Some domestic dishwashers include an air supply system that provides ambient air into the dishwasher tub during a drying step to aid in drying the wet dishes. To avoid leakage of the air, which becomes humid in the tub, at undesirable locations, some dishwashers also include an air exhaust system that directs the air from the tub to the atmosphere external to the dishwasher at a desired location. The exhaust air may pass through a condenser to remove some of the moisture from the air prior to being released into the atmosphere.
An aspect of the disclosure relates to a dishwasher including a tub having an open face and at least partially defining a treating chamber receiving dishes for treatment and having a tub air outlet and a tub air inlet, an airflow conduit fluidly coupling the tub air outlet to ambient air, a blower assembly forcing air to flow from the tub through the tub air outlet into the airflow conduit, a first reservoir associated with the airflow conduit, the first reservoir configured for collecting liquid condensed from the air forced through the airflow conduit and defining an open reservoir having a liquid outlet fluidly coupled to the tub and configured for draining collected liquid in the open reservoir into the tub, and a second reservoir associated with the airflow conduit, the second reservoir configured for collecting liquid condensed from the air forced through the airflow conduit and defining a closed reservoir configured for emptying collected liquid via evaporation.
Another aspect of the disclosure relates to a dishwasher including a tub having an open face and at least partially defining a treating chamber receiving dishes for treatment and having a tub air outlet, a spray system configured to spray liquid into the dishwasher, an airflow conduit comprising an inlet section fluidly coupling ambient air to the treating chamber through a tub air inlet formed in the tub and an outlet section fluidly coupling the tub air outlet to ambient air, a blower assembly forcing air to flow from the tub and through the tub air outlet into the outlet section, a first reservoir within the outlet section of the airflow conduit, the first reservoir configured to collect liquid condensed air forced through the outlet section, the first reservoir fluidly coupled to the tub and configured for draining the collected liquid into the tub, and a second reservoir within the airflow conduit downstream of the first reservoir and configured to collect any liquid not collected by the first reservoir for evaporation prior to exhaustion of the air to the ambient air.
In the drawings:
Aspects of the present disclosure are generally directed toward the air system of a dishwasher. The particular approach of the embodiments of the invention disclosed herein is to provide an air system with multiple reservoirs for managing the collection of condensation from air flowing through the system.
It should be appreciated that the door assembly 18 may be secured to the lower front edge of the chassis 12 or to the lower front edge of the tub 14 via a hinge assembly (not shown) configured to pivot the door assembly 18. When the door assembly 18 is closed, user access to the treating chamber 16 may be prevented, whereas user access to the treating chamber 16 may be permitted when the door assembly 18 is open. Alternatively, the closure element may be slidable relative to the chassis 12, such as in a drawer-type dishwasher, wherein the access opening for the treating chamber 16 is formed by an open face of an open-top tub. Other configurations of the closure element relative to the chassis 12 and the tub 14 are also within the scope of the invention.
Dish holders, illustrated in the form of upper and lower dish rack assemblies 20, 22, are located within the treating chamber 16 and receive dishes for treatment, such as washing. The upper and lower rack assemblies 20, 22 are typically mounted for slidable movement in and out of the treating chamber 16 for ease of loading and unloading. Other dish holders may be provided, such as a silverware basket, separate from or combined with the upper and lower rack assemblies 20, 22. As used in this description, the term “dish(es)” is intended to be generic to any item, single or plural, that may be treated in the dishwasher 10, including, without limitation, dishes, plates, pots, bowls, pans, glassware, and silverware.
A spray system may be provided for spraying liquid in the treating chamber 16 and may be provided in the form of, for example, a first lower spray assembly 24, a second lower spray assembly 26, a mid-level spray assembly 28, and/or an upper spray assembly 30. The upper spray assembly 30, the mid-level spray assembly 28, and the first lower spray assembly 24 are located, respectively, above the upper rack assembly 20, beneath the upper rack assembly 20, and beneath the lower rack assembly 22 and are illustrated as rotating spray arms by example but are not limited to such positions and sprayer type. The second lower spray assembly 26 is illustrated as being located adjacent the lower dish rack assembly 22 toward the rear of the treating chamber 16. The second lower spray assembly 26 is illustrated by example as including a vertically oriented distribution header or spray manifold 32. An exemplary spray manifold is set forth in detail in U.S. Pat. No. 7,594,513, issued Sep. 29, 2009, and titled “Multiple Wash Zone Dishwasher,” which is incorporated herein by reference in its entirety.
