectively referred to herein as “utensils”). Many dishwashers rely primarily on rotatable spray arms that are disposed at the bottom and/or top of a tub and/or are mounted to a rack that holds utensils. A spray arm is coupled to a source of wash fluid and includes multiple apertures for spraying wash fluid onto utensils, and generally rotates about a central hub such that each aperture follows a circular path throughout the rotation of the spray arm. The apertures may also be angled such that force of the wash fluid exiting the spray arm causes the spray arm to rotate about the central hub.
While traditional spray arm systems are simple and mostly effective, they have the short coming of that they must spread the wash fluid over all areas equally to achieve a satisfactory result. In doing so resources such as time, energy and water are generally wasted because wash fluid cannot be focused precisely where it is needed. Moreover, because spray arms follow a generally circular path, the corners of a tub may not be covered as thoroughly, leading to lower cleaning performance for utensils located in the corners of a rack. In addition, in some instances the spray jets of a spray arm may be directed to the sides of a wash tub during at least portions of the rotation, leading to unneeded noise during a wash cycle.
The herein-described embodiments address these and other problems associated with the art by providing a method and dishwasher utilizing one or more tubular spray elements that are both rotatable about longitudinal axes thereof and discretely directable by one or more tubular spray element drives between a plurality of rotational positions about the longitudinal axes thereof. Thus, through the provision of discretely directable tubular spray elements, fluid such as wash fluid and/or pressurized air may be focused in a wash tub, which in many cases can provide more efficient resource usage in the dishwasher.
Therefore, consistent with one aspect of the invention, a dishwasher may include a wash tub, a fluid supply configured to supply fluid to the wash tub, a tubular spray element disposed in the wash tub and being rotatable about a longitudinal axis thereof, the tubular spray element including one or more apertures extending through an exterior surface thereof, and the tubular spray element in fluid communication with the fluid supply to direct fluid from the fluid supply into the wash tub through the one or more apertures, and a tubular spray element drive coupled to the tubular spray element and configured to discretely direct the tubular spray element to each of a plurality of rotational positions about the longitudinal axis thereof.
In some embodiments, the fluid supply includes a pump that recirculates wash liquid within the wash tub to wash utensils disposed in the wash tub. Also, in some embodiments, the fluid supply includes an air supply configured to supply pressurized air to the tubular spray element to dry utensils disposed in the wash tub. In addition, in some embodiments the fluid supply further includes a pump that recirculates wash liquid within the wash tub to wash utensils disposed in the wash tub. Further, in some embodiments, the fluid supply is configured to supply wash liquid and pressurized air to the tubular spray element.
Some embodiments may further include first and second check valves respectively configured to restrict back flow of wash liquid to the air supply and to restrict back flow of pressurized air to the pump. Some embodiments may also include a valve configured to selectively couple the tubular spray element to each of the pump and the air supply.
In addition, in some embodiments, the tubular spray element drive includes an electric motor. In some embodiments, the electric motor includes a brushless direct current motor, and in some embodiments the tubular spray element drive further includes a plurality of gears mechanically coupling the electric motor to the tubular spray element. In some embodiments, the tubular spray element driver further includes a position sensor configured to sense a rotational position of the electric motor or the tubular spray element. In addition, in some embodiments, the position sensor includes an encoder or hall sensor. Moreover, in some embodiments, the electric motor is a stepper motor and the position, sensor is integrated with the electrical motor.
Some embodiments may also include a valve coupled between the tubular spray element and the fluid supply to control fluid flow to the tubular spray element. In some embodiments, the valve is dedicated to the tubular spray element. Moreover, in some embodiments, the valve is disposed proximate a rotary coupling that fluidly couples the tubular spray element to the fluid supply.
Some embodiments may also include a base including a port in fluid communication with the fluid supply and a rotary coupling rotatably supporting an end of the tubular spray element and placing the tubular spray element in fluid communication with the port, where the valve is disposed within the base, and where the tubular spray element drive further includes an electric motor disposed within the base and one or more gears disposed within the base and mechanically coupling the electric motor to the tubular spray element.
In some embodiments, the valve is independently actuated from rotation of the tubular spray element. In addition, in some embodiments, the valve includes an iris valve, a butterfly valve, a gate valve, a plunger valve, a piston valve, a valve with a rotatable disc, or a ball valve. In some embodiments, the valve is a variable valve configured to regulate a flow rate from the fluid supply to the tubular spray element. Moreover, in some embodiments, the valve is actuated through rotation of the tubular spray element. Also, in some embodiments, the valve is configured to close when the tubular spray element is rotated to a predetermined rotational position. In some embodiments, the valve is configured to close when the tubular spray element is over rotated beyond a predetermined rotational position. In addition, in some embodiments, the tubular spray element drive is configured to rotate the tubular spray element in a first rotational direction when spraying fluid from the fluid supply through the tubular spray element, where the valve is configured to close when the tubular spray element is rotated in a second, opposite rotational direction. In addition, in some embodiments the valve is configured to close when the tubular spray element is counter-rotated a first predetermined amount, and to reopen when the tubular spray element is counter-rotated beyond the first predetermined amount.
