Dishwasher with shared heater

Information

  • Patent Grant
  • 9034112
  • Patent Number
    9,034,112
  • Date Filed
    Friday, December 3, 2010
    14 years ago
  • Date Issued
    Tuesday, May 19, 2015
    9 years ago
Abstract
An automatic dishwasher having a heater shared by the recirculation system and the air supply system to heat the liquid in the recirculation system and the air in the air supply system.
Description
BACKGROUND OF THE INVENTION

Contemporary automatic dishwashers for use in a typical household include a tub for receiving soiled utensils to be cleaned. A spray system and a recirculation system may be provided for re-circulating liquid throughout the tub to remove soils from the utensils. An air supply system may be included to provide air to the tub for drying the utensils. The dishwasher may have a controller that implements a number of pre-programmed cycles of operation to wash utensils contained in the tub.


SUMMARY OF THE INVENTION

The invention relates to an automatic dishwasher with a recirculation system, an air supply system, and a heater. Where the heater is shared by the recirculation system and the air supply system such that the heater heats the liquid recirculated by the recirculation system and heats the air in the air supply system. The heater may be configured to simultaneously or selectively heat the liquid and the air.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:



FIG. 1 is a perspective view of a dishwasher in accordance with a first embodiment of the invention.



FIG. 2 is a partial schematic cross-sectional view of the dishwasher shown in FIG. 1 and illustrating a recirculation system and air supply system.



FIG. 3 is a schematic view of a control system of the dishwasher of FIG. 1.



FIG. 4 is a perspective view of one embodiment of the shared wash unit and its couplings to the recirculation system and air supply system illustrated in FIG. 2.



FIG. 5 is a cross-sectional view of the shared wash unit and illustrating a heater that is shared by the recirculation system and air supply system illustrated in FIG. 4.



FIG. 6 is a cross-sectional view of a portion of a dishwasher in accordance with a second embodiment of the invention.





DESCRIPTION OF EMBODIMENTS OF THE INVENTION

Referring to FIG. 1, a first embodiment of the invention is illustrated as an automatic dishwasher 10 having a cabinet 12 defining an interior. Depending on whether the dishwasher 10 is a stand-alone or built-in, the cabinet 12 may be a chassis/frame with or without panels attached, respectively. The dishwasher 10 shares many features of a conventional automatic dishwasher, which will not be described in detail herein except as necessary for a complete understanding of the invention.


The cabinet 12 encloses a wash tub 14 at least partially defining a treating chamber 24 for holding utensils for washing according to a cycle of operation. While typically made from a single piece, the wash tub 14 has spaced top and bottom walls 16 and 18, spaced sidewalls 20, a front wall 21, and a rear wall 22. In this configuration, the walls 16, 18, 20, 21, and 22 collectively define the treating chamber 24 for washing utensils. The front wall 21 may be a door of the dishwasher 10, which may be pivotally attached to the dishwasher 10 for providing accessibility to the treating chamber 24 for loading and unloading utensils or other washable items.


Utensil holders in the form of upper and lower utensil racks 26, 28 are located within the treating chamber 24 and receive utensils for washing. The upper and lower racks 26, 28 may be mounted for slidable movement in and out of the treating chamber 24 for ease of loading and unloading. As used in this description, the term “utensil(s)” is intended to be generic to any item, single or plural, that may be treated in the dishwasher 10, including, without limitation; dishes, plates, pots, bowls, pans, glassware, and silverware. While the present invention is described in terms of a conventional dishwashing unit as illustrated in FIG. 1, it could also be implemented in other types of dishwashing units such as in-sink dishwashers or drawer dishwashers including drawer dishwashers having multiple compartments.


Referring to FIG. 2, the major systems of the dishwasher 10 and their interrelationship may be seen. A recirculation system 30 is provided for spraying liquid within the treating chamber 24 to treat any utensils located therein. An air supply system 60 is provided for supplying air to the treating chamber 24 for aiding in the drying of the utensils. The recirculation system further comprises a wash unit 31 that is operably coupled to the recirculation system 30 and the air supply system 60, such that it provides pumping for the recirculation system 30, and heating for the both the recirculation system 30 and the air supply system 60, along with a draining function. Further, a heater 25 may be located in the treating chamber 24 near the bottom wall 18 to heat liquid in the treating chamber 24.


The recirculation system 30 comprises one or more sprayers for spraying liquid within the treating chamber 24. As illustrated, there are four sprayers: a first lower spray assembly 34, a second lower spray assembly 36, a mid-level spray assembly 38, and an upper spray assembly 40, which are supplied liquid from a supply tube 42. One or more valves may be provided with the supply tube 42 to control the flow of liquid to the various sprayers. In this way, liquid may be selectively supplied to a subset of all of the sprayers and/or simultaneously to all of the sprayers.


The first lower spray assembly 34 is positioned above the bottom wall 18 and beneath the lower utensil rack 28. The first lower spray assembly 34 is an arm configured to rotate in the wash tub 14 and spray a flow of liquid from a plurality of spray nozzles or outlets 43, in a primarily upward direction, over a portion of the interior of the wash tub 14. A first wash zone may be defined by the spray field emitted by the first lower spray assembly 34 into the treating chamber 24. The spray from the first lower spray assembly 34 is sprayed into the wash tub 14 in typically upward fashion to wash utensils located in the lower utensil rack 28. The first lower spray assembly 34 may optionally also provide a liquid spray downwardly onto the lower tub region 29, but for purposes of simplification, this will not be illustrated or described herein.