A recirculation system may be provided for recirculating liquid from the treating chamber 16 to the spray system. The recirculation system may include a sump 34 and a pump assembly 36. The sump 34 collects the liquid sprayed in the treating chamber 16 and may be formed by a sloped or recess portion of the bottom wall 14D of the tub 14. The pump assembly 36 may include both a drain pump 38 and a recirculation pump 40. The drain pump 38 may draw liquid from the sump 34 and pump the liquid out of the dishwasher 10 to a household drain line (not shown). The recirculation pump 40 may draw liquid from the sump 34, and the liquid may be simultaneously or selectively pumped through a supply tube 42 to each of the spray assemblies 24, 26, 28, 30 for selective spraying. While not shown, a liquid supply system may include a liquid supply conduit coupled with a liquid supply, such as a household water supply, for supplying water or other liquid to the treating chamber 16.
A heating system including a heater 44 may be located, for example, within the sump 34 for heating the liquid contained in the sump 34. While not shown, the heating system may include other heating devices, such as a steam generator.
A controller 46 may also be included in the dishwasher 10, which may be operably coupled with various components of the dishwasher 10 to implement a cycle of operation. The controller 46 may be located within the door assembly 18 as illustrated, or it may alternatively be located somewhere within the chassis 12. The controller 46 may also be operably coupled with a control panel or user interface 48 for receiving user-selected inputs and communicating information to the user. The user interface 48 may include operational controls such as dials, lights, switches, and displays enabling a user to input commands, such as a cycle of operation, to the controller 46 and receive information.
As illustrated schematically in
Referring now to
Still referring to
The airflow conduit may further include an outlet section 74 fluidly coupling the treating chamber 16 with ambient air. The outlet section 74 may connect to the treating chamber 16 at a tub outlet 76 formed in the tub 14 and may terminate at an exhaust outlet 78 open to ambient air, such as by being exposed to atmosphere external to the dishwasher 10. An exhaust blower 80 with an exhaust impeller 82 driven by an exhaust motor 84, or other suitable device, positioned within the outlet section 74 may draw the mixed air from the treating chamber 16 through the tub outlet 76, move the mixed air through the outlet section 74, and exhaust the mixed air from the dishwasher 10 through the exhaust outlet 78. The exhaust impeller 82 may be any suitable type of impeller, including a centrifugal impeller, an axial impeller or fan, and the like.
The tub outlet 76 may be positioned higher than the tub inlet 62. For example, the tub inlet 62 may be located near a lower end of the tub 14, while the tub outlet 76 may be located near an upper end of the tub 14. After the ambient air flows into the treating chamber 16, the air flows upward from the tub inlet 62 while it mixes with the humid air inside the treating chamber before being drawn through the tub outlet 76 by the rotating exhaust impeller 82. Locating the tub inlet 62 and the tub outlet 76 in this manner generates a desired drying airflow within the treating chamber 16 to facilitate drying the dishes.
The blower assembly comprising the supply and exhaust impellers 66, 82 and the heater 72, if present, may operably communicate with the controller 46 (
A bypass section 86 of the airflow conduit may fluidly couple the inlet section 60 and the outlet section 74 without passing through the tub 14 (i.e., bypassing the tub 14). In the illustrated embodiment, the bypass section 86 joins the inlet section 60 downstream of the heater 72 so that a portion of the preheated ambient air from the inlet section 60 may flow through the bypass section 86 and enter the outlet section 74 where the preheated ambient air combines with the mixed air to form combined air that is released through the exhaust outlet 78. The ambient air may be sucked through the bypass section 86 by the exhaust blower 80, pushed through the bypass section 86 by the supply blower 64, or a combination thereof, as will be discussed in more detail below. Combining the ambient air with the mixed air, which is more humid than the ambient air, reduces the absolute humidity of the air in the outlet section 74, thus reducing the risk of the moisture in the air condensing on the outlet section 74 itself and on surrounding surfaces, including the surfaces surrounding the dishwasher near the exhaust outlet 78. Additionally, reducing the humidity of the air prior to exhaust also avoids the undesirable situation of the user observing humid air, which the user may improperly assume is steam, leaving the dishwasher. Optionally, the bypass section 86 may join with the outlet section 74 near the tub outlet 76, such as adjacent to the tub outlet 76, so that the humidity of the air in the outlet section 74 is reduced as early as possible in the outlet section 74. Furthermore, the bypass section 86 may join with the outlet section 74 upstream of the exhaust blower 80 to reduce the humidity of the air before the air passes through the exhaust blower 80, thus reducing the risk of the moisture in the air condensing on the exhaust blower 80.
