Contemporary automatic dishwashers for use in a typical household include a tub and at least one rack or basket for supporting soiled dishes within the tub. A spraying system may be provided for recirculating liquid throughout the tub to remove soils from the dishes. The spraying system may include various sprayers including a rotatable sprayer.
An embodiment of the invention relates to a dishwasher having a tub at least partially defining a treating chamber, a spraying system supplying liquid to the treating chamber and having a sprayer with a body, a liquid passage provided in the interior of the body, at least one upper outlet extending through the upper surface of the body and in fluid communication with the liquid passage, at least one lower outlet extending through the lower surface of the body and in fluid communication with the liquid passage, and a valve body moveable relative to the body to alternately fluidly couple the at least one upper outlet and the at least one lower outlet to the liquid passage.
Another embodiment of the invention relates to a dishwasher having a tub at least partially defining a treating chamber, a spraying system supplying liquid to the treating chamber and having a sprayer with a body, a liquid passage provided in the interior, at least one upper outlet extending through the upper surface of the body and in fluid communication with the liquid passage, at least one lower outlet extending through the lower surface of the body and in fluid communication with the liquid passage, and a valve body moveable relative to the body to selectively fluidly couple the at least one upper outlet and the at least one lower outlet to the liquid passage and wherein the at least one upper outlet and the at least one lower outlet are periodically simultaneously coupled to the liquid passage.
In the drawings:
Referring to
A controller 14 may be located within the cabinet 12 and may be operably coupled with various components of the dishwasher 10 to implement one or more cycles of operation. A control panel or user interface 16 may be provided on the dishwasher 10 and coupled with the controller 14. The user interface 16 may include operational controls such as dials, lights, switches, and displays enabling a user to input commands, such as a cycle of operation, to the controller 14 and receive information.
A tub 18 is located within the cabinet 12 and at least partially defines a treating chamber 20 with an access opening in the form of an open face. A cover, illustrated as a door 22, may be hingedly mounted to the cabinet 12 and may move between an opened position, wherein the user may access the treating chamber 20, and a closed position, as shown in
Utensil holders in the form of upper and lower racks 24, 26 are located within the treating chamber 20 and receive dishes for being treated. The racks 24, 26 are mounted for slidable movement in and out of the treating chamber 20 for ease of loading and unloading. As used in this description, the term “dish(es)” is intended to be generic to any item, single or plural, that may be treated in the dishwasher 10, including, without limitation; utensils, plates, pots, bowls, pans, glassware, and silverware. While not shown, additional utensil holders, such as a silverware basket on the interior of the door 22, may also be provided.
A spraying system 28 may be provided for spraying liquid into the treating chamber 20 and is illustrated in the form of an upper sprayer 30, a mid-level rotatable sprayer 32, a lower rotatable spray arm 34, and a spray manifold 36. The upper sprayer 30 may be located above the upper rack 24 and is illustrated as a fixed spray nozzle that sprays liquid downwardly within the treating chamber 20. Mid-level rotatable sprayer 32 and lower rotatable spray arm 34 are located, respectively, beneath upper rack 24 and lower rack 26 and are illustrated as rotating spray arms. The mid-level spray arm 32 may provide a liquid spray upwardly through the bottom of the upper rack 24. The lower rotatable spray arm 34 may provide a liquid spray upwardly through the bottom of the lower rack 26. The mid-level rotatable sprayer 32 may optionally also provide a liquid spray downwardly onto the lower rack 26, but for purposes of simplification, this will not be illustrated herein.
The spray manifold 36 may be fixedly mounted to the tub 18 adjacent to the lower rack 26 and may provide a liquid spray laterally through a side of the lower rack 26. The spray manifold 36 may not be limited to this position; rather, the spray manifold 36 may be located in virtually any part of the treating chamber 20. While not illustrated herein, the spray manifold 36 may include multiple spray nozzles having apertures configured to spray wash liquid towards the lower rack 26. The spray nozzles may be fixed or rotatable with respect to the tub 18.
A liquid recirculation system may be provided for recirculating liquid from the treating chamber 20 to the spraying system 28. The recirculation system may include a sump 38 and a pump assembly 40. The sump 38 collects the liquid sprayed in the treating chamber 20 and may be formed by a sloped or recessed portion of a bottom wall 42 of the tub 18. The pump assembly 40 may include both a drain pump 44 and a recirculation pump 46.
The drain pump 44 may draw liquid from the sump 38 and pump the liquid out of the dishwasher 10 to a household drain line 48. The recirculation pump 46 may draw liquid from the sump 38 and pump the liquid to the spraying system 28 to supply liquid into the treating chamber 20. While the pump assembly 40 is illustrated as having separate drain and recirculation pumps 44, 46 in an alternative embodiment, the pump assembly 40 may include a single pump configured to selectively supply wash liquid to either the spraying system 28 or the drain line 48, such as by configuring the pump to rotate in opposite directions, or by providing a suitable valve system. While not shown, a liquid supply system may include a water supply conduit coupled with a household water supply for supplying water to the sump 38.