The second lower spray assembly 36 is illustrated as being located adjacent the lower rack 28 toward the rear of the treating chamber 24. The second lower spray assembly 36 is illustrated as including a horizontally oriented distribution header or spray manifold 44 having a plurality of nozzles 50, each with a plurality of apertures 52. The spray manifold 44 may not be limited to this position; rather, the spray manifold 44 could be located in virtually any part of the treating chamber 24. Alternatively, the manifold 44 could be positioned underneath the lower rack 28, adjacent or beneath the first lower spray assembly 34. Such a spray manifold is set forth in detail in U.S. Pat. No. 7,594,513, issued Sep. 29, 2009, and titled “Multiple Wash Zone Dishwasher,” which is incorporated herein by reference in its entirety.


The second lower spray assembly 36 may be configured to spray a flow of treating liquid from the apertures 52, in a generally lateral direction, over a portion of the interior of the treating chamber 24. The spray from the apertures 52 may be typically directed to treat utensils located in the lower rack 28. A second wash zone may be defined by the spray field emitted by the second lower spray assembly 36 into the treating chamber 24. When both the first lower spray assembly 34 and the second lower spray assembly 36 emit spray fields the first and second zones may intersect.


The mid-level spray arm assembly 38 is positioned between the upper utensil rack 26 and the lower utensil rack 28. Like the first lower spray assembly 34, the mid-level spray assembly 38 may also be configured to rotate in the dishwasher 10 and spray a flow of liquid from at least one outlet 43, in a generally upward direction, over a portion of the interior of the wash tub 14. In this case, the spray from the mid-level spray arm assembly 38 is directed to utensils in the upper utensil rack 26 to define a third spray zone. In contrast, the upper spray arm assembly 40 is positioned above the upper utensil rack 26 and generally directs a spray of liquid in a generally downward direction to define a fourth spray zone that helps wash utensils on both upper and lower utensil racks 26, 28.


The wash unit 31 comprises a wash or recirculation pump 32 and a drain pump 41, which are fluidly coupled to a housing 57 defining a sump 58, where liquid sprayed into the wash tub 14 will collect due to gravity. As illustrated, the housing 57 is physically separate from the wash tub 14 and provides a mounting structure for the recirculation pump 32 and drain pump 41. An inlet conduit 31A fluidly couples the wash tub 14 to the housing 57 and provides a path for the liquid in the treating chamber 24 to travel to the sump 58. As illustrated, the recirculation pump 32 fluidly couples the sump 58 to the supply tube 42 to effect a supplying of the liquid from the sump 58 to the sprayers. As illustrated, the drain pump 41 fluidly couples to a drain pump outlet 46 to effect a supplying of liquid from the sump to a household drain 47.


The inlet conduit 31A, sump 58, recirculation pump 32, spray assemblies 34-40, and supply tube 42 collectively form a liquid flow path in the recirculation system 30. A filter may be located somewhere within the liquid flow path such that soil and foreign objects may be filtered from the liquid. As an example, a filter 55 has been illustrated as being located inside the inlet conduit 31A such that soil and debris may be filtered from the liquid as it travels from an opening in the lower portion 29 of the bottom wall 18 to the sump 58. The filter 55 may be a strainer, which may be employed to retain larger soil particles but allows smaller particles to pass through. An optional filter element 61 has been illustrated in FIG. 2 as being located within the housing 57 between the inlet conduit 31A and the recirculation pump 32.


The recirculation pump 32 may be fluidly coupled to the recirculation path such that it draws liquid in through the inlet conduit 31A and sump 58 and delivers it to one or more of the spray assemblies 34-40 through the supply tube 42. One or more valves or diverters (not shown) may also be included in the dishwasher 10 to control the flow of liquid to the spray assemblies 34-40 from the recirculation pump 32. The liquid is sprayed back into the treating chamber 24 through the spray assemblies 34-40 and drains back to the sump 58 where the process may be repeated. Thus, a liquid flow path fluidly couples the treating chamber 24 to the spray assemblies 34-40.


The drain pump 41 may also be fluidly coupled to the housing 57. The drain pump 41 may be adapted to draw liquid from the housing 57 and to pump the liquid through a drain pump outlet 46 to a household drain 47. As illustrated, the dishwasher 10 includes a recirculation pump 32 and a drain pump 41. Alternatively, it is possible for the two pumps to be replaced by a single pump, which may be operated to supply to either the household drain or to the recirculation system.


The air supply system 60 comprises an inlet duct 68 coupled to the wash tub 14, with an inlet 64 located below the bottom wall 18 such that air exterior to the tub 14, i.e., “ambient air”, may be provided to the treating chamber 24. A fan or blower 62 is fluidly coupled to the inlet duct 68 through an air supply conduit 66 to draw in the ambient air through the inlet 64 and supply it to the treating chamber 24 through the air supply conduit 66 and air inlet duct 68. An air outlet, such as a vent 69, is provided for exhausting the supplied air from the treating chamber 24. As illustrated, the vent 69 is fluidly coupled to an outlet duct 69A, which vents into the interior of the door 21 and will escape through the various openings in the door 21. However, the outlet duct 69A may extend completely through the door 21. It should be noted that a flap or other means (not shown) may be used to close off the fluid connection between the outlet duct 68 and the wash tub 14 during certain portions of the cycle of operation so that liquid does not enter the outlet duct 68.