The airflow sections 60, 74, 86, the blower assembly 64, 80, and the heater 72 may be arranged in configurations other than that illustrated in
In the embodiments of
As the blower motor 92 drives the dual impeller 66, 82, the supply impeller 66 draws ambient air through the inlet 70 and moves the ambient air through the inlet section 60, including the supply chamber 94, and into the treating chamber 16 through the tub inlet 62 after the ambient air is heated by the heater 72. Simultaneously, the exhaust impeller 82 draws the mixed air from the treating chamber 16 via the tub outlet 76 and moves the mixed air through the outlet section 74, including the exhaust chamber 96, for exhausting through the exhaust outlet 78. Moreover, the supply impeller 66 and/or the exhaust impeller 82 force the heated ambient air through the bypass section 86 to combine the ambient air with the mixed air prior to exhaustion from the dishwasher 10.
In the embodiment of
Additionally, a liquid outlet 100 of the condenser 98 may fluidly couple with the inlet section 60 in a manner that condensed liquid may flow through the liquid outlet 100 to the tub inlet 62 for draining of the liquid from the condenser 98. The liquid outlet 100 may be connected to the tub inlet 62 by a drain conduit 102, as illustrated, or simply by the liquid outlet 100 opening into the inlet section 60, as will be shown in another embodiment below. Fluidly connecting the condenser 98 to the tub inlet 62 of the inlet section 60 provides a convenient location to drain the condensed liquid without requiring an additional hole in the tub 14.
As understood in
Referring now to
In another exemplary embodiment, illustrated in
As mentioned above, elements and features from the different exemplary embodiments of
The sections 60, 74, 86 of the airflow conduit are formed by conduits and other elements through which air flows to fluidly couple ambient air to the treating chamber 16 (i.e., inlet section 60), the treating chamber 16 to ambient air (i.e., the outlet section 74), and the inlet section 60 to the outlet section 74 (i.e., the bypass section 86). Thus, the chambers holding the impellers 66, 82, the heater 72, the condenser 98, and the tub inlet 62 and outlet 76 all form part of their respective sections of the airflow conduit.
The air system may be configured for placement in locations of the dishwasher 10 exterior of the door assembly 18, which advantageously allows for the door assembly 18 to have a smaller depth (i.e., a thinner door) that projects into the treating chamber 16 a smaller distance, relative to an air system with components located in the door assembly 18, when the door assembly 18 closes the tub 14, thereby effectively creating a larger treating chamber 16. For example, the air system may be located adjacent to one or more of the tub walls 14A, 14B, 14C, 14D, and the exhaust outlet 78 may be positioned below the door assembly 18 directing exhausted air forward of the dishwasher 10.
As seen in
Referring now to the sectional view of the dual blower 90 in
Optionally, the partition central opening 130 may be sized to provide a space between the outer circumference of the dual blower and the partition 118, and the space may form an internal bypass opening 138 between the supply chamber 94 and the exhaust chamber 96. Some of the ambient air within the supply chamber 94 may flow through the internal bypass opening 138 to the exhaust chamber 96 to combine with the air in the exhaust chamber 96 prior to exhaustion, as described previously with respect to the embodiment shown schematically in
The dual blower 90 may be coupled to conduits and other components forming the airflow conduit of the air system.
The bypass section 86 of the airflow conduit, which may include the internal bypass opening 138 described above, may include a bypass conduit 156 that connects the tub inlet housing 142 to the tub outlet housing 148. The bypass conduit 156 can be connected to other components of the airflow conduit inlet section 60 and outlet section 74, such as the inlet conduit 140 and the outlet conduit 146, if desired.