As shown herein, the recirculation pump 46 has an outlet conduit 50 in fluid communication with the spraying system 28 for discharging wash liquid from the recirculation pump 46 to the sprayers 30-36. As illustrated, liquid may be supplied to the spray manifold 36, mid-level rotatable sprayer 32, and upper sprayer 30 through a supply tube 52 that extends generally rearward from the recirculation pump 46 and upwardly along a rear wall of the tub 18. While the supply tube 52 ultimately supplies liquid to the spray manifold 36, mid-level rotatable sprayer 32, and upper sprayer 30, it may fluidly communicate with one or more manifold tubes that directly transport liquid to the spray manifold 36, mid-level rotatable sprayer 32, and upper sprayer 30. Further, diverters (not shown) may be provided within the spraying system 28 such that liquid may be selectively supplied to each of the sprayers 30-36. The sprayers 30-36 spray water and/or treating chemistry onto the dish racks 24, 26 (and hence any dishes positioned thereon) to effect a recirculation of the liquid from the treating chamber 20 to the liquid spraying system 28 to define a recirculation flow path.
A heating system having a heater 54 may be located within or near the sump 38 for heating liquid contained in the sump 38. A filtering system (not shown) may be fluidly coupled with the recirculation flow path for filtering the recirculated liquid.
As illustrated in
The controller 14 may be operably coupled with one or more components of the dishwasher 10 for communicating with and controlling the operation of the components to complete a cycle of operation. For example, the controller 14 may be coupled with the recirculation pump 46 for circulation of liquid in the tub 18 and the drain pump 44 for drainage of liquid in the tub 18. The controller 14 may also be operably coupled to the heater 54. Further, the controller 14 may also be coupled with one or more optional sensors 55. Non-limiting examples of optional sensors 55 that may be communicably coupled with the controller 14 include a moisture sensor, a door sensor, a temperature sensor, a detergent and rinse aid presence/type sensor(s). The controller 14 may also be coupled to a dispenser 57, which may dispense a detergent during the wash step of the cycle of operation or a rinse aid during the rinse step of the cycle of operation.
At least one upper outlet 68 may extend through the upper surface 58 of the body 56 and may be in fluid communication with the liquid passage 66. A plurality of upper outlets 68 have been illustrated as being included in the body 56. At least one lower outlet 70 may extend through the lower surface 60 of the body 56 and may be in fluid communication with the liquid passage 66. A plurality of lower outlets 70 have been illustrated as being included in the body 56. The upper outlets 68 and lower outlets 70 may be located and spaced in any suitable manner. In the illustrated example the number of upper outlets 68 exceeds the number of lower outlets 70 although this need not be the case.
A valve body 72 is illustrated as being located within the interior 62 and may be moveable relative to the body 56 to selectively fluidly couple at least some of the upper outlets 68 and at least some of the lower outlets 70 to the liquid passage 66. The upper outlets 68 and the lower outlets 70 may be periodically simultaneously coupled to the liquid passage 66. The valve body 72 may be reciprocally moveable within the body 56.
The valve body 72 has been illustrated as including an upper slidable plate 74 having at least one opening 75 and a lower slidable plate 76 having at least one opening 77. The at least one opening 75 aligns with at least one upper outlet 68 and the at least one opening 77 aligns with at least one lower outlet 70. Multiple openings 75 may be included in the upper slidable plate 74 and multiple openings 77 may be included in the lower slidable plate 76 such that multiple upper outlets 68 and lower outlets 70 may be fluidly coupled to the liquid passage 66. The upper slidable plate 74 and the lower slidable plate 76 may be slidably mounted within the interior 62 of the body 56 of the rotatable spray arm 34 for movement therein to selectively fluidly couple at least some of the upper outlets 68 and at least some of the lower outlets 70 to the liquid passage 66.
The upper slidable plate 74 and lower slidable plate 76 may be formed in any suitable manner and may or may not be similarly formed. For example, the upper slidable plate 74 and lower slidable plate 76 may include a rigid plate, a flexible plate, or a thin film plate, which may be either flexible or rigid. For example, the upper slidable plate 74 may include an upper membrane with the openings 75 formed therein and the lower slidable plate 76 may include a lower membrane and with the openings 77 therein. The upper membrane may abut the upper surface 58 and the lower membrane may abut lower surface 60. The membranes may conform to the shape of the sprayer and may form a liquid seal between the portions of the body 56 and the liquid passage 66.
The upper slidable plate 74 has been illustrated as being operably coupled with the lower slidable plate 76 such that they may move in tandem. Any suitable coupling mechanism 78 may be used. Alternatively, the upper slidable plate 74 and the lower slidable plate 76 may be formed from a single piece and may not require a coupling mechanism. Further still, the upper slidable plate 74 and the lower slidable plate 76 may not be coupled. In such an instance, the upper slidable plate 74 and the lower slidable plate 76 may still move in tandem or may be configured to move separately.