A control panel or user interface 56 provided on the dishwasher 10 and coupled to a controller 54 may be used to select a cycle of operation. The user interface 56 may be provided on the cabinet 12 or on the outer panel of the door and can include operational controls such as dials, lights, switches, and displays enabling a user to input commands to the controller 54 and receive information about the selected cycle of operation. The dishwasher 10 may further include other conventional components such as additional valves, a dispensing system for dispensing treating chemistries or rinse aids, spray arms or nozzles, etc.; however, these components are not germane to the present invention and will not be described further herein.


As illustrated in FIG. 3, the controller 54 may be provided with a memory 74 and a central processing unit (CPU) 76. The memory 74 may be used for storing control software that may be executed by the CPU 76 in completing a cycle of operation using the dishwasher 10 and any additional software. For example, the memory 74 may store one or more pre-programmed cycles of operation that may be selected by a user and completed by the dishwasher 10. A cycle of operation for the dishwasher 10 may include one or more of the following steps: a wash step, a rinse step, and a drying step. The wash step may further include a pre-wash step and a main wash step. The rinse step may also include multiple steps such as one or more additional rinsing steps performed in addition to a first rinsing. The amounts of water and/or rinse aid used during each of the multiple rinse steps may be varied. The drying step may have a non-heated drying step (so called “air only”), a heated drying step or a combination thereof. These multiple steps may also be performed by the dishwasher 10 in any desired combination.


The controller 54 may be operably coupled with one or more components of the dishwasher 10 for communicating with and controlling the operation of the components to complete a cycle of operation. For example, the controller 54 may be coupled with the recirculation pump 32 for circulation of liquid in the wash tub 14 and the drain pump 41 for drainage of liquid in the wash tub 14. The controller 54 may also be operably coupled with the blower 62 to provide air into the wash tub 14.


Further, the controller 54 may also be coupled with one or more temperature sensors 72, which are known in the art and not shown for simplicity, such that the controller 54 may control the duration of the steps of the cycle of operation based upon the temperature detected. The controller 54 may also receive inputs from one or more other optional sensors 77, which are known in the art and not shown for simplicity. Non-limiting examples of optional sensors 77 that may be communicably coupled with the controller 54 include a moisture sensor, a door sensor, a detergent and rinse aid presence/type sensor(s). The controller 54 may also be coupled to a dispenser 78, which may dispense a detergent during the wash step of the cycle of operation or a rinse aid during the rinse step of the cycle of operation.


During operation of the dishwasher 10, the recirculation system 30 may be employed to provide liquid to one or more of the spray assemblies 34-40. Liquid in the wash tub 14 passes into the housing 57 where it may collect in the sump 58. At an appropriate time during the cycle of operation to spray liquid into the treating chamber 24, the controller 55 signals the recirculation pump 32 to supply liquid to one or more of the spray assemblies 34-40. The recirculation pump 32 draws liquid from the sump 58 through the filter element 61 and the recirculation pump 32 where it may then be delivered to one or more of the spray assemblies 34-40 through the supply tube 42 and any associated valving.



FIG. 4 illustrates a perspective view of one embodiment of the wash unit 31 integrated with the air supply system 60. The wash unit 31 has a drain pump 41 and recirculation pump 32 mounted to the housing 57. The air supply conduit 66 of the air supply system 60 wraps around the housing 57, with the blower 62 located within the air supply conduit 66 just inside the inlet 64.


Referring to FIG. 5, the housing 57 may have a housing inlet 57A and a housing outlet 57B. A filter element 61 located in the housing 57 and fluidly disposed between the housing inlet 57A and housing outlet 57B to filter liquid passing through the sump 58. Because the housing 57 is located within the cabinet 12 but physically remote from the wash tub 14, the filter element 61 is not directly exposed to the wash tub 14. In this manner, the housing 57 and filter element 61 may be thought of as defining a filter unit, which is separate and remote from the wash tub 14.


The filter element 61 may be a fine filter, which may be utilized to remove smaller particles from the liquid. The filter element 61 may be a rotating filter and such a rotating filter is set forth in detail in U.S. patent application Ser. No. 12/643,394, filed Dec. 21, 2009, and titled “Rotating Drum Filter for a Dishwashing Machine,” which is incorporated herein by reference in its entirety. The rotating filter according to U.S. patent application Ser. No. 12/643,394 may be operably coupled to an impeller 32C of the recirculation pump 32 such that when the impeller 32C rotates the filter element 61 is also rotated.


The recirculation pump 32 may be adapted to draw liquid from the housing outlet 57B in through an inlet 32A and to pump the liquid out through an outlet 32B to the sprayers. The directional arrows in FIG. 5 illustrate the liquid flowing into the housing 57 and the sump 58 where it may then be drawn through the filter element 61 and the recirculation pump 32 when the recirculation pump 32 is operated. In this manner, the filter element 61 fluidly separates the housing 57 from the inlet 32A of the recirculation pump 32. The drain pump 41 may also be fluidly coupled to the housing 57. The drain pump 41 includes an impeller 41C which may draw liquid from the housing 57 and pump it through a drain pump outlet 46 to a household drain 47 (FIG. 2). The filter element 61 is not fluidly disposed between the housing inlet 57A and the drain pump outlet 46 such that unfiltered liquid may be removed from the sump 58.


