The invention relates to a dishwasher, in particular a household dishwasher.
Dishwashers have filter systems, by means of which dirt particles can be filtered out of the washing liquid that circulates in a hydraulic circuit of the dishwasher. The filter systems generally have more than one stage and consist of a flat fine filter, a coarse filter and optionally a microfilter. Corresponding to their designations, these filters can filter out dirt particles of different sizes from the washing liquid.
For example, DE 31 14 663 A1 discloses a dishwasher that has a hydraulic circuit in which washing liquid circulates and collects in a pump sump at the bottom, wherein said pump sump is attached to the induction side of the circulation pump. The open side of the pump sump, said side being oriented towards the dishwasher interior, is covered by a flat filter which tapers in the form of a funnel towards a hollow cylindrical coarse filter that is arranged approximately centrally. This coarse filter leads to a likewise hollow cylindrical microfilter beneath the flat filter, said microfilter being surrounded at a distance by a sump wall of the pump sump.
The filter system consisting of the flat filter, the coarse filter and the microfilter becomes dirty over time, meaning that the flat filter, the coarse filter and/or the microfilter can become clogged with food residues or other particles that are deposited thereon. Clogged filter surfaces adversely affect the washing results, primarily due to resoiling and reduced filter performance. In some cases, the lower spray arm under the rack can already feature nozzles that are directed at the flat filter beneath them. However, it is not possible to rinse the flat filter completely clean in this way.
The invention therefore addresses the problem of providing a dishwasher, in particular a household dishwasher, in which the filter performance of the filter combination used in the dishwasher is not adversely affected, even in continuous use.
The problem is solved by the features in claim 1. Preferred developments of the invention are disclosed in the subclaims.
The invention is based on the finding that dirt particles of a certain size and composition, e.g. caraway seeds and the like, cannot be removed from the filter surface by spraying the filter surface of the flat filter by means of spray nozzles that are provided on the underside of the lower spray arm, but are instead pressed further into the filter openings and therefore become compacted therein. In this context, provision is made in the characterizing part of claim 1 for at least one cleaning device within the pump sump, by means of which the filter element can be cleaned. The cleaning of the filter element does not therefore take place on the filter surface that is clogged by food residues, but on the opposite side of the filter element, whereby the filter element can be rinsed clean in the opposite flow direction to that established during the washing operation.
The pump sump of a dishwasher can preferably feature a filter combination comprising the above cited flat filter, a coarse filter and a microfilter. The flat filter can cover that side of the pump sump which is open to the dishwasher interior, and taper in the form of a funnel towards the hollow cylindrical coarse filter that is arranged approximately centrally in the flat filter. The coarse filter can extend beneath the flat filter in the form of the microfilter, which is likewise of hollow cylindrical design. The coarse filter is used in this case to filter out larger dirt particles, while the fine filter and the microfilter are used to filter out dirt particles that are finely dispersed in the washing liquid. Using an appropriate filter combination of this type, the inventive cleaning device is therefore so arranged in the pump sump that it is physically separated from the dishwasher interior by the flat filter. The cleaning device can therefore firstly remove filter residues on the flat filter from its underside, i.e. from the opposite side to the filter surface, while the cleaning device can optionally also clean the microfilter which is arranged within the pump sump. In this case, the cleaning device can be arranged radially outside the hollow cylindrical microfilter or alternatively radially inside the microfilter, in which case it can clean the liquid outflow side of the microfilter, said liquid outflow side being oriented away from the filter surface.
According to an advantageous embodiment, the cleaning device can have at least one spray nozzle, in particular a multiplicity of spray nozzles, which can mechanically spray the filter element by means of liquid jets. In this way, short powerful bursts of spray can be directed at the filter element, in order to rinse the filter element clean of dirt that has adhered. In this case, the effective direction of these spray nozzles is counter to the usual flow direction of the washing liquid during the washing operation. The spray nozzles can easily be connected to the original hydraulic circuit of the dishwasher via at least one connection line. In the hydraulic circuit, one or more feed lines can lead from the circulation pump to the spray devices that are arranged in the dishwasher interior, i.e. in particular to an upper spray arm which is arranged below the upper rack or to a lower spray arm which is arranged below a lower rack. From there, the washing liquid is sprayed onto the items to be washed in the dishwasher interior. The washing liquid then collects again in the pump sump, which is connected to the induction side of the circulation pump.