In addition, the liquid supply conduit 104 described with respect to the embodiment of
While the operation of the air system shown in
Implementing none, or one or more heaters 72 at any point along the blower assembly is contemplated. One or more heaters 72, implemented in the aforementioned embodiments, is optional and may or may not be included within any inlets or outlets, or may be upstream or downstream from any other element as described and is not limiting. In a further embodiment, the heater 44 located within the sump 34 may be used to heat the air within the treating chamber 16 during drying, or air supply and removal. The heater 44 located within the sump 34 may or may not be used in conjunction with another heater 72 implemented at any point along the blower assembly.
Simultaneous rotation of the exhaust impeller 82 by the dual blower motor 92 draws the mixed air from the treating chamber 16 through the tub outlet 76 into the outlet section 74 of the airflow conduit. The mixed air flows from the tub outlet 76 into the tub outlet housing 148 and the outlet conduit 146. Further, the rotation of the supply impeller 66 and/or the exhaust impeller 82 forces some of the heated ambient air in the tub inlet housing 142 to flow through the bypass conduit 156 that forms at least part of the bypass section 86 of the airflow conduit into the tub outlet housing 148 to combine with the mixed air to form combined air. The combined air flows through the outlet conduit 146 and through the exhaust chamber inlet opening 126 into the exhaust chamber 96. Some of the ambient air from the supply chamber 94 may flow through the internal bypass opening 138 to further combine with the combined air prior to the combined air passing through the exhaust chamber outlet opening 128 and through the exhaust conduit 154 to the exhaust outlet 78. The exhaust outlet 78 directs the air forwardly of the dishwasher below the tub 14 and the door assembly 18 (
An optional feature that may be included in the dual blower 90 is an external bypass opening 160 shown in
Another embodiment of the air system is illustrated in
The remaining components of the
Regardless of the specific configuration of various conduits, housings, heaters, etc. of the air system, the system can be designed with desired air pressure differentials to encourage flow of ambient air through the bypass section 86 from the inlet section 60 to the outlet section 74. In one embodiment, the air pressure in the inlet section 60 at its connection to the bypass section 86 may be higher than the air pressure in the outlet section 74 at its connection the bypass section 86. The ambient air, in this environment, flows “downhill” from higher pressure to lower pressure and, thus, from the inlet section 60 to the outlet section 74 through the bypass section 86. Such a pressure differential can be designed within the system by, for example, configuring the supply impeller 66 to generate a higher pressure airflow than the exhaust impeller 82, such as by altering the impeller blade direction, shape, spacing, size, and the like. Additionally or alternatively, flow restrictions may be designed to achieve a desired air pressure in the inlet section 60 and/or the outlet section 74. Flow restrictions can be adjusted by changing the cross-sectional area of the conduits and housings through which the air flows and the angles at which the air must turn within the conduits and housings. Depending on the air pressure generated by the supply impeller 66 and the exhaust impeller 82 and on the flow restrictions in the system, the air flow through the bypass section 86 may be generated by the supply impeller 66 pushing the air through the bypass section 86, the exhaust impeller 82 sucking the air through the bypass section 86, or a combination thereof.
In
The blower assembly 170 can draw air from the treating chamber 16 through the tub outlet 76 of the outlet section 74. Make-up ambient air is drawn into the treating chamber 16 through a vent 176, with the inlet section 60 fluidly coupling the vent 176 to the treating chamber 16 through the tub inlet 62. The vent 176 can be provided under the door 18, and may also be used for pressure relief, such as when the pump is started after a very hot water fill. The ambient air from the inlet section 60 flows into the treating chamber 16 and mixes with the humid air in the treating chamber 16 to form mixed air. Optionally, heater 72 can be located downstream of the vent 176 for heating the ambient air drawn into the inlet section 60 before the ambient air enters the treating chamber 16 through the tub inlet 62. In a further embodiment, the heater 44 located within the sump 34 (
Additionally, liquid supply conduit 104 may fluidly couple the liquid supply 106, such as an external household water supply, with the inlet section 60. The liquid may flow from the liquid supply 106 and through the liquid supply conduit 104 to the inlet section 60 for entry into the treating chamber 16 through the tub inlet 62. Such an arrangement advantageously utilizes the tub inlet 62 for supplying liquid into the treating chamber 16 and removes a need for an additional hole in the tub 14. Alternatively, the liquid supply conduit 104 can be coupled with an inlet opening into the tub 14 that is separate from the tub inlet 62.