The housing 57 has been illustrated as being located inside the air supply conduit 66. This may also be described as the air supply conduit 66 wrapping around the cylindrical housing 57 such that the housing 57 becomes an inside wall of the air supply conduit 66. In this manner, the housing 57 is a shared wall of the recirculation system 30 and the air supply conduit 66. A heater 70 may be operably coupled to the controller 54 and may be positioned such that it is mounted to the housing 57 and shared by the recirculation system 30 and the air supply system 60. More specifically, it has been illustrated that the heater 70 is mounted to an exterior of the housing 57 where the air supply conduit 66 wraps around the cylindrical housing 57. In this location, the heater 70 may provide heated air and heated liquid into the wash tub 14 at the same time or may provide heated air and heated liquid into the wash tub 14 separately. Alternatively, it has been contemplated that the heater 70 may be mounted to an interior of the housing 57 or that portions of the heater 70 could be mounted on both the interior and the exterior of the housing 57.


The heater 70 is a variable thermal energy heater, which may be accomplished by altering the duty cycle (ratio of on/off states per unit time) of a fixed wattage heater, a variable wattage heater, or a combination of both. As illustrated, the heater 70 has three rings encircling the housing. The three rings may be an integral unit or independent. As an integral unit, the rings could be part of a heating coil that uses a variable duty cycle to vary the thermal energy output by the heater 70. As independent rings, the desired numbers of rings could be selectively actuated to obtain the desired thermal energy output. For example, if the heater is to run at ⅓ thermal energy output, then only one of the three rings could be continuously actuated. A combination of both approaches could be used such as continuously running a subset of all of the rings, while operating another one or more of the rings according to a duty cycle.


In addition to a coiled heater or multiple ring heater, other heater configurations may be used. For example, it has been contemplated that the heater 70 may be a film heater mounted on the housing 57. The film heater may be either a thin or thick film heater. The film heater may comprise one film or multiple films in much the same manner that the rings may be a coil or individual elements.


It has also been contemplated that the heater 70 may be mounted to the housing 57 and positioned such that it abuts a portion of the air supply conduit 66. In this manner, the air supply conduit 66 need not wrap fully around the housing 57. Instead, the air supply conduit 66 may abut or partially envelope the housing 57. In such an instance, the heater 70 may be mounted to the housing 57 where the air supply conduit 66 abuts or partially envelops the housing 57 such that the heater 70 may heat the liquid in the housing 57 and the air in the air supply conduit 66. It should be noted that while the blower 62 has been illustrated as being fluidly coupled with the air supply conduit 66 upstream from the heater 70 such that heated air does not pass through the blower 62, the blower 62 may also be located downstream from the heater 70 such that heated air is passed through the blower 62.


Further, the controller 54 may be coupled with the heater 70 such that it may be used to heat the liquid or heat the air depending on the step being performed in the cycle of operation. The controller 54 may be capable of operating the heater 70 at a variety of thermal energy output rates. The thermal energy output rate is a measurement of thermal output (power) by the heater 70 over time. The ability to control thermal energy output rates of the heater 70 is important because the liquid in the recirculation system, which is typically water, has a much greater density and latent heat, than the air of the air system, which means greater thermal output is required to change the temperature of the liquid as compared to the air, resulting in the liquid being capable of absorbing much more thermal energy than air alone.


In dishwashers, the thermal energy output of the heater 70 will typically be selected/sized to heat the recirculated liquid at a desired rate. Such a heater will typically be of a much greater size than needed to heat just the air in the air system. Thus, when the heater 70 is used to heat only the air, or heat the air without the presence of the liquid, the heater could easily over heat the air and/or provide too much thermal energy into the air system and the surrounding dishwasher.


The controller 54 can operate the heater 70 at a lower thermal energy output rate when only air is being heated to prevent the air from being over-heated. Such control of the heater 70 has the benefit of not wasting thermal energy, leading to a more efficient heating of the air alone.


In operation, the controller 54 may operate the heater 70 at a first thermal energy output rate when liquid is being recirculated and the controller 54 may operate the heater 70 at a second lower thermal energy output rate when only air is being supplied. Further, the controller 54 may operate the heater 70 at the first thermal energy output rate when liquid is being recirculated and air is being supplied. Alternatively, the controller 54 may operate the heater 70 a third thermal energy output rate that is even higher than the first thermal energy output rate to heat both the air and liquid at the same time.


Depending on the type of heater 70, as explained above, the controller 54 may be capable of operating the heater 70 in a variety of different ways to achieve different thermal energy outputs. For example, it has been contemplated that the thermal energy output rate of the heater 70 may be set by the controller 54 selecting a duty cycle of the heater 70. A first duty cycle may be set to achieve the first thermal energy output rate and a second duty cycle may be set to achieve the second thermal energy output rate. More specifically, when liquid is being recirculated, and the first thermal energy output rate is desired, the duty cycle may be set higher such that the heater 70 may be powered continuously. When only air is being heated, and the second thermal energy output rate is desired, the heater 70 may be set to a lower duty cycle to decrease the ratio of on/off states per unit time and limit the thermal energy output rate.