In addition, some embodiments may further include a controller coupled to the fluid supply and the tubular spray element drive. Moreover, in some embodiments, the controller is configured to control the tubular spray element drive to controllably vary a rotational speed and/or direction of the tubular spray element during rotation of the tubular spray element. Further, in some embodiments, the controller is configured to control the tubular spray element drive to focus the tubular spray element towards a predetermined area of the wash tub to provide concentrated washing or drying in the predetermined area. Also, in some embodiments, the controller is configured to control the tubular spray element drive to avoid directing the tubular spray element towards a wall of the wash tub.
Also, in some embodiments, the tubular spray element is a first tubular spray element and the tubular spray element drive is a first tubular spray element drive. The dishwasher further includes a second tubular spray element disposed in the wash tub and being rotatable about a longitudinal axis thereof, and a second tubular spray element drive separate from the first tubular spray element and coupled to the second tubular spray element. The second tubular spray element drive is configured to discretely direct the second tubular spray element to each of a plurality of rotational positions about the longitudinal axis thereof and independent of control of the first tubular spray element by the first tubular spray element drive.
Further, in some embodiments, the tubular spray element is a first tubular spray element, and the dishwasher further includes a second tubular spray element disposed in the wash tub and being rotatable about a longitudinal axis thereof, and a mechanical coupling between the first and second tubular spray elements such that the tubular spray element drive discretely directs the second tubular spray element to each of a plurality of rotational positions about the longitudinal axis thereof when discretely directing the first tubular spray element.
Further, in some embodiments, the tubular spray element is a first tubular spray element among a plurality of tubular spray elements disposed in the wash tub, the plurality of tubular spray elements including a first subset of tubular spray elements configured to spray wash liquid from the fluid supply to wash utensils disposed in the wash tub and a second subset of tubular spray elements configured to spray pressurized air to dry utensils disposed in the wash tub. In some embodiments, the longitudinal axis is a first axis, where the tubular spray element is linearly movable along a second axis that is generally transverse to the first axis, and where the dishwasher further includes a second tubular spray element drive configured to move the tubular spray element linearly along the second axis. In some embodiments, the longitudinal axis is a first axis, where the tubular spray element is rotatable about a second axis that is generally transverse to the first axis, and where the dishwasher further includes a second tubular spray element drive configured to rotate the tubular spray element about the second axis. Also, in some embodiments, the second axis is disposed proximate an end of the tubular spray element such that an opposite end of the tubular spray element moves along an arcuate path when driven by the second tubular spray element drive.
In some embodiments, the tubular spray element is a first tubular spray element, where the second axis is disposed proximate a first corner of the wash tub, and where the dishwasher further includes a second tubular spray element disposed in the wash tub and being rotatable about a third, longitudinal axis thereof, where the second tubular spray element is further rotatable about a fourth axis that is generally transverse to the third axis, and where the fourth axis is disposed proximate an end of the second tubular spray element, is generally parallel to the second axis and is disposed proximate an opposite corner of the wash tub from the first corner, and a third tubular spray element drive configured to rotate the second tubular spray element about the fourth axis. In some embodiments, the first and second tubular spray elements are configured to rotate about the second and fourth axes generally within a same plane, and where the dishwasher further includes a controller coupled to the second and third tubular spray element drives to coordinate rotation of the first and second tubular spray elements to substantially cover a cross-sectional area of the wash tub without collision between the first and second tubular spray elements. Further, in some embodiments, the first and second tubular spray elements are configured to rotate about the second and fourth axes generally within separate planes to avoid collision between the first and second tubular spray elements.
Some embodiments may also include a deflector extending along the tubular spray element and configured to redirect fluid directed toward the deflector by the tubular spray element. In some embodiments, the deflector is integrated into a wire of a wire rack disposed in the wash tub, supported by a rack disposed in the wash tub, or mounted to a wall of the wash tub. In addition, in some embodiments, the deflector is movable between a plurality of orientations by a controller of the dishwasher to control redirection of the fluid directed toward the deflector by the tubular spray element. Further, in some embodiments, the tubular spray element is mounted to a wall of the wash tub. Also, in some embodiments, the tubular spray element is supported by a rack disposed within the wash tub.
Consistent with another aspect of the invention, a dishwasher may include a wash tub, a fluid supply configured to supply fluid to the wash tub, a plurality of tubular spray elements disposed in the wash tub, each tubular spray element being rotatable about a longitudinal axis thereof and including one or more apertures extending through an exterior surface thereof, and each tubular spray element in fluid communication with the fluid supply to direct fluid from the fluid supply into the wash tub through the one or more apertures thereof, a plurality of tubular spray element drives coupled to respective tubular spray elements from among the plurality of tubular spray elements and configured to discretely direct respective tubular spray elements to each of a plurality of rotational positions about the longitudinal axes thereof, and a controller coupled to the fluid supply and the plurality of tubular spray element drives and configured to supply fluid to the plurality of tubular spray elements and drive the plurality of tubular spray element drives during a wash cycle.
In addition, in some embodiments, at least two tubular spray elements among the plurality of tubular spray elements are mechanically coupled to one another through a gearing arrangement, and where a first tubular spray element drive among the plurality of tubular spray element drives is configured to drive the at least two tubular spray elements. In some embodiments, each tubular spray element drive among the plurality of tubular spray element drives is configured to drive a single tubular spray element from among the plurality of tubular spray elements. In some embodiments, the controller is configured to drive the plurality of tubular spray element drives to coordinate movement of the plurality of tubular spray elements to distribute fluid supplied by the fluid supply throughout at least a portion of the wash tub.