When the moist mixed air leaves the treating chamber 16 and enters the outlet section 74, the moisture in the air will immediately start to condense because the temperature in the outlet section 74 is lower than in the treating chamber 16. In the embodiment of
A liquid outlet 184 of the first reservoir 180 may fluidly couple with the inlet section 60 in a manner that condensed liquid within the first reservoir 180 may flow through the liquid outlet 184 to the tub inlet 62 for draining of the liquid from the first reservoir 180. The liquid outlet 184 may be connected to the tub inlet 62 by a drain conduit 186, as illustrated, or simply by the liquid outlet 184 opening into the inlet section 60, as shown in the embodiment of
The first reservoir 180 may be considered an open reservoir as the collected liquid is drained into the tub 14. The second reservoir 182 may be considered a closed reservoir as it is not drained, but rather emptied via evaporation. In the illustrated embodiment the second, closed reservoir 182 is fluidly downstream of the first, open reservoir 180, but in an alternative embodiment, an open reservoir may be located downstream of a closed reservoir. Further, while the collector 178 is shown as having two reservoirs, in other embodiments the collector 178 may include more than two reservoirs, including various combinations of open and closed reservoirs.
The first reservoir 180 may be positioned higher than the second reservoir 182. For example, the first reservoir 180 may be located on a sidewall of the tub 14, between the tub inlet 62 and the tub outlet 76, while the second reservoir 182 may be located in a region below the tub 14. Locating the reservoirs 180, 182 in this manner provides a dual-collection arrangement with enough capacity to prevent liquid from spilling out of the dishwasher 10 or condensation forming an area outside or around the exterior of the dishwasher, such as on the floor or cabinets. Additionally, having the reservoir 180 that is open to drain into the tub 14 higher in the dishwasher 10 allows liquid in the first reservoir 180 to drain under gravity to the tub 14. Alternatively, an embodiment of the collector 178 can include an open reservoir provided lower a closed reservoir in the dishwasher 10, but a pump is needed to drain the collected liquid from the open reservoir.
The first reservoir 180 may be positioned higher than the tub inlet 62. For example, the first reservoir 180 and tub inlet 62 may both be located on a common sidewall of the tub 14, with the first reservoir 180 located above the tub inlet 62. Locating the reservoir 180 and tub inlet 62 in this manner can provide for a gravity-feed drain of liquid from the first reservoir 180 to the tub inlet 62. Alternatively, the first reservoir 180 may be provided lower than the tub inlet 62 in the dishwasher 10, but a pump may be needed to drain the collected liquid from the first reservoir 180 into the tub inlet 62. In yet another alternative embodiment, both reservoirs 180, 182 can be operatively coupled with a pump or separate pumps to actively drain the liquid collected in the reservoirs. Pump 181, as illustrated in
The blower assembly 170 is fluidly coupled with a second vent 188 and further draws ambient air into the outlet section 72 through the vent 188. The ambient air from the vent 188 is combined with the mixed air before it exits the dishwasher 10 through the exhaust outlet 78 in order to lower the temperature of the air exhausted from the dishwasher 10. The ambient air drawn in through the second vent 188 may also aid in the evaporation of some of the liquid collected in the second reservoir 182, although the liquid collected in the second reservoir 182 may primarily evaporate over time after the conclusion of a cycle of operation, i.e. when the blower assembly 170 is not in operation. In this case, the pathway between the vent 188 and the blower assembly 170 includes the second reservoir 182. In another embodiment, the vent 188 may be coupled with the blower assembly 170 and not the second reservoir 182.
While a bypass section is not shown for the present embodiment, it is understood that the present embodiment can alternatively be provided with a bypass section similar to the bypass section 86 shown in any of the previous embodiments.
The blower motor 174 may include a motor shaft 208 extending into the housing 190 through an opening in the second housing 196, and operatively coupled to the impeller 172 such that rotation of the motor shaft 208 rotates the impeller 172. Rotation of the impeller 172 generates airflow within the impeller chamber 200. In particular, rotation of the impeller 172 draws in air through the inlet opening 202 and pushes the air through the outlet opening 204.
The blower assembly 170 may be coupled to conduits and other components forming the airflow conduit of the air system.