Alternatively, if the heater 70 is a variable wattage heater, then the thermal energy output rate of the heater 70 may be set by the controller 54 selecting a wattage for the heater 70 to operate at. More specifically, a first higher wattage may be selected to produce a first thermal energy output rate and a second lower wattage may be selected to produce a second lower thermal energy output rate. By way of non-limiting example, the heater 70 may be controlled to operate at around 900 watts when liquid is being heated and the controller 54 may decrease the wattage of the heater 70 down to 300 watts when only air is being heated.


As yet another alternative, if the heater 70 is composed of independent rings, the controller may achieve different thermal energy output rates by selectively actuating a desired number of rings. More specifically, when liquid is being recirculated and the first thermal energy output rate is desired the entire portion of the heater 70 or all three of the rings may be operated. When only air is being heated, and the second thermal energy output rate is desired, a smaller portion of the heater 70, or only one of the three rings may be operated. As yet another alternative, the controller 54 may continuously run a subset of all of the rings of the heater 70, while operating another one or more of the rings according to a duty cycle.


Thus, depending upon the cycle of operation being run, the controller 54 may operate the heater 70 at a first thermal energy output rate while the liquid is being recirculated to heat the liquid being supplied to the wash tub 14. Further, during operation of the dishwasher 10, the air supply system 60 may be employed to provide air to the treating chamber 24. At an appropriate time during the cycle of operation to introduce air into the wash tub 14 the controller 54 signals the blower 62 to supply air to the wash tub 14. Air may be supplied from the air inlet 64 of the blower 62 through the air supply conduit 66 and the outlet duct 68 into the treating chamber 24. Depending upon the cycle of operation being run, non-heated drying, also known as an air only drying, may be performed with the heater 70 being de-energized while air is supplied to the wash tub 14 from the air supply conduit 66 and the outlet duct 68. Alternatively, depending upon the cycle of operation being run, heated drying may be performed with the heater 70 being operated at a second thermal energy output by the controller 54 while air is supplied to the wash tub 14 from the air supply conduit 66 and the outlet duct 68. The controller 54 may also operate the heater 70 to heat the air being provided to the treating chamber 24 while liquid is being recirculated at the same time that the air is being supplied. In this case the controller 54 may operate the heater 70 at a third thermal energy output rate.


Regardless of whether the air is heated or not, the blower 62 may force air into the lower portion of the wash tub 14. The air travels upward within the treating chamber 24 and exits the treating chamber 24 through the vent 69 where it may be fluidly open to ambient air through a conduit 69a. In some configurations, an additional blower (not shown) may be provided to force air out the vent 69 to increase the drying speed. It has been contemplated that the air supply system 60 may be operated while the recirculation system 30 is also being operated. It has also been contemplated that the air supply system 60 may be operated separately to form a drying portion of the operational cycle.



FIG. 6 illustrates a dishwasher 100 according to a second embodiment of the invention. The second embodiment 100 is similar to the first embodiment 10. Therefore, like parts will be identified with like numerals increased by 100, with it being understood that the description of the like parts of the first embodiment applies to the second embodiment, unless otherwise noted. FIG. 6 is identical to the embodiment shown in FIG. 2, having the specific wash unit as illustrated in FIG. 4, except that the wash unit 131, sump 158, and air supply system 160 are remote from the wash tub 114 in the dishwasher 100. Further, the dishwasher 100 includes a liquid coupling system 179, which aids in recirculating liquid collected in the remote sump 158 to the treating chamber 124. The liquid coupling system 179 is illustrated as including a first recirculation conduit 131A fluidly coupling the wash tub 114 to the housing 157 and a second recirculation conduit 180 fluidly coupling the recirculation pump outlet 132B to the wash tub 114. In all other ways, the embodiment of FIG. 6 is structured and operates in the same manner as the first embodiment illustrated in FIG. 2.


The embodiments of the invention described above allow for the integration of the air supply system and the recirculation system such that a single heater may be used to heat both the liquid and the air supplied to the tub. This results in a simple construction, which requires fewer parts to manufacture the dishwasher. Further, the embodiments of the invention described above remove the heater from the tub. This results in a heater which is not exposed to the user and prevents plastic items on the bottom rack from being melted.


The embodiments of the invention described above also allow for a compact assembly of the recirculation system and air supply system. The compact assembly may be more efficiently shielded. Another benefit that may be recognized from the more compact assembly is that a larger wash tub may be put in the housing. A larger wash tub may result in a larger capacity for utensils, which allows for more utensils to be washed at one time. This results in a saving of both time and energy as the dishwasher needs to be run fewer times to wash the same amount of utensils.


While the invention has been specifically described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation, and the scope of the appended claims should be construed as broadly as the prior art will permit. For example, it has been contemplated that the invention may differ from the configurations shown in FIGS. 1-6, such as by inclusion of other conduits, utensil racks, valves, spray assemblies, seals, and the like, to control the flow of liquid and the supply of air.