In addition, some embodiments may also include first and second valves respectively regulating flow to first and second tubular spray elements among the plurality of tubular spray elements, where the controller is configured to control the first and second valves to sequence fluid flow from each of the first and second tubular spray elements. Also, in some embodiments, the fluid supply includes a pump and an air supply, where a first portion of the plurality of tubular spray elements is in fluid communication with the pump to wash utensils disposed in the wash tub with wash liquid supplied by the pump and a second portion of the plurality of tubular spray elements is in fluid communication with the air supply to dry utensils disposed in the wash tub with pressurized air supplied by the air supply, and where the controller is configured to drive the pump and one or more of the plurality of tubular spray element drives coupled to the first portion of the plurality of tubular spray elements during a wash operation of the wash cycle and drive the air supply and one or more of the plurality of tubular spray element drives coupled to the second portion of the plurality of tubular spray elements during a drying operation of the wash cycle.
In addition, in some embodiments, the fluid supply includes a pump and an air supply, where one or more tubular spray elements among the plurality of tubular spray elements are in fluid communication with the pump and the air supply, and where the controller is configured to drive the pump and one or more of the plurality of tubular spray element drives coupled to the one or more tubular spray elements during a wash operation of the wash cycle to wash utensils disposed in the wash tub with wash liquid supplied by the pump and drive the air supply and one or more of the plurality of tubular spray element drives coupled to the one or more tubular spray elements during a drying operation of the wash cycle to dry utensils disposed in the wash tub with pressurized air supplied by the air supply. In addition, in some embodiments, the one or more tubular spray elements includes multiple tubular spray elements, where the dishwasher further includes a plurality of valves regulating fluid flow to the one or more tubular spray elements, where during the wash operation the controller is configured to control the plurality of valves to concurrently spray wash liquid from the pump through the multiple tubular spray elements, and where during the drying operation the controller is configured to control the plurality of valves to sequentially spray pressurized air from the air supply through the multiple tubular spray elements.
Consistent with another aspect of the invention, a method of operating a dishwasher may include discretely directing a tubular spray element disposed in a wash tub of the dishwasher to each of a plurality of rotational positions about the longitudinal axis thereof using a tubular spray element drive coupled to the tubular spray element, and supplying fluid to the tubular spray element from a fluid supply in fluid communication with the tubular spray element to direct fluid from the fluid supply into the wash tub through one or more apertures extending through an exterior surface of the tubular spray element.
Consistent with another aspect of the invention, a method of operating a dishwasher may include discretely directing each of a plurality of tubular spray elements disposed in a wash tub of the dishwasher to each of a plurality of rotational positions about the longitudinal axes thereof using one or more tubular spray element drives coupled to the plurality of tubular spray elements, and supplying fluid to the plurality of tubular spray elements from a fluid supply in fluid communication with the plurality of tubular spray elements to direct fluid from the fluid supply into the wash tub through one or more apertures extending through an exterior surface of each of the tubular spray elements.
These and other advantages and features, which characterize the invention, are set forth in the claims annexed hereto and forming a further part hereof. However, for a better understanding of the invention, and of the advantages and objectives attained through its use, reference should be made to the Drawings, and to the accompanying descriptive matter, in which there is described example embodiments of the invention. This summary is merely provided to introduce a selection of concepts that are further described below in the detailed description, and is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
In some embodiments consistent with the invention, one or more tubular spray elements may be discretely directed by one or more tubular spray element drives to spray a fluid such as a wash liquid and/or pressurized air into a wash tub of a dishwasher during a wash cycle. A tubular spray element, in this regard, may be considered to include an elongated body, which may be generally cylindrical in some embodiments but may also have other cross-sectional profiles in other embodiments, and which has one or more apertures disposed on an exterior surface thereof and in fluid communication with a fluid supply, e.g., through one or more internal passageways defined therein. A tubular spray element also has a longitudinal axis generally defined along its longest dimension and about which the tubular spray element rotates, and furthermore, a tubular spray element drive is coupled to the tubular spray element to discretely direct the tubular spray element to multiple rotational positions about the longitudinal axis. A tubular spray element may also have a cross-sectional profile that varies along the longitudinal axis, so it will be appreciated that a tubular spray element need not have a circular cross-sectional profile along its length as is illustrated in a number embodiments herein. In addition, the one or more apertures on the exterior surface of a tubular spray element may be arranged into nozzles in some embodiments, and may be fixed or movable (e.g., rotating, oscillating, etc.) with respect to other apertures on the tubular spray element. Further, the exterior surface of a tubular spray element may be defined on multiple components of a tubular spray element, i.e., the exterior surface need not be formed by a single integral component.
In one embodiment, for example, a separate brushed or brushless DC motor may be used to drive a gear mechanism to rotate a respective tubular spray element, and each tubular spray element may be mounted to a base including a valve to shut off the flow and/or control the flow, e.g., a valve similar to a shutter in a camera or an iris valve that can be controlled by rotation in either direction, and in some instances also including the DC motor.