Regardless of whether the upper slidable plate 74 and the lower slidable plate 76 are coupled, an actuator 80 may be operably coupled with the valve body 72 and may move the valve body 72 based on the rotation of the lower rotatable spray arm 34. The actuator 80 may be any suitable mechanism capable of moving the valve body 72 based on the rotation of the lower rotatable spray arm 34. By way of a non-limiting example, the actuator 80 may include a drive system 82 operably coupled with the lower rotatable spray arm 34 and the valve body 72 such that rotation of the lower rotatable spray arm 34 moves the valve body 72. The drive system 82 has been illustrated as including a gear assembly 84 operably coupling the lower rotatable spray arm 34 and the valve body 72 such that rotation of the lower rotatable spray arm 34 moves the gear assembly 84 which in turn moves the upper slidable plate 74 and the lower slidable plate 76. Thus, the gear assembly 84 helps convert the rotational motion of the lower rotatable spray arm 34 into sliding motion for the upper slidable plate 74 and the lower slidable plate 76. The gear assembly 84 has been illustrated as including a gear chain having a first gear 85, second gear 86, third gear 87, fourth gear 88, and a fixed gear 89. A fixed shaft 90 may extend through a portion of the body 56 such that the lower rotatable spray arm 34 is rotationally mounted on the fixed shaft 90. Further, the fixed gear 89 may be fixedly mounted on the fixed shaft 90.
The drive system 82 further comprises a pin 92 operably coupled with and extending from an upper portion of the fourth gear 88 and received within a channel 94 located in the valve body 72 to operably couple the gear assembly 84 with the upper slidable plate 74. The channel 94 may be a depression in a bottom portion of the upper slidable plate 74 or as illustrated may be formed between two opposing walls 95, 96 extending downwardly from the bottom of the upper slidable plate 74. A bracket 97 may be located within the interior 62 and houses at least a portion of the gear assembly 84 to provide support for the gear assembly 84. Portions of the gear assembly 84 may also be held within supports 98 formed by the body 56 of the lower rotatable spray arm assembly 34.
The operation of the dishwasher 10 with the described lower rotatable spray arm structure will now be described. The user will initially select a cycle of operation via the user interface 16, with the cycle of operation being implemented by the controller 14 controlling various components of the dishwasher 10 to implement the selected cycle of operation in the treating chamber 20. Examples of cycles of operation include normal, light/china, heavy/pots and pans, and rinse only. The cycles of operation may include one or more of the following steps: a wash step, a rinse step, and a drying step. The wash step may further include a pre-wash step and a main wash step. The rinse step may also include multiple steps such as one or more additional rinsing steps performed in addition to a first rinsing. During such cycles, wash fluid, such as water and/or treating chemistry (i.e., water and/or detergents, enzymes, surfactants, and other cleaning or conditioning chemistry) passes from the recirculation pump 46 into the spraying system 28 and then exits the spraying system through the sprayers 30-36.
The lower rotatable spray arm 34 may rely on liquid pumped from the recirculation pump 46 to provide hydraulic drive to rotate the lower rotatable spray arm 34, which through the actuator 80 affects the movement of the valve body 72. More specifically, a hydraulic drive 99 may be formed by an outlet in the body 56 being oriented such that liquid emitted from the hydraulic drive outlet 99 effects the rotation of the lower rotatable spray arm 34. The lower rotatable spray arm 34 may have any number of hydraulic drive outlets 99 and these hydraulic drive outlets 99 may be located such that when the recirculation pump 46 is activated, the lower rotatable spray arm 34 rotates regardless of the position of the valve body 72. It has also been contemplated that such hydraulic drive outlets 99 may be located on various portions of the body 56 including a side or bottom portion of the body 56.
As the lower rotatable spray arm 34 is hydraulically rotated about the fixed shaft 90, the first gear 85, which is mounted between the fixed gear 89 and the second gear 86, is rotatably mounted within the support 98, and moves with the rotation of the lower rotatable spray arm 34, may be driven around the fixed gear 89. Thus, the first gear 85 is also hydraulically driven and may be caused to circle about the fixed gear 89 as the lower rotatable spray arm 34 rotates about the fixed shaft 90. As the first gear 85 is driven about the fixed gear 89, it in turn causes the rotation of the second gear 86, the third gear 87, and the fourth gear 88.
As the fourth gear 88 rotates, the pin 92 rotates within the interior 62 of the lower rotatable spray arm 34. As the pin 92 rotates, it moves within the boundaries of the channel 94 and causes the upper slidable plate 74 to be moved back and forth within the interior 62 of the lower rotatable spray arm 34. More specifically, as the pin 92 rotates with the fourth gear 88, the pin 92 pushes on the wall 95 for a first portion of a full rotation of the fourth gear 88 and pushes on the wall 96 for a second portion of the full rotation of the fourth gear 88.