Claims
  • 1. A dishwasher comprising: a tub at least partially defining a treating chamber for receiving dishes;a recirculation system comprising a wash unit having a housing, with an inlet fluidly coupled to the tub and an outlet fluidly coupled to the tub, and a filter element located in the housing and fluidly disposed between the inlet and outlet;an air supply system having an air supply conduit fluidly coupled to the tub for supplying air to the tub and where the air supply conduit is fluidly separate from an interior of the housing; anda heater mounted to an outside of the housing and shared by the recirculation system and the air supply system to heat liquid in the housing and air in the air supply conduit.
  • 2. The dishwasher of claim 1 wherein the housing and the air supply conduit comprise a shared wall and the heater is provided on the shared wall.
  • 3. The dishwasher of claim 2 wherein the heater is a film heater mounted on the shared wall.
  • 4. The dishwasher of claim 1 wherein the heater is mounted to an exterior of the housing.
  • 5. The dishwasher of claim 1 wherein the housing comprises a wall and the air supply conduit at least partially envelopes the wall, and the heater is provided on the wall.
  • 6. The dishwasher of claim 1 wherein the housing is remote from the tub.
  • 7. The dishwasher of claim 6, further comprising a liquid coupling system having a first recirculation conduit fluidly coupling the tub to the housing inlet and a second recirculation conduit fluidly coupling the housing outlet to the tub.
  • 8. The dishwasher of claim 1 wherein the recirculation system further comprises a recirculation pump having an inlet fluidly coupled to the housing and an outlet and wherein the filter fluidly separates the housing from the pump inlet.
  • 9. The dishwasher of claim 8, wherein the filter is a rotating filter and is mounted to an impeller of the recirculation pump to effect the rotation of the filter.
  • 10. The dishwasher of claim 1 wherein the air supply conduit comprises an inlet fluidly open to air in the dishwasher.
  • 11. The dishwasher of claim 1 further comprising an outlet fluidly open to ambient air.
  • 12. The dishwasher of claim 1, wherein the air supply system comprises a blower fluidly coupled with the air supply conduit to supply air to the tub and the blower is operably coupled to the air supply conduit upstream from the heater.
  • 13. A dishwasher comprising: a tub at least partially defining a treating chamber for receiving dishes;a sump having a housing, with an inlet fluidly coupled to the tub and an outlet fluidly coupled to the tub, and collecting liquid supplied to the tub;a recirculation system fluidly coupling the housing and the tub to recirculate the liquid;an air supply system having an air supply conduit at least partially enveloping the housing and fluidly coupled to the tub; anda heater provided on a portion of an exterior of the housing enveloped by the air supply conduit;wherein the air supplied to the tub through the air supply conduit and the liquid in the sump are heated by the heater.
  • 14. The dishwasher of claim 13 wherein the housing is remote from the tub.
  • 15. The dishwasher of claim 14, further comprising a liquid coupling system having a first recirculation conduit fluidly coupling the tub to the housing inlet and a second recirculation conduit fluidly coupling the housing outlet to the tub.
  • 16. The dishwasher of claim 13 wherein the recirculation system comprises a recirculation pump fluidly coupled to the housing.
  • 17. The dishwasher of claim 13 wherein the air supply conduit wraps around the housing.
  • 18. The dishwasher of claim 13 wherein the housing is cylindrical and the air supply conduit wraps around the cylindrical housing.
  • 19. The dishwasher of claim 18 wherein the heater is provided on the cylindrical housing where the air supply conduit wraps around the housing.
  • 20. The dishwasher of claim 18 wherein the heater is a film heater mounted on the cylindrical housing.
  • 21. The dishwasher of claim 13 wherein the heater is capable of supplying different wattages for heating of the supplied air and the liquid.