In addition, the liquid supply conduit 104 may be connected to the tub inlet housing 228 to fluidly couple the liquid supply 106 to the tub inlet 62. Optionally, a conduit bracket 230 may be integrally formed with or attached to the tub inlet housing 226 to secure the liquid supply conduit 104 in place. The conduit bracket 230 may also be configured to secure other conduits, such as a drain conduit 232, if desired. In the illustrated embodiment, the conduit bracket 230 secures two portions of the drain conduit 232 in order to form a loop 234 which is further secured by a loop bracket 236 above the conduit bracket 230. The secured loop 234 of the drain conduit 232 prevents undue shortening of the drain conduit 232 during installation.
The outlet conduit section 74 includes a dogleg 238, and the first reservoir 180 lies upstream of the dogleg 238 and the second reservoir 182 lies downstream of the dogleg 238. The dogleg 238 can be formed by the outlet conduit 216 and creates a serpentine airflow path to effect separation of moisture from the mixed air received from the tub outlet 76.
The first reservoir 180 is defined by a portion of the outlet conduit 216 upstream of the dogleg 238. A downstream portion of the outlet conduit 216 couples with the inlet housing 212 of the blower assembly 170, which defines the second reservoir 182.
The first reservoir 180 may be integrally formed with the outlet conduit 216 by a reservoir housing 246. The liquid outlet 184 is provided at a nadir of the first reservoir 180, particularly at a nadir of the reservoir housing 246, such that the liquid in the reservoir 180 may flow downward due to gravity and exit the outlet conduit 216 through the liquid outlet 184. The liquid outlet 184 can comprise an outlet tube 248 connected with the drain conduit 186 leading to the tub inlet 62 such that the condensed liquid may drain into the treating chamber 16 through the tub inlet 62.
While the operation of the air system shown in
The mixed air drawn into the outlet section 74 of the airflow conduit. The mixed air flows through the outlet conduit 216 and through the dogleg 238. Some of the moisture in the mixed air may condense and collect in the first reservoir 180. The air then enters the inlet opening 202 into the impeller chamber 200. Some of the moisture in the mixed air may condense and collect in the second reservoir 182. In particular, any liquid that condenses from the air that is not collected by the first reservoir 180 is collected by the second reservoir 182. Some ambient air may flow through the second vent 188 to further combine with the mixed air and lower the temperature of the air prior to the air passing through the outlet opening 204 to the exhaust outlet 78. The exhaust outlet 78 directs the air out of the dishwasher 10, such as forwardly of the dishwasher 10 below the tub 14 and the door assembly 18 (
The embodiments of the air system shown in
As mentioned above, many embodiments of the air system have been shown and described herein, and the various elements of the embodiments may be combined in any suitable manner to form a desired air system. Such modifications may also include connecting the various conduits, housings, etc. to one another in any desired location relative to each other, i.e., upstream or downstream. The schematic drawings include circles that depict inlet and outlet openings and arrows that represent airflow. These symbols are not meant to limit these features in any manner. For example, the openings are not limited to the size, shape, or position shown in the illustrations. The arrows are meant to show direction of airflow and general behavior with respect to mixing and combining. The arrows do not limit the exact locations of air mixing and combining, are not intended to represent air pressure at a certain location in the airflow conduit, and do not preclude the addition or subtraction of other elements that incorporate further mixing or combining of air or remove mixing or combining of air. In addition, some elements of the airflow conduit have been identified as housings, and the housings effectively form a conduit through which air passes; therefore, reference to a conduit may also refer to a housing as long as air flows through the housing.
To the extent not already described, the different features and structures of the various embodiments of the air system may be used in combination with each other as desired. That one feature may not be illustrated in all of the embodiments of the air system is not meant to be construed that it cannot be, but is done for brevity of description. Thus, the various features of the different embodiments of the air system may be mixed and matched as desired to form new embodiments, whether or not the new embodiments are expressly described.
While the invention has been specifically described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation. Reasonable variation and modification are possible within the scope of the forgoing disclosure and drawings without departing from the spirit of the invention which is defined in the appended claims.