As will become more apparent below, the combination of a DC motor and a control valve dedicated to a tubular spray element opens up additional factors that can be adjusted to improve a dishwasher's efficiency, control and performance. The variables that may be controlled include, for example, tubular spray element speed, direction, and/or activation. In some embodiments, for general washing settings, all tubular spray elements may be open and spraying wash liquid at low speeds. Tubular spray elements located near wash tub walls may be controlled to rotate in a way not to directly spray wash liquid on the sides of the wash tub thus reducing the noise generated by the wash operation. Tubular spray elements in the center of the wash tub, however, may be allowed to rotate in all directions, and may alternate directions occasionally. A power zone may be created in some embodiments proximate a silverware basket by closing some of the tubular spray elements except for one or more elements proximate the silverware basket, thereby increasing the fluid pressure for power washing in the active tubular spray elements. In addition, in some embodiments the tubular spray elements may be controlled to rotate in a relatively small (e.g., about 5-10 degree) arc to concentrate spray in a small area/zone. Further, to increase efficiency, the tubular spray elements may also be cycled on and off to reduce the amount of wash liquid needed. In addition, it will be appreciated that the flow rate and/or pressure of a fluid supply may also be varied in some embodiments in connection with cycling tubular spray elements on and off, or otherwise as may be desirable in connection with dispensing fluid with a tubular spray element.
Turning now to the drawings, wherein like numbers denote like parts throughout the several views,
In addition, consistent with some embodiments of the invention, dishwasher 10 may include one or more tubular spray elements (TSEs) 26 to direct a wash fluid onto utensils disposed in racks 18, 20. As will become more apparent below, tubular spray elements 26 are rotatable about respective longitudinal axes and are discretely directable by one or more tubular spray element drives (not shown in
The embodiments discussed hereinafter will focus on the implementation of the hereinafter-described techniques within a hinged-door dishwasher. However, it will be appreciated that the herein-described techniques may also be used in connection with other types of dishwashers in some embodiments. For example, the herein-described techniques may be used in commercial applications in some embodiments. Moreover, at least some of the herein-described techniques may be used in connection with other dishwasher configurations, including dishwashers utilizing sliding drawers or dish sink dishwashers, e.g., a dishwasher integrated into a sink.
Now turning to
As shown in
In the illustrated embodiment, pump 36 and air supply 38 collectively implement a fluid supply for dishwasher 100, providing both a source of wash fluid and pressurized air for use respectively during wash and drying operations of a wash cycle. A wash fluid may be considered to be a fluid, generally a liquid, incorporating at least water, and in some instances, additional components such as detergent, rinse aid, and other additives. During a rinse operation, for example, the wash fluid may include only water. A wash fluid may also include steam in some instances. Pressurized air is generally used in drying operations, and may or may not be heated and/or dehumidified prior to spraying into a wash tub. It will be appreciated, however, that pressurized air may not be used for drying purposes in some embodiments, so air supply 38 may be omitted in some instances. Moreover, in some instances, tubular spray elements may be used solely for spraying wash fluid or spraying pressurized air, with other sprayers or spray arms used for other purposes, so the invention is not limited to the use of tubular spray elements for spraying both wash fluid and pressurized air.
Controller 30 may also be coupled to a dispenser 44 to trigger the dispensing of detergent and/or rinse agent into the wash tub at appropriate points during a wash cycle. Additional sensors and actuators may also be used in some embodiments, including a temperature sensor 46 to determine a wash fluid temperature, a door switch 48 to determine when door 12 is latched, and a door lock 50 to prevent the door from being opened during a wash cycle. Moreover, controller 30 may be coupled to a user interface 52 including various input/output devices such as knobs, dials, sliders, switches, buttons, lights, textual and/or graphics displays, touch screen displays, speakers, image capture devices, microphones, etc. for receiving input from and communicating with a user. In some embodiments, controller 30 may also be coupled to one or more network interfaces 54, e.g., for interfacing with external devices via wired and/or wireless networks such as Ethernet, Bluetooth, NFC, cellular and other suitable networks. Additional components may also be interfaced with controller 30, as will be appreciated by those of ordinary skill having the benefit of the instant disclosure. For example, one or more TSE drives 56 and/or one or more TSE valves 58 may be provided in some embodiments to discretely control one or more TSEs disposed in dishwasher 10, as will be discussed in greater detail below.
Moreover, in some embodiments, at least a portion of controller 30 may be implemented externally from a dishwasher, e.g., within a mobile device, a cloud computing environment, etc., such that at least a portion of the functionality described herein is implemented within the portion of the controller that is externally implemented. In some embodiments, controller 30 may operate under the control of an operating system and may execute or otherwise rely upon various computer software applications, components, programs, objects, modules, data structures, etc. In addition, controller 30 may also incorporate hardware logic to implement some or all of the functionality disclosed herein. Further, in some embodiments, the sequences of operations performed by controller 30 to implement the embodiments disclosed herein may be implemented using program code including one or more instructions that are resident at various times in various memory and storage devices, and that, when read and executed by one or more hardware-based processors, perform the operations embodying desired functionality. Moreover, in some embodiments, such program code may be distributed as a program product in a variety of forms, and that the invention applies equally regardless of the particular type of computer readable media used to actually carry out the distribution, including, for example, non-transitory computer readable storage media. In addition, it will be appreciated that the various operations described herein may be combined, split, reordered, reversed, varied, omitted, parallelized and/or supplemented with other techniques known in the art, and therefore, the invention is not limited to the particular sequences of operations described herein.