In this manner, the actuator 80 reciprocally moves the valve body 72 within the body 56 based on the rotation of the body 56. As the upper slidable plate 74 moves back and forth, the lower slidable plate 76 moves with it in tandem. When the pin 92 pushes on the wall 95 it moves the upper slidable plate 74 and lower slidable plate 76 to a first position, illustrated in
The upper slidable plate 74 and lower slidable plate 76 may stay in the first position until the pin 92 is rotationally advanced to a point where it begins to push on the wall 96. When the pin 92 pushes on the wall 96 it moves the upper slidable plate 74 in the opposite direction. As the upper slidable plate 74 is moved the lower slidable plate 76 moves with it until both reach a second position, which is illustrated in
The upper slidable plate 74 and the lower slidable plate 76 may stay in the second position until the pin 92 is rotationally advanced to a point where it begins to again push on the wall 95. As the fourth gear 88 continues to rotate, the pin 92 continues to alternatively push against one of the walls 95 and 96 and continues to move the upper slidable plate 74 and the lower slidable plate 76 into the first and second positions. In this manner, the actuator 80 allows the valve body 72 to move between the at least two positions based on a rotational position of the lower rotatable spray arm 34.
As the upper slidable plate 74 and the lower slidable plate 76 move side to side, the force and shape of the pattern of the sprays emitted from the upper outlets 68 and the lower outlets 70 may also change. As the openings 75 and 77 come into alignment with the upper outlets 68 and the lower outlets 70, respectively, the effective outlet or nozzle becomes wider, and a more diffused, wide-angle spray pattern may be emitted from the effective nozzle that produces a shower spray of liquid from the lower rotatable spray arm 34. Conversely, as the upper outlets 68 and the lower outlets 70 are overlapped with the solid plate portions of the upper slidable plate 74 and lower slidable plate 76, respectively, the effective nozzle becomes smaller, and a more discrete, focused, and concentrated the spray pattern may be emitted from the effective nozzle, which may provide a higher pressure spray from the lower rotatable spray arm 34. The shower spray may be more suitable for distributing treating chemistry whereas the higher pressure spray may be more suitable for dislodging soils. The different spray patterns, including the differing directions of spray, created may provide for different cleaning effects from the lower rotatable spray arm 34.
When the valve body 72 is located intermediately of the first and second positions, water may be still be sprayed from some of the upper outlets 68 and lower outlets 70 if at least a portion of the openings 75 and 77 fluidly couples a portion of the upper outlets 68 and lower outlets 70. It is also contemplated that when the valve body 72 is located intermediately of the first and second positions that liquid may be emitted from only the upper outlets 68 or the lower outlets 70 such that the upper outlets 68 and the lower outlets 70 are not simultaneously coupled to the liquid passage 66. It has also been contemplated that the valve body 72 may be shaped such that there may be a point where the outlets in the valve body 72 do not allow for the fluid to enter any of the upper outlets 68 and lower outlets 70 except for the hydraulic drive outlets 99.
The gear chain of the gear assembly 84 is illustrated as forming a reduction gear assembly. That is the valve body 72 is moved between the two positions by the actuator 80 over multiple rotations of the lower rotatable spray arm 34. As illustrated, the reduction gear assembly may provide a 40:1 gear reduction such that the valve body 72 will slide to the first and second positions over forty revolutions of the lower rotatable spray arm 34. The gear ratios of the gear assembly 84 may be selected to control the relative movement of the valve body 72 to the lower rotatable spray arm 34. The gear ratio of the gear assembly 84 is a function of the ratios of gears forming the gear assembly 84. Thus, the gears may be selected to provide a desired ratio to provide a desired fluid coupling time between the liquid passage 66 and the upper outlets 68 and the lower outlets 70. The gear reduction ratio may also be selected to aid in allowing the hydraulic drive outlets 99 to overcome the friction created by the valve body 72. To generate the greatest torque, the drive outlets 99 may be located near the tip of the body 56, which is the greatest distance from the axis of rotation.
As the lower rotatable spray arm 34 turns, the valve body 72 continues to move between the first and second positions and continues to selectively fluidly couple some of the upper outlets 68 and some of the lower outlets 70. The amount of time that the multiple openings 75 and 77 are fluidly coupled with each of the upper outlets 68 and the lower outlets 70, respectively, controls the duration of the time that each of the upper outlets 68 and the lower outlets 70 spray liquid. The time of fluid coupling may be thought of as a dwell time. With the above described valve body 72 and actuator 80, the dwell time may be controlled by the gear ratio, the spacing between the two opposing walls 95, 96 extending around the pin 92, and the flow rate of liquid. The movement of the lower rotatable spray arm 34 and the valve body 72 ends when fluid is no longer pumped by the recirculation pump 46 to the lower rotatable spray arm 34 such that the lower rotatable spray arm 34 is no longer hydraulically driven.