The present application is a continuation of U.S. patent application Ser. No. 14/804,709, filed Jul. 21, 2015, now U.S. Pat. No. 10,136,793, issued on Nov. 27, 2018, which claims the benefit of U.S. Provisional Patent Application No. 62/027,832, filed Jul. 23, 2014, all of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3026628 | Berger, Sr. et al. | Mar 1962 | A |
3068877 | Jacobs | Dec 1962 | A |
3807420 | Donselman et al. | Apr 1974 | A |
3876469 | Schimke | Apr 1975 | A |
4326552 | Bleckmann | Apr 1982 | A |
5056543 | Dygve | Oct 1991 | A |
5277210 | Kim | Jan 1994 | A |
5337500 | Enokizono | Aug 1994 | A |
5341827 | Kim | Aug 1994 | A |
5875802 | Favaro et al. | Mar 1999 | A |
5881746 | Buser et al. | Mar 1999 | A |
6578591 | Eksert et al. | Jun 2003 | B1 |
7445013 | VanderRoest et al. | Nov 2008 | B2 |
7523758 | VanderRoest et al. | Apr 2009 | B2 |
7594513 | Vanderroest et al. | Sep 2009 | B2 |
7798157 | Kim | Sep 2010 | B2 |
7909939 | Brewer | Mar 2011 | B2 |
8161986 | Alessandrelli | Apr 2012 | B2 |
8469043 | Tolf | Jun 2013 | B2 |
8496760 | Bertsch et al. | Jul 2013 | B2 |
8696824 | Jadhav | Apr 2014 | B2 |
8758525 | Kim | Jun 2014 | B2 |
8887742 | Eiermann et al. | Nov 2014 | B2 |
9351628 | Erozkan | May 2016 | B2 |
20030140517 | Schmid | Jul 2003 | A1 |
20060096621 | Lee et al. | May 2006 | A1 |
20060236556 | Ferguson et al. | Oct 2006 | A1 |
20070251552 | Lee | Nov 2007 | A1 |
20080210279 | Hildenbrand | Sep 2008 | A1 |
20080264455 | Brewer | Oct 2008 | A1 |
20080264458 | Brewer et al. | Oct 2008 | A1 |
20090038661 | Hildenbrand | Feb 2009 | A1 |
20090266385 | Haltmayer | Oct 2009 | A1 |
20100043250 | Berends et al. | Feb 2010 | A1 |
20100192977 | Jadhav | Aug 2010 | A1 |
20100294323 | Brunswick et al. | Nov 2010 | A1 |
20100300499 | Han | Dec 2010 | A1 |
20110126864 | Kim | Jun 2011 | A1 |
20120138107 | Fountain et al. | Jun 2012 | A1 |
20130152981 | Bertsch | Jun 2013 | A1 |
20140165421 | Jadhav et al. | Jun 2014 | A1 |
20140360534 | Olson | Dec 2014 | A1 |
20150257627 | Park | Sep 2015 | A1 |
Number | Date | Country |
---|---|---|
693494 | Sep 2003 | CH |
3418304 | Nov 1985 | DE |
4230576 | Mar 1994 | DE |
19934121 | Feb 2000 | DE |
19946456 | Apr 2001 | DE |
10058188 | May 2002 | DE |
102006042486 | Nov 2007 | DE |
102007007133 | Aug 2008 | DE |
102008040745 | Jan 2010 | DE |
102010002086 | Aug 2011 | DE |
102010029888 | Dec 2011 | DE |
0374616 | Jun 1990 | EP |
0536621 | Apr 1993 | EP |
1013217 | Jun 2000 | EP |
1097669 | May 2001 | EP |
1447042 | Aug 2004 | EP |
2075366 | Jul 2009 | EP |
2332457 | Jun 2011 | EP |
2491320 | Apr 1982 | FR |
2491321 | Apr 1982 | FR |
1005521 | Jan 1989 | JP |
2008279026 | Nov 2008 | JP |
20050014516 | Feb 2005 | KR |
101290098 | Aug 2013 | KR |
2009008828 | Jan 2009 | WO |
2010073185 | Jul 2010 | WO |
2011147683 | Dec 2011 | WO |
2013042036 | Mar 2013 | WO |
WO-2014169704 | Oct 2014 | WO |
Entry |
---|
German Search Report for Counterpart DE102012025591.8, dated May 2, 2013. |
German Search Report for Counterpart DE102012109784.4, dated Apr. 29, 2013. |
Number | Date | Country | |
---|---|---|---|
20190038109 A1 | Feb 2019 | US |
Number | Date | Country | |
---|---|---|---|
62027832 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14804709 | Jul 2015 | US |
Child | 16154286 | US |