Numerous variations and modifications to the dishwasher illustrated in
Now turning to
Moreover, as illustrated in
Tubular spray element 100 is in fluid communication with a fluid supply 106, e.g., through a port 108 of tubular spray element drive 102, to direct fluid from the fluid supply into the wash tub through the one or more apertures 104. Tubular spray element drive 102 is coupled to tubular spray element 100 and is configured to discretely direct the tubular spray element 100 to each of a plurality of rotational positions about longitudinal axis L. By “discretely directing,” what is meant is that tubular spray element drive 102 is capable of rotating tubular spray element 100 generally to a controlled rotational angle (or at least within a range of rotational angles) about longitudinal axis L. Thus, rather than uncontrollably rotating tubular spray element 100 or uncontrollably oscillating the tubular spray element between two fixed rotational positions, tubular spray element drive 102 is capable of intelligently focusing the spray from tubular spray element 100 between multiple rotational positions. It will also be appreciated that rotating a tubular spray element to a controlled rotational angle may refer to an absolute rotational angle (e.g., about 10 degrees from a home position) or may refer to a relative rotational angle (e.g., about 10 degrees from the current position).
Tubular spray element drive 102 is also illustrated with an electrical connection 110 for coupling to a controller 112, and a housing 114 is illustrated for housing various components in tubular spray element drive 102 that will be discussed in greater detail below. In the illustrated embodiment, tubular spray element drive 102 is configured as a base that supports, through a rotary coupling, an end of the tubular spray element and effectively places the tubular spray element in fluid communication with port 108.
By having an intelligent control provided by tubular spray element drive 102 and/or controller 112, spray patterns and cycle parameters may be increased and optimized for different situations. For instance, tubular spray elements near the center of a, wash tub may be configured to rotate 360 degrees, while tubular spray elements located near wash tub walls may be limited to about 180 degrees of rotation to avoid spraying directly onto any of the walls of the wash tub, which can be a significant source of noise in a dishwasher. In another instance, it may be desirable to direct or focus a tubular spray element to a fixed rotational position or over a small range of rotational positions (e.g., about 5-10 degrees) to provide concentrated spray of liquid, steam and/or air, e.g., for cleaning silverware or baked on debris in a pan. In addition, in some instances the rotational velocity of a tubular spray element could be varied throughout rotation to provide longer durations in certain ranges of rotational positions and thus provide more concentrated washing in particular areas of a wash tub, while still maintaining rotation through 360 degrees. Control over a tubular spray element may include control over rotational position, speed or rate of rotation and/or direction of rotation in different embodiments of the invention.
In addition, an optional position sensor 122 may be disposed in tubular spray element drive 102 to determine a rotational position of tubular spray element 100 about axis L. Position sensor 122 may be an encoder or hall sensor in some embodiments, or may be implemented in other manners, e.g., integrated into a stepper motor, whereby the rotational position of the motor is used to determine the rotational position of the tubular spray element. Position sensor 122 may also sense only limited rotational positions about axis L (e.g., a home position, 30 or 45 degree increments, etc.). Further, in some embodiments, rotational position may be controlled using time and programming logic, e.g., relative to a home position, and in some instances without feedback from a motor or position sensor. Position sensor 122 may also be external to tubular spray element drive 102 in some embodiments.
An internal passage 124 in tubular spray element 100 is in fluid communication with an internal passage 126 leading to port 108 (not shown in
Turning to
In some embodiments, valve 140 may be actuated independent of rotation of tubular spray element 144, e.g., using an iris valve, butterfly valve, gate valve, plunger valve, piston valve, valve with a rotatable disc, ball valve, etc., and actuated by a solenoid, motor or other separate mechanism from the mechanism that rotates tubular spray element 144. In other embodiments, however, valve 140 may be actuated through rotation of tubular spray element 144. In some embodiments, for example, rotation of tubular spray element 144 to a predetermined rotational position may be close valve 140, e.g., where valve 140 includes an arcuate channel that permits fluid flow over only a range of rotational positions.
As another example, and as illustrated by valve 150 of
As yet another example, and as illustrated by valve 170 of
As yet another example, and as illustrated by valve 180 of
It should also be noted that with the generally U-shape of track 188, valve 180 may be configured in some embodiments to close through counter-rotation by a predetermined amount, yet still remain open when rotated in both directions. Specifically, valve 180 may be configured such that, the valve is open when pin 186 is disposed in either leg of the U-shaped track, but is closed when pin 186 is disposed in the central portion of the track having the shortest radial distance from the centerline of the valve. Valve 180 may be configured such that, when the tubular spray element is rotating in one direction and pin 186 is disposed at one end of track 188, the valve is fully open, and then when the tubular spray element is counter-rotated in an opposite direction a first predetermined amount (e.g., a predetermined number of degrees) the pin 186 travels along track 188 to the central portion to fully close the valve. Then, when the tubular spray element is counter-rotated in the opposite direction beyond the first predetermined about, the pin 186 continues to travel along track 188 to the opposite end, thereby reopening the valve such that the valve will remain open through continued rotation in the opposite direction.
Now turning to
Moreover, as illustrated by tubular spray element 200 of
In still other embodiments, a tubular spray element may be rack-mounted.