  • 22. The dishwasher of claim 13 wherein the air supply system comprises a blower fluidly coupled with the air supply conduit to supply air to the tub and the blower is operably coupled to the air supply conduit upstream from the heater.
  • 23. The dishwasher of claim 13 wherein the air supply system comprises an inlet fluidly open to air in the dishwasher.
  • 24. The dishwasher of claim 13, further comprising an outlet fluidly open to ambient air.
US Referenced Citations (124)
Number Name Date Kind
1617021 Mitchell Feb 1927 A
2154559 Bilde Apr 1939 A
2422022 Koertge Jun 1947 A
2734122 Flannery Feb 1956 A
3016147 Cobb et al. Jan 1962 A
3026628 Berger, Sr. et al. Mar 1962 A
3068877 Jacobs Dec 1962 A
3103227 Long Sep 1963 A
3122148 Alabaster Feb 1964 A
3186417 Fay Jun 1965 A
3288154 Jacobs Nov 1966 A
3542594 Smith et al. Nov 1970 A
3575185 Barbulesco Apr 1971 A
3586011 Mazza Jun 1971 A
3739145 Woehler Jun 1973 A
3801280 Shah et al. Apr 1974 A
3846321 Strange Nov 1974 A
3906967 Bergeson Sep 1975 A
3989054 Mercer Nov 1976 A
4179307 Cau et al. Dec 1979 A
4180095 Woolley et al. Dec 1979 A
4326552 Bleckmann Apr 1982 A
4754770 Fornasari Jul 1988 A
5002890 Morrison Mar 1991 A
5030357 Lowe Jul 1991 A
5133863 Zander Jul 1992 A
5331986 Lim et al. Jul 1994 A
5454298 Lu Oct 1995 A
5470142 Sargeant et al. Nov 1995 A
5470472 Baird et al. Nov 1995 A
5557704 Dennis et al. Sep 1996 A
5569383 Vander Ark, Jr. et al. Oct 1996 A
5618424 Nagaoka Apr 1997 A
5711325 Kloss et al. Jan 1998 A
5755244 Sargeant et al. May 1998 A
5782112 White et al. Jul 1998 A
5803100 Thies Sep 1998 A
5865997 Isaacs Feb 1999 A
5868937 Back et al. Feb 1999 A
5904163 Inoue et al. May 1999 A
5924432 Thies et al. Jul 1999 A
6289908 Kelsey Sep 2001 B1
6389908 Chevalier et al. May 2002 B1
6460555 Tuller et al. Oct 2002 B1
6491049 Tuller et al. Dec 2002 B1
6601593 Deiss et al. Aug 2003 B2
6666976 Benenson, Jr. et al. Dec 2003 B2
6800197 Kosola et al. Oct 2004 B1
6997195 Durazzani et al. Feb 2006 B2
7047986 Ertle et al. May 2006 B2
7069181 Jerg et al. Jun 2006 B2
7093604 Jung et al. Aug 2006 B2
7153817 Binder Dec 2006 B2
7198054 Welch Apr 2007 B2
7208080 Batten et al. Apr 2007 B2
7232494 Rappette Jun 2007 B2
7250174 Lee et al. Jul 2007 B2
7270132 Inui et al. Sep 2007 B2
7319841 Bateman, III et al. Jan 2008 B2
7326338 Batten et al. Feb 2008 B2
7347212 Rosenbauer Mar 2008 B2
7350527 Gurubatham et al. Apr 2008 B2
7363093 King et al. Apr 2008 B2
7406843 Thies et al. Aug 2008 B2
7445013 VanderRoest et al. Nov 2008 B2
7497222 Edwards et al. Mar 2009 B2
7523758 VanderRoest et al. Apr 2009 B2
7594513 Vanderroest et al. Sep 2009 B2
7819983 Kim et al. Oct 2010 B2
7896977 Gillum et al. Mar 2011 B2
8043437 Delgado et al. Oct 2011 B1
8161986 Alessandrelli Apr 2012 B2
8215322 Fountain et al. Jul 2012 B2
8667974 Fountain et al. Mar 2014 B2
8746261 Welch Jun 2014 B2
20020017483 Chesner et al. Feb 2002 A1
20030037809 Favaro Feb 2003 A1
20030205248 Christman et al. Nov 2003 A1
20040007253 Jung et al. Jan 2004 A1
20040103926 Ha Jun 2004 A1
20050022849 Park et al. Feb 2005 A1
20050133070 Vanderroest et al. Jun 2005 A1
20060005863 Gurubatham et al. Jan 2006 A1
20060123563 Raney et al. Jun 2006 A1
20060162744 Walkden Jul 2006 A1
20060174915 Hedstrom et al. Aug 2006 A1
20060236556 Ferguson et al. Oct 2006 A1
20060237049 Weaver et al. Oct 2006 A1
20070006898 Lee Jan 2007 A1
20070107753 Jerg May 2007 A1
20070163626 Klein Jul 2007 A1
20070186964 Mason et al. Aug 2007 A1
20070246078 Purtilo et al. Oct 2007 A1
20070266587 Bringewatt et al. Nov 2007 A1
20080116135 Rieger et al. May 2008 A1
20080289654 Kim et al. Nov 2008 A1
20080289664 Rockwell et al. Nov 2008 A1
20090095330 Iwanaga et al. Apr 2009 A1
20090283111 Classen et al. Nov 2009 A1
20100012159 Verma et al. Jan 2010 A1
20100043826 Bertsch et al. Feb 2010 A1
20100043847 Yoon et al. Feb 2010 A1
20100121497 Heisele et al. May 2010 A1
20100154830 Lau et al. Jun 2010 A1
20100154841 Fountain et al. Jun 2010 A1
20100224223 Kehl et al. Sep 2010 A1
20100252081 Classen et al. Oct 2010 A1
20100300499 Han et al. Dec 2010 A1
20110061682 Fountain et al. Mar 2011 A1
20110120508 Yoon et al. May 2011 A1
20110146714 Fountain et al. Jun 2011 A1
20110146730 Welch Jun 2011 A1
20110146731 Fountain et al. Jun 2011 A1
20120097200 Fountain Apr 2012 A1
20120118330 Tuller et al. May 2012 A1
20120118336 Welch May 2012 A1
20120138106 Fountain et al. Jun 2012 A1