The cleaning device can preferably have at least one distributor pipeline which comprises a series of spray nozzles and is connected via the connection line to the above described hydraulic circuit of the dishwasher. In this case, the washing liquid that circulates in the hydraulic circuit can immediately be used at least partly for the filter cleaning according to the invention. A water switch can preferably be provided for control purposes at the branch point between the one or more feed lines and the connection line leading to the cleaning device, wherein said water switch opens or closes a flow path to the spray devices in the spraying zone and/or to the connection line, depending on the switch position. By preference, however, only the connection line to the cleaning device is open during the cleaning process, while the liquid paths to the spray arms are interrupted, such that the washing liquid can be conveyed to the cleaning device at a particularly high hydraulic pressure.
The cleaning device can be activated e.g. automatically by the control electronics of the dishwasher, preferably e.g. at the start of a wash cycle during the prewash stage or the cleaning stage, during which the majority of food residues are removed by the washing liquid. Alternatively or additionally, the cleaning device can also be activated by manual operation of a control element by the user.
The spray nozzles of the distributor pipeline can be directed e.g. at the underside of the flat filter and/or at the microfilter that is arranged in the pump sump. In this case, the distributor pipeline can extend essentially annularly around the microfilter in the circular space that is provided in the pump sump.
As mentioned above, the circular space can be delimited in a vertical direction by the flat filter above, and by a correspondingly designed base flange of the pump sump below. Depending on the geometry of the pump sump, the base flange can essentially extend radially outwards from a hollow cylindrical sump wall that surrounds the microfilter, and optionally merge at its periphery into an upwardly projecting annular collar, which can be covered e.g. by the peripheral region of the opening of the base tray of the washing compartment. Furthermore, the base flange of the pump sump can feature one or more fastening means, preferably catch elements, whereby the distributor pipeline can easily be fixed via catch means to the pump sump in a detachable manner.
Alternatively and/or additionally to the distributor pipeline mentioned above, the cleaning device can feature any type of cleaning body by means of which filter residues can be removed from the filter element. For example, such a cleaning body can be a scraper, by means of which the filter residues can be scraped off the filter element. Alternatively, provision can be made for cleaning bodies which can move freely within the circular space of the pump sump. In this case, the cleaning bodies can be moved by the circular liquid flow in the circular space, thereby removing filter residues from the filter element. According to the invention, the cleaning bodies can move in particular transversely along the underside of the flat filter in the circular space.
The forms and developments of the invention as set forth above and/or as described in the subclaims can be used individually or in any desired combination, except in the case of clear dependencies and incompatible alternatives, for example.
The invention and its advantageous forms and developments are explained with their advantages in greater detail below with reference to drawings, in which:
It is clear from
It is moreover clear from
In
In addition to or independently of the manually controlled activation, the cleaning mode can also be activated automatically by means of the control electronics 45 during a wash cycle. For this purpose, the cleaning mode can be activated in particular at the start of the wash cycle, e.g. in a prewash stage or in a washing stage, in order to rinse the flat filter 20 clean from a direction that is opposite to the normal flow direction. Alternatively or additionally, the filter cleaning according to the invention can obviously be done after completion of the respective wash cycle or before starting the wash cycle of a new dishwashing program, i.e. between two consecutive dishwashing programs.
In the embodiment shown in
If applicable, the filter cleaning by means of such scrapers can also be effective in connection with a distributor pipeline as explained with reference to the
Number | Date | Country | Kind |
---|---|---|---|
10 2011 002 989.3 | Jan 2011 | DE | national |