As an alternative, and as illustrated in
In some embodiments, tubular spray elements 258, 260 by themselves may provide sufficient washing action and coverage. In other embodiments, however, additional tubular spray elements, e.g., tubular spray elements 262 supported above upper rack 254 on one or both of the top and back walls of wash tub 252, may also be used. In addition, in some embodiments, additional spray arms and/or other sprayers may be used. It will also be appreciated that while 10 tubular spray elements are illustrated in
Next, as illustrated in
In addition, drive 306 may directly drive a pair of tubular spray elements 332, 334 that run along a similar longitudinal axis and that respectively include drive gears 336, 338. Coupled at about 45 degree angles to tubular spray elements 332, 334 are tubular spray elements 340, 342, 344 and 346 that are mechanically connected to gears 336, 338 via respective mechanical couplings including gears 348, 350, 352 and 354 and fluidly connected through headers 356, 358.
It will be appreciated that the configuration illustrated in
Next turning to
It will be appreciated that each hub 408, 410 may include multiple tubular spray element drives, including one tubular spray element drive for rotating the tubular spray element 402, 404 about its longitudinal axis and one tubular spray element drive for rotating the tubular spray element 402, 404 about the transverse axis of rotation. In some embodiments, the two drives may also be interconnected and/or share common components (e.g., gears and/or motors). In other embodiments, tubular spray element drives for rotating about a longitudinal axis and/or rotating about a transverse axis of rotation may be separate from the hub 402, 404 and mechanically coupled in an appropriate manner that will be appreciated by those of ordinary skill having the benefit of the instant disclosure.
It will be appreciated that through the movement of tubular spray elements along paths A1, A2, substantially the entire cross-section of wash tub 406 may be covered, including the corners, thereby minimizing dead zones where insufficient spraying occurs. Furthermore, it will be appreciated that, in order to avoid collisions between tubular spray elements 402, 404, the tubular spray elements may be configured to rotate in different planes (e.g., at different elevations in the wash tub), or alternatively control of the position of each tubular spray element 402, 404 along paths A1, A2 may be coordinated to avoid collisions, even where the elements are in the same plane.
Now turning to
Now turning to
In some embodiments, deflectors may be integrated into a rack, e.g., into the wires thereof as illustrated by deflectors 446, or may be mounted to or otherwise supported by a rack. Further, in some embodiments deflectors may be mounted to a wall of the wash tub, as is the case with deflectors 448 and 450. In addition, while the deflectors illustrated in
It will be appreciated that a multitude of different cross-section profiles may be used in a deflector, and may be specifically configured for specific applications. Moreover, as illustrated by dishwasher 460 of
Next turning to
As illustrated by dishwasher 480 of
Alternatively, as illustrated by dishwasher 500 of
Each of tubular spray elements 508-516, or at least a subset of such tubular spray elements, is capable of being used to spray both wash fluid and pressurized air, either separately or in combination if so desired for a particular application. In order to support such dual use functionality, it may be desirable to include one or more valves intermediate the tubular spray elements and the pump and air supply of a dishwasher.
It will be appreciated that with the ability to shut off tubular spray elements individually as has been disclosed above, air pressure can generally be maintained at a higher level due to the reduction in volume required for drying by selectively shutting off some of the tubular spray elements. Otherwise, with all tubular spray elements active at the same time during a drying operation, the amount of air flow required may necessitate the use of a higher volume air pump or fan in the air supply in order to generate enough air movement to forcibly move pooled water on any utensils. Such concerns may not be as great during a wash operation due to the comparatively greater volume of wash liquid that can be sprayed during a wash operation. Thus, in some embodiments, it may be desirable to concurrently operate multiple tubular spray elements during a wash operation while sequentially operating those tubular spray elements during a drying operation.
Now turning to
As shown in
In some embodiments, controller 628 may control liquid supply 622, air supply 624 and/or hydraulic circuit 626 to selectively spray liquid or pressurized air through sprayers 620, i.e., to spray liquid from liquid supply 622 or spray pressurized air from air supply 624, but not both at the same time. It may be desirable, for example, as discussed above, to utilize a sprayer to spray liquid from liquid supply 622 in a wash operation of a wash cycle, while spraying pressurized air from air supply 624 during a drying operation of the wash cycle.
In addition, in some embodiments, controller 628 may control liquid supply 622, air supply 624 and/or hydraulic circuit 626 to concurrently spray both liquid and pressurized air through sprayers 620, i.e., to spray liquid from liquid supply 622 and spray pressurized air from air supply 624 at substantially the same time. Doing so may effectively aerate the wash liquid in some embodiments, and in some embodiments, doing so may reduce water consumption. Further, in some embodiments, doing so may enable the mechanical action of a sprayer to be varied or controlled.
The control by controller 628 may incorporate control over hydraulic circuit 626, e.g., by switching one or more valves on or off, changing a position of a mixing or variable valve, changing the routing of fluid between two different endpoints, etc. Controller 628 may also incorporate control over each of liquid supply 622 and air supply 624, e.g., by turning either supply 622, 624 on or off, by changing a pressure or flow rate of either supply 622, 624, or changing some other parameter of either supply 622, 624 (e.g., temperature, introduction of additives, etc., if so supported). It will also be appreciated that in some embodiments, e.g., where check valves are used as disclosed in
It may also be desirable in some embodiments when concurrently supplying liquid and pressurized air to dynamically vary a proportion of liquid and pressurized air supplied to the sprayers, e.g., to control a mechanical action of a sprayer. As illustrated in
Various additional modifications may be made to the illustrated embodiments consistent with the invention. Therefore, the invention lies in the claims hereinafter appended.