Instead of being hydraulically driven, a drive system may be included to control the rotation of the lower rotatable spray arm 34. Such a drive system may be motor-driven. For example, an electric motor (not shown) may be provided externally of the tub 18 and may be operably coupled to a portion of the lower rotatable spray arm 34 to rotate the lower rotatable spray arm 34. If the lower rotatable spray arm 34 is motor operated, the valve body 72 may be moved as the lower rotatable spray arm 34 rotates regardless of the flow rate provided by the recirculation pump 46. A motor driven lower rotatable spray arm 34 may be useful in instances where no hydraulic drive outlets are provided. Such a motor driven lower rotatable spray arm 34 may also allow for longer dwell times. In this manner, zonal washing, may be accomplished within the treating chamber 20 because the motor may have the ability to manipulate the speed of rotation of the lower rotatable spray arm 34 such that the controller 14 may control the spray emitted from the upper outlets 68 and the lower outlets 70 in pre-selected areas of the treating chamber 20.
One difference is that the body 156 and the valve body 172 are configured such that the valve body 172 is moveable relative to the body 156 to alternately fluidly couple the upper outlets 168 and the lower outlets 170 to the liquid passage 166. In the exemplary illustration, the body 156 includes fewer upper outlets 168 and lower outlets 170 and that the openings 175 and 177 are arranged such that only the upper outlets 168 or the lower outlets 170 are coupled to the liquid passage 166.
During operation, the lower rotatable spray arm 134, valve body 172, and actuator 180 operate much the same as in the first embodiment wherein as the lower rotatable spray arm 134 is rotated, the gears in the gear assembly 184 are driven and the upper slidable plate 174 and the lower slidable plate 176 are moved between first and second positions. In the first position, as illustrated in
While the embodiments described and illustrated above are with respect to the lower rotatable spray arm, it will be understood that embodiments of the invention may be used with respect to any rotatable sprayer in the dishwasher. Further, while the valve body has thus far been illustrated as including an upper slidable plate and a lower slidable plate, in the embodiments above it is contemplated that the valve body may take any suitable form including that the upper slidable plate may take any suitable form.
One difference is that the upper slidable plate 274 is illustrated as including an upper frame 300 supporting an upper membrane 302 and the lower slidable plate 276 is illustrated as including a lower frame 304 and a lower membrane 306. The upper and lower membranes 302 and 306 may be supported or operably coupled to the upper and lower frames 300 and 304, respectively, in any suitable manner. For example, the upper and lower membranes 302 and 306 may be attached at their ends to allow the upper and lower membranes 302 and 306 to move and conform to the body 256. In the illustrated example, end portions 310 of the upper membrane 302 may be wrapped around end portions of the upper frame 300. Tabs 312 may be used to retain the upper membrane 302 on the upper frame 300. Similarly, end portions 314 of the lower membrane 306 may be wrapped around end portions of the lower frame 304 and tabs 316 may be used to retain the lower membrane 306. While separate upper and lower frames 300 and 304 have been illustrated it is contemplated that a single frame may be used.
The upper membrane 302 may include openings 275 and the lower membrane 306 may include openings 277 all of which may be in fluid communication with the liquid passage 266. The upper frame 300 may include open portions 320 and the lower frame 304 may include open portions 322 to allow liquid to reach the upper and lower membranes 302 and 306 from the liquid passage 266.
The upper and lower membranes 302 and 306 may be formed from any suitable material. For example, the upper and lower membranes 302 and 306 may be formed from a flexible material such that they may conform to a shape of at least a portion of the mid-level rotatable spray arm 232 during use. The material may be able to withstand the high temperatures of the dishwasher 10 and the treating chemistry that is used in dishwasher 10.
As with the earlier embodiment, the mid-level rotatable spray arm 232 includes an interior 262 forming a liquid passage 266. The upper membrane 302 and the lower membrane 306 may be located within the interior 262 and may abut portions of the mid-level rotatable spray arm 232. For example, the upper membrane 302 abuts the upper surface 258 of the mid-level rotatable spray arm 232 to form a liquid seal between the mid-level rotatable spray arm 232 and the remainder of the liquid passage 266. The lower membrane 306 abuts the lower surface 260 of the mid-level rotatable spray arm 232 to form a liquid seal between the mid-level rotatable spray arm 232 and the remainder of the liquid passage 266.
Sealing rings 328 may be provided along the interior 262 of the body 256, with one of the sealing rings 328 surrounding each of the upper outlets 268 and the lower outlets 270. The sealing ring 328 may create a larger effective outlet and allows for a longer fluid communication between the upper outlets 268 or the lower outlets 270 and the liquid passage 266. The sealing ring 328 may be a raised ring surrounding each upper outlet 268 and lower outlet 270 and may take any suitable form including that of an O-ring or other seal. The upper and lower membranes 302 and 306 may be capable of sealing against the body 256 and/or the sealing rings 328 to better seal the upper outlets 268 and the lower outlets 270 against the unintended flow of liquid from the liquid passage 266.