20120138107 Fountain et al. Jun 2012 A1
20120291805 Tuller et al. Nov 2012 A1
20120291822 Tuller et al. Nov 2012 A1
20120318295 Delgado et al. Dec 2012 A1
20120318296 Fountain et al. Dec 2012 A1
20120318308 Fountain et al. Dec 2012 A1
20120318309 Tuller et al. Dec 2012 A1
Foreign Referenced Citations (144)
Number Date Country
169630 Jun 1934 CH
2571812 Sep 2003 CN
2761660 Mar 2006 CN
1966129 May 2007 CN
2907830 Jun 2007 CN
101406379 Apr 2009 CN
201276653 Jul 2009 CN
201361486 Dec 2009 CN
101654855 Feb 2010 CN
201410325 Feb 2010 CN
201473770 May 2010 CN
1134489 Aug 1961 DE
1428358 Nov 1968 DE
1453070 Mar 1969 DE
7105474 Aug 1971 DE
7237309 Sep 1973 DE
2825242 Jan 1979 DE
3337369 Apr 1985 DE
3723721 May 1988 DE
3842997 Jul 1990 DE
4011834 Oct 1991 DE
4016915 Nov 1991 DE
4131914 Apr 1993 DE
9415486 Nov 1994 DE
9416710 Jan 1995 DE
4413432 Aug 1995 DE
4418523 Nov 1995 DE
4433842 Mar 1996 DE
69111365 Mar 1996 DE
19546965 Jun 1997 DE
69403957 Jan 1998 DE
19652235 Jun 1998 DE
10000772 Jul 2000 DE
69605965 Aug 2000 DE
19951838 May 2001 DE
10065571 Jul 2002 DE
10106514 Aug 2002 DE
60206490 May 2006 DE
60302143 Aug 2006 DE
102005023428 Nov 2006 DE
102005038433 Feb 2007 DE
102007007133 Aug 2008 DE
102007060195 Jun 2009 DE
202010006739 Aug 2010 DE
102009027910 Jan 2011 DE
102009028278 Feb 2011 DE
102010061215 Jun 2011 DE
102011052846 May 2012 DE
102012103435 Dec 2012 DE
0068974 Jan 1983 EP
0178202 Apr 1986 EP
0198496 Oct 1986 EP
0208900 Jan 1987 EP
0370552 May 1990 EP
0374616 Jun 1990 EP
0383028 Aug 1990 EP
0405627 Jan 1991 EP
437189 Jul 1991 EP
0454640 Oct 1991 EP
0521815 Jan 1993 EP
0585905 Sep 1993 EP
0702928 Aug 1995 EP
0597907 Dec 1995 EP
0725182 Aug 1996 EP
0748607 Dec 1996 EP
0752231 Jan 1997 EP
752231 Jan 1997 EP
0854311 Jul 1998 EP
0855165 Jul 1998 EP
0898928 Mar 1999 EP
1029965 Aug 2000 EP
1224902 Jul 2002 EP
1256308 Nov 2002 EP
1264570 Dec 2002 EP
1319360 Jun 2003 EP
1342827 Sep 2003 EP
1346680 Sep 2003 EP
1386575 Feb 2004 EP
1415587 May 2004 EP
1498065 Jan 2005 EP
1583455 Oct 2005 EP
1703834 Sep 2006 EP
1743871 Jan 2007 EP
1862104 Dec 2007 EP
1882436 Jan 2008 EP
1980193 Oct 2008 EP
2075366 Jul 2009 EP
2127587 Dec 2009 EP
2138087 Dec 2009 EP
2332457 Jun 2011 EP
2335547 Jun 2011 EP
2338400 Jun 2011 EP
2351507 Aug 2011 EP
1370521 Aug 1964 FR
2372363 Jun 1978 FR
2491320 Apr 1982 FR
2491321 Apr 1982 FR
2790013 Aug 2000 FR
973859 Oct 1964 GB
1047948 Nov 1966 GB
1123789 Aug 1968 GB
1515095 Jun 1978 GB
2274772 Aug 1994 GB
55039215 Mar 1980 JP
60069375 Apr 1985 JP
61085991 May 1986 JP
61200824 Sep 1986 JP
1005521 Jan 1989 JP
1080331 Mar 1989 JP
5245094 Sep 1993 JP
7178030 Jul 1995 JP
10109007 Apr 1998 JP
2000107114 Apr 2000 JP
2001190479 Jul 2001 JP
2001190480 Jul 2001 JP
2003336909 Dec 2003 JP
2003339607 Dec 2003 JP
2004267507 Sep 2004 JP
2005124979 May 2005 JP
2006075635 Mar 2006 JP
2007068601 Mar 2007 JP
2008093196 Apr 2008 JP
2008253543 Oct 2008 JP
2008264018 Nov 2008 JP
2008264724 Nov 2008 JP
2010035745 Feb 2010 JP
2010187796 Sep 2010 JP
20010077128 Aug 2001 KR
20090006659 Jan 2009 KR
2005058124 Jun 2005 WO
2005115216 Dec 2005 WO
2007024491 Mar 2007 WO
2007074024 Jul 2007 WO
2008067898 Jun 2008 WO
2008125482 Oct 2008 WO
2009018903 Feb 2009 WO
2009065696 May 2009 WO
2009077266 Jun 2009 WO
2009077279 Jun 2009 WO
2009077280 Jun 2009 WO
2009077283 Jun 2009 WO
2009077286 Jun 2009 WO
2009077290 Jun 2009 WO
2009118308 Oct 2009 WO
Non-Patent Literature Citations (14)
Entry
German Search Report for Counterpart DE102013109125, Dec. 9, 2013.
European Search Report for EP12188007, Aug. 6, 2013.
German Search Report for DE102013103264, Jul. 12, 2013.
German Search Report for DE102013103625, Jul. 19, 2013.
German Search Report for DE102010061343, Jul. 7, 2011.
German Search Report for DE102010061342, Aug. 19, 2011.
European Search Report for EP101952380, May 19, 2011.
German Search Report for DE102010061346, Sep. 30, 2011.
European Search Report for EP11188106, Mar. 29, 2012.
German Search Report for DE102010061347, Jan. 23, 2013.
German Search Report for DE102010061215, Feb. 7, 2013.
German Search Report for DE102011053666, Oct. 21, 2011.
Ishihara et al., JP 11155792 A, English Machine Translation, 1999, pp. 1-14.
German Search Report for Counterpart DE102014101260.7, Sep. 18, 2014.
Related Publications (1)
Number Date Country
20120138096 A1 Jun 2012 US