Number | Name | Date | Kind |
---|---|---|---|
2734520 | Abresch | Feb 1956 | A |
2808063 | Abresch et al. | Oct 1957 | A |
2939465 | Kesling | Jun 1960 | A |
2956572 | Levit et al. | Oct 1960 | A |
2973907 | Abresch et al. | Mar 1961 | A |
2980120 | Jacobs | Apr 1961 | A |
3006557 | Jacobs | Oct 1961 | A |
3026046 | Wickham et al. | Mar 1962 | A |
3044842 | Abresch et al. | Jul 1962 | A |
3051183 | Jacobs | Aug 1962 | A |
3082779 | Jacobs | Mar 1963 | A |
3088474 | Leslie | May 1963 | A |
3101730 | Harris et al. | Aug 1963 | A |
3115306 | Graham | Dec 1963 | A |
3178117 | Hanifan | Apr 1965 | A |
3192935 | Hanifan | Jul 1965 | A |
3210010 | Delapena | Oct 1965 | A |
3324867 | Freese | Jun 1967 | A |
3348775 | Flame | Oct 1967 | A |
3361361 | Schutte | Jan 1968 | A |
3454784 | Wantz et al. | Jul 1969 | A |
3538927 | Harald | Nov 1970 | A |
3586011 | Mazza | Jun 1971 | A |
3590688 | Brannon | Jul 1971 | A |
3596834 | Cushing | Aug 1971 | A |
3719323 | Raiser | Mar 1973 | A |
4175575 | Cushing | Nov 1979 | A |
4226490 | Jenkins et al. | Oct 1980 | A |
4398562 | Saarem et al. | Aug 1983 | A |
4718440 | Hawker et al. | Jan 1988 | A |
4732323 | Jarvis et al. | Mar 1988 | A |
5211190 | Johnson et al. | May 1993 | A |
5226454 | Cabalfin | Jul 1993 | A |
5341827 | Kim | Aug 1994 | A |
5697392 | Johnson et al. | Dec 1997 | A |
5725002 | Payzant | Mar 1998 | A |
6053185 | Cirjak et al. | Mar 2000 | A |
6431188 | Laszczewski, Jr. et al. | Aug 2002 | B1 |
6694990 | Spanyer et al. | Feb 2004 | B2 |
6869029 | Ochoa et al. | Mar 2005 | B2 |
7055537 | Elick et al. | Jun 2006 | B2 |
7210315 | Castelli et al. | May 2007 | B2 |
7293435 | Elexpuru et al. | Nov 2007 | B2 |
7445013 | VanderRoest et al. | Nov 2008 | B2 |
7464718 | McIntyre et al. | Dec 2008 | B2 |
7556049 | Oakes et al. | Jul 2009 | B2 |
7587916 | Rizzetto | Sep 2009 | B2 |
7594513 | VanderRoest et al. | Sep 2009 | B2 |
7607325 | Elexpuru et al. | Oct 2009 | B2 |
7650765 | Rizzetto | Jan 2010 | B2 |
7914625 | Bertsch et al. | Mar 2011 | B2 |
7935194 | Rolek | May 2011 | B2 |
8136537 | Cerrano et al. | Mar 2012 | B2 |
8191560 | Mallory et al. | Jun 2012 | B2 |
8443765 | Hollis | May 2013 | B2 |
8696827 | Ashrafzadeh et al. | Apr 2014 | B2 |
8858729 | Buddharaju et al. | Oct 2014 | B2 |
8900375 | Gnadinger et al. | Dec 2014 | B2 |
8915257 | Büsing et al. | Dec 2014 | B2 |
8932411 | Beaudet et al. | Jan 2015 | B2 |
8978674 | Buesing | Mar 2015 | B2 |
8985128 | Pyo et al. | Mar 2015 | B2 |
9121217 | Hoffberg | Sep 2015 | B1 |
9170584 | Lum et al. | Oct 2015 | B2 |
9204780 | Francisco et al. | Dec 2015 | B2 |
9220393 | Becker et al. | Dec 2015 | B2 |
9241604 | Dries | Jan 2016 | B2 |
9259137 | Boyer et al. | Feb 2016 | B2 |
9265400 | Bigott | Feb 2016 | B2 |
9307888 | Baldwin et al. | Apr 2016 | B2 |
9326657 | Thiyagarajan | May 2016 | B2 |
9480389 | Haft et al. | Nov 2016 | B2 |
9492055 | Feddema | Nov 2016 | B2 |
9532700 | Welch | Jan 2017 | B2 |
9635994 | Boyer et al. | May 2017 | B2 |
9655496 | Baldwin et al. | May 2017 | B2 |
9915356 | Chang et al. | Mar 2018 | B2 |
9958073 | Yang | May 2018 | B2 |
20050011544 | Rosenbauer et al. | Jan 2005 | A1 |
20050139240 | Bong et al. | Jun 2005 | A1 |
20050241680 | Noh | Nov 2005 | A1 |
20050241681 | Hwang | Nov 2005 | A1 |
20060278258 | Kara et al. | Dec 2006 | A1 |
20080163904 | Hwang | Jul 2008 | A1 |
20080271765 | Burrows | Nov 2008 | A1 |
20080276975 | Disch | Nov 2008 | A1 |
20090071508 | Sundaram | Mar 2009 | A1 |
20090090400 | Burrows et al. | Apr 2009 | A1 |
20090145468 | Chericoni | Jun 2009 | A1 |
20100043826 | Bertsch et al. | Feb 2010 | A1 |
20110186085 | Chen | Aug 2011 | A1 |