The drive system 282 has been illustrated as including a gear assembly 284 operably coupling the mid-level rotatable spray arm 232 and the valve body 272 such that rotation of the mid-level rotatable spray arm 232 moves the gear assembly 284, which in turn moves the upper slidable plate 274 that in turn moves the lower slidable plate 276. The gear assembly 284 has been illustrated as including an additional gear and having a more horizontal layout as compared to the earlier described embodiments. The gear assembly 284 helps convert the rotational motion of the mid-level rotatable spray arm 232 into sliding motion of a reciprocating driver that relatively reciprocates the upper and lower membranes 302 and 306 and the mid-level rotatable spray arm 232. In the illustrated example, the reciprocating driver includes the upper frame 300 and lower frame 304. Alternatively, the reciprocating driver may reciprocate the upper and lower membranes 302 and 306 relative to the driver. For example, while the membranes are illustrated as being used in conjunction with the frames it is contemplated that the membranes may be operably coupled to the drive system 282 without the use of the frames.
The drive system 282 may also include a pin 292 operably coupled with and extending from an upper portion of a gear of the gear assembly 284 and received within a channel 294 located in the frame 300 to operably couple the gear assembly 284 with the upper slidable plate 274. The channel 294 may be a depression in a bottom portion of the upper frame 300 or as illustrated may be formed between two opposing walls 295, 296 formed in the upper frame 300. The membrane 302 and the mid-level rotatable spray arm 232 may be coupled for relative movement and the drive system 282 may reciprocate the membrane 302 relative to the mid-level rotatable spray arm 232.
A coupling mechanism 278 operably couples the upper frame 300 and the lower frame 304. Any suitable coupling mechanism 278 may be utilized. In the illustrated example, a pin 330 operably coupled with and extending from the lower frame 304 is received within a channel 332 located in the frame 300 to form the coupling mechanism 278. The channel 332 may be a depression in a bottom portion of the upper frame 300 or as illustrated may be formed between two opposing walls 334, 336 formed in the upper frame 300. In this manner, the upper and lower membrane 302 and 306 may be coupled so that motion to the upper frame 300 is transferred to the lower frame 304.
It will be understood that any suitable drive assembly may be used to move the upper membrane 302 and lower membrane 306. For example, a different gear assembly may be used to achieve a higher gear reduction and longer dwell time.
Yet another difference is that additional nozzle structures 340 are provided on the body 256 and may be fluidly coupled with the upper outlets 268. While not illustrated, nozzles may also be included on the lower surface 260 of the body 256. It is contemplated that any suitable nozzles may be operably coupled to the body 256 and that the nozzles 340 may provide any number of different spray patterns, including that the nozzles 340 may provide different spray patterns, although this need not be the case. Providing different spray patterns may be advantageous so as to provide for different cleaning effects from a single spray arm. For example, a first spray pattern may be a discrete, focused, and concentrated spray, which may provide a higher pressure spray. While a second spray pattern may be a wide angle diffused spray pattern that produces more of a shower as compared to a more concentrated spray pattern. The shower spray may be more suitable for distributing treating chemistry whereas the higher pressure spray may be more suitable for dislodging soils.
During operation, the mid-level rotatable spray arm 232 and drive system 282 operate much the same as in the second embodiment wherein as the mid-level rotatable spray arm 232 is rotated, gears in the drive system 282 are driven and the upper and lower frames 300 and 304 are moved between the first and second positions to alternately fluidly couple the upper outlets 268 and the lower outlets 270 to the liquid passage 266.
There are several advantages of the present disclosure arising from the various features of the apparatuses described herein. For example, the embodiments described above allow for liquid to be emitted from both the upper and lower portions of the rotatable body. The embodiments described above allow for better coverage of the treating chamber 20 without utilizing more water.
While the invention has been specifically described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation. For example, other actuators may be used to control the movement of the valve body based on the rotation of the rotatable body and the illustrated actuators including gear assemblies are merely exemplary. Further, while the valve body has been illustrated and described as moving in a linear motion, it is contemplated that the valve body may alternatively be moved in any suitable manner including rotational motion or orbital motion. Further, while the bodies have been described and illustrated as being in the form of spray arms it will be understood that any suitable sprayer and body may be used in any of the above embodiments. For example, the body may include a rotatable disk where the disk rotates and the actuator moves the valve body within the disk to fluidly couple the upper outlets and lower outlets to the liquid passage.
The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. It will be understood that any features of the above described embodiments may be combined in any manner. Reasonable variation and modification are possible within the scope of the forgoing disclosure and drawings without departing from the spirit of the invention which is defined in the appended claims.
This application is a continuation of U.S. patent application Ser. No. 13/782,147, filed Mar. 1, 2013, now U.S. Pat. No. 9,532,701, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1750170 | Frisch | Mar 1930 | A |
1966572 | Webb | Jul 1934 | A |
1997450 | Burkle | Apr 1935 | A |
2694769 | Huck et al. | Nov 1954 | A |
3009648 | Hait | Nov 1961 | A |
3064664 | Warhus | Nov 1962 | A |
3064665 | Martiniak | Nov 1962 | A |
3146953 | Komanns | Sep 1964 | A |
3160164 | Constance | Dec 1964 | A |
3253784 | Long et al. | May 1966 | A |
3598130 | Nolte et al. | Aug 1971 | A |
3709236 | Field et al. | Jan 1973 | A |
3771725 | Jenkins et al. | Nov 1973 | A |
3797509 | Fukuzawa et al. | Mar 1974 | A |
3918644 | Platt | Nov 1975 | A |
3997760 | Salinger | Dec 1976 | A |
4266565 | Gurubatham | May 1981 | A |
4509687 | Cushing | Apr 1985 | A |
4594500 | Wright | Jun 1986 | A |
4924069 | Giordani | May 1990 | A |
4993444 | Toriyama et al. | Feb 1991 | A |
5331986 | Lim et al. | Jul 1994 | A |
5415350 | Yoon et al. | May 1995 | A |
5427129 | Young, Jr. et al. | Jun 1995 | A |
2726666 | Oxford | Dec 1995 | A |
5546968 | Jeon et al. | Aug 1996 | A |
5577665 | Chang | Nov 1996 | A |
5601100 | Kawakami et al. | Feb 1997 | A |
5609174 | Ferguson | Mar 1997 | A |
5655556 | Guerrera et al. | Aug 1997 | A |
5662744 | Tuller et al. | Sep 1997 | A |
5673714 | Campagnolo et al. | Oct 1997 | A |
5692885 | Langer | Dec 1997 | A |
5697392 | Johnson et al. | Dec 1997 | A |
5944037 | Sinyong et al. | Aug 1999 | A |
5964232 | Chung | Oct 1999 | A |
6053185 | Beevers | Apr 2000 | A |
6325083 | Worter | Dec 2001 | B1 |
6692093 | Park et al. | Feb 2004 | B1 |
6736598 | Kleemann et al. | May 2004 | B2 |
7287536 | Steck et al. | Oct 2007 | B2 |
7293958 | Kraffzik | Nov 2007 | B2 |
7314188 | Watson et al. | Jan 2008 | B2 |
7331356 | VanderRoest et al. | Feb 2008 | B2 |
7445013 | VanderRoest et al. | Nov 2008 | B2 |
7455065 | Schrott | Nov 2008 | B2 |
7475696 | VanderRoest et al. | Jan 2009 | B2 |
7493907 | Roh | Feb 2009 | B2 |
7523758 | VanderRoest et al. | Apr 2009 | B2 |
7560672 | Pleschinger et al. | Jul 2009 | B2 |
7594513 | VanderRoest et al. | Sep 2009 | B2 |
7673639 | Shin | Mar 2010 | B2 |
7810512 | Pyo et al. | Oct 2010 | B2 |
7896977 | Gillum et al. | Mar 2011 | B2 |
7935194 | Rolek | May 2011 | B2 |
7959744 | Sundaram et al. | Jun 2011 | B2 |
7965928 | Eichholz et al. | Jun 2011 | B2 |
7980260 | Bertsch et al. | Jul 2011 | B2 |
8113222 | Bertsch et al. | Feb 2012 | B2 |
8137479 | Vanderroest et al. | Mar 2012 | B2 |
8187390 | Vanderroest et al. | May 2012 | B2 |
8210191 | Gnadinger | Jul 2012 | B2 |
8245718 | Busing et al. | Aug 2012 | B2 |
8282741 | Bertsch et al. | Oct 2012 | B2 |
8989566 | Liu et al. | Mar 2015 | B2 |
9402526 | Bertsch et al. | Aug 2016 | B2 |
9532699 | Feddema | Jan 2017 | B2 |
9839340 | Feddema | Dec 2017 | B2 |
20060011221 | Schrott | Jan 2006 | A1 |
20060054201 | Yoon et al. | Mar 2006 | A1 |
20060108454 | Eichholz | May 2006 | A1 |
20060278258 | Kara et al. | Dec 2006 | A1 |
20070056613 | Haas et al. | Mar 2007 | A1 |
20070289615 | Shin | Dec 2007 | A1 |
20090071508 | Sundaram et al. | Mar 2009 | A1 |
20090101182 | Buesing et al. | Apr 2009 | A1 |
20090101185 | Pardini | Apr 2009 | A1 |
20090159103 | Gillum et al. | Jun 2009 | A1 |
20100108102 | Kehl et al. | May 2010 | A1 |
20100139719 | Gnadinger et al. | Jun 2010 | A1 |