20120060875 | Fauth et al. | Mar 2012 | A1 |
20120175431 | Althammer et al. | Jul 2012 | A1 |
20120291827 | Buddharaju et al. | Nov 2012 | A1 |
20130000762 | Buddharaju et al. | Jan 2013 | A1 |
20130319483 | Welch | Dec 2013 | A1 |
20140059880 | Bertsch et al. | Mar 2014 | A1 |
20140069470 | Baldwin et al. | Mar 2014 | A1 |
20140373876 | Feddema | Dec 2014 | A1 |
20150007861 | Azmi et al. | Jan 2015 | A1 |
20150266065 | Savoia | Sep 2015 | A1 |
20160198928 | Xu et al. | Jul 2016 | A1 |
20170181599 | Choi et al. | Jun 2017 | A1 |
20170224190 | Sakthivel et al. | Aug 2017 | A1 |
20170273535 | Roderick et al. | Sep 2017 | A1 |
20170354308 | Choi et al. | Dec 2017 | A1 |
20180084967 | Ross et al. | Mar 2018 | A1 |
20180110397 | Kim et al. | Apr 2018 | A1 |
20180132692 | Dries et al. | May 2018 | A1 |
20180168425 | Wilson et al. | Jun 2018 | A1 |
20180192851 | Gursoy et al. | Jul 2018 | A1 |
Number | Date | Country |
---|---|---|
2094961 | Feb 1992 | CN |
1879547 | Dec 2006 | CN |
101134198 | Mar 2008 | CN |
201067392 | Jun 2008 | CN |
101795613 | Aug 2010 | CN |
102370450 | Mar 2012 | CN |
102512128 | Jun 2012 | CN |
102940476 | Feb 2013 | CN |
203447254 | Feb 2014 | CN |
203749364 | Aug 2014 | CN |
104523208 | Apr 2015 | CN |
104757921 | Jul 2015 | CN |
204671085 | Sep 2015 | CN |
105147218 | Dec 2015 | CN |
105231971 | Jan 2016 | CN |
205094364 | Mar 2016 | CN |
3537184 | Apr 1987 | DE |
10121083 | Oct 2002 | DE |
10300501 | Jul 2004 | DE |
202004013786 | Dec 2004 | DE |
102008011743 | Sep 2009 | DE |
202014010365 | May 2015 | DE |
0559466 | Sep 1993 | EP |
0679365 | Nov 1995 | EP |
0764421 | Mar 1997 | EP |
0786231 | Jul 1997 | EP |
0864291 | Sep 1998 | EP |
1132038 | Sep 2001 | EP |
1136030 | Sep 2001 | EP |
1238622 | Sep 2002 | EP |
1252856 | Oct 2002 | EP |
1632166 | Mar 2006 | EP |
1758494 | Mar 2007 | EP |
2636786 | Sep 2013 | EP |
2059160 | Mar 2015 | EP |
1473796 | Mar 1967 | FR |
572623 | Oct 1945 | GB |
2244209 | Nov 1991 | GB |
2003339607 | Dec 2003 | JP |
2014121353 | Jul 2014 | JP |
100786069 | Dec 2007 | KR |
101173691 | Aug 2012 | KR |
200464747 | Jan 2013 | KR |
WO2009008827 | Jan 2009 | WO |
2016008699 | Jan 2016 | WO |
2018053635 | Mar 2018 | WO |
Entry |
---|
DE10121083A1 machine translation (Year: 2002). |
International Search Report and Written Opinion issued in Application No. PCT/CN2018/074294 dated Jul. 5, 2018. |
International Search Report and Written Opinion issued in Application No. PCT/CN2018/074268 dated Jul. 13, 2018. |
SCRIBD, Sears Kenmore Elite 2013 Stainless Steel Tall Tub Dishwasher Service Manual, www.scribd.com, Retrieved on Dec. 5, 2018. |
Everyspec, Federal Specification: Dishwashing Machines, Single Tank and Double Tank, Commercial, www.everyspec.com, Oct. 17, 1983. |
Transmittal of Related Applications dated Apr. 29, 2019. |
Transmittal of Related Applications dated Sep. 17, 2018. |
Electrolux Home Products, Inc. “Dishwasher Use & Care Guide 1500 Series with Fully Electronic Control” 2003. |
International Search Report and Written Opinion issued in Application No. PCT/CN2019/079236 dated Jun. 25, 2019. |
International Search Report and Written Opinion issued in Application No. PCT/CN2019/078799 dated Jun. 26, 2019. |
International Search Report and Written Opinion issued in Application No. PCT/CN2019/078612 dated Jun. 28, 2019. |
U.S. Patent and Trademark Office, Office Action issued in related U.S. Appl. No. 15/721,091 dated May 23, 2019. |
International Search Report and Written Opinion issued in Application No. PCT/CN2019/078611 dated Jun. 5, 2019. |
Number | Date | Country | |
---|---|---|---|
20190099054 A1 | Apr 2019 | US |