20100252081 | Classen et al. | Oct 2010 | A1 |
20110030742 | Dalsing et al. | Feb 2011 | A1 |
20110146714 | Fountain et al. | Jun 2011 | A1 |
20110146730 | Welch | Jun 2011 | A1 |
20110146731 | Fountain et al. | Jun 2011 | A1 |
20110203619 | Kara et al. | Aug 2011 | A1 |
20110284039 | Christie | Nov 2011 | A1 |
20110303250 | Delgado et al. | Dec 2011 | A1 |
20120118330 | Tuller et al. | May 2012 | A1 |
20120118336 | Welch | May 2012 | A1 |
20120138096 | Tuller et al. | Jun 2012 | A1 |
20120138106 | Fountain et al. | Jun 2012 | A1 |
20120138107 | Fountain et al. | Jun 2012 | A1 |
20120138111 | Tuller et al. | Jun 2012 | A1 |
20120167928 | Fountain et al. | Jul 2012 | A1 |
20120279530 | Thiyagarajan | Nov 2012 | A1 |
20120279536 | Adams et al. | Nov 2012 | A1 |
20130074886 | Feddema et al. | Mar 2013 | A1 |
20130074887 | Feddema | Mar 2013 | A1 |
20130074888 | Feddema | Mar 2013 | A1 |
20130074890 | Feddema et al. | Mar 2013 | A1 |
20130074891 | Bertsch et al. | Mar 2013 | A1 |
20140054395 | Heisele et al. | Feb 2014 | A1 |
20140137909 | Baldwin et al. | May 2014 | A1 |
20140246059 | Feddema | Sep 2014 | A1 |
20140246060 | Feddema et al. | Sep 2014 | A1 |
20140332041 | Feddema | Nov 2014 | A1 |
20150044073 | Badafem et al. | Feb 2015 | A1 |
20150086325 | Koebrich et al. | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
7024995 | Jun 1970 | DE |
4036930 | May 1992 | DE |
20208544 | Oct 2002 | DE |
102005026558 | Nov 2006 | DE |
202008015058 | Mar 2009 | DE |
102010043019 | May 2012 | DE |
102011053666 | May 2012 | DE |
0524102 | Jan 1993 | EP |
0764421 | Mar 1997 | EP |
0795292 | Sep 1997 | EP |
0943281 | Sep 1999 | EP |
0943282 | Sep 1999 | EP |
1040786 | Oct 2000 | EP |
1040787 | Oct 2000 | EP |
1224902 | Jul 2002 | EP |
1252856 | Oct 2002 | EP |
1277430 | Jan 2003 | EP |
1334687 | Aug 2003 | EP |
1386575 | Oct 2005 | EP |
1247993 | Mar 2009 | EP |
2292134 | Mar 2011 | EP |
2572622 | Mar 2013 | EP |
2572623 | Mar 2013 | EP |
2572624 | Mar 2013 | EP |
2019204 | Oct 1979 | GB |
2199734 | Jul 1988 | GB |
2215990 | Oct 1989 | GB |
60053120 | Mar 1985 | JP |
4033632 | Feb 1992 | JP |
5184514 | Jul 1993 | JP |
08089467 | Apr 1996 | JP |
8089467 | Apr 1996 | JP |
9164107 | Jun 1997 | JP |
10243910 | Sep 1998 | JP |
11019019 | Jan 1999 | JP |
11076127 | Mar 1999 | JP |
2004113683 | Apr 2004 | JP |
200156558 | Sep 1999 | KR |
20060029567 | Apr 2006 | KR |
20090037299 | Apr 2009 | KR |
2010012703 | Feb 2010 | WO |
2011144540 | Nov 2011 | WO |
2011154471 | Dec 2011 | WO |
2012065873 | May 2012 | WO |
Entry |
---|
Machine translation of DE 102005026558 B3, dated Jun. 2005. (Year: 2005). |
European Search Report for Corresponding EP14173784.1, dated Oct. 29, 2014. |
European Search Report for Corresponding EP14177086.7, dated Oct. 20, 2014. |
European Search Report for Corresponding EP14155441.0, dated May 30, 2014. |
German Search Report for Counterpart DE102013111241.2, dated May 23, 2014. |
European Search Report for Corresponding EP14155444.4. dated May 26. 2014. |
European Search Report for Corresponding EP 12185510.0, dated Dec. 19, 2012. |
European Search Report for Corresponding EP 12185514.2, dated Dec. 6, 2012. |
European Search Report for Corresponding EP 12185512.6, dated Dec. 6, 2012. |
Number | Date | Country | |
---|---|---|---|
20170079504 A1 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13782147 | Mar 2013 | US |
Child | 15368043 | US |