The present subject matter relates generally to washer appliances, and more particularly to dishwashing appliances having an assembly for circulating drying air therein.
Dishwashing appliances generally include a tub that defines a wash chamber for receipt of articles for washing. Certain dishwasher assemblies also include a rack assembly slidably mounted within the wash chamber. A user can load articles, such as plates, bowls, glasses, or cups, into the rack assembly, and the rack assembly can support such articles within the wash chamber during operation of the dishwashing appliance. Spray assemblies within the wash chamber can apply or direct wash fluid towards articles disposed within the rack assemblies in order to clean such articles. Multiple spray assemblies can be provided, including, for example, a lower spray arm assembly mounted to the tub at a bottom of the wash chamber; a mid-level spray arm assembly mounted to one of the rack assemblies; or an upper spray assembly mounted to the tub at a top of the wash chamber. Other configurations may be used as well.
After the spray assemblies have washed or sprayed articles on the rack assemblies, typical dishwashing appliances provide one or more features to circulate air and remove moisture from (i.e., dry) the articles. Commonly, such features are provided as part of a closed loop or an open loop system. Closed loop systems often draw air from the wash chamber through a small inlet in one corner of the door before returning that same air to the wash chamber (e.g., after being heated or dried). Open loop systems generally motivate air from the ambient environment to the wash chamber, such as through a small vent within the door.
These existing systems present a number of drawbacks. For instance, existing appliances often have difficulty managing the moisture or humidity within the air being circulated. In existing appliances with a closed loop system, an appliance may have difficulty removing moisture from air or may have a limited absorption capacity. In existing appliances with an open loop system, performance may be uneven or undesirably influenced by humidity in the ambient air. Moreover, any energy used to heat air within the wash chamber is generally lost to the ambient environment.
There is, thus, a need for an improved dishwashing appliance. In particular, it would be advantageous to provide a dishwashing appliance with one or more features to efficiently dry air within the wash chamber.
Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
In one exemplary aspect of the present disclosure, a dishwashing appliance is provided. The dishwashing appliance may include a cabinet, a tub, a pump, a spray assembly, a fluid recirculation duct, a cold water line, and a variable-speed fan. The tub may be housed within the cabinet and define a wash chamber. The pump may be configured to deliver a wash fluid to the wash chamber. The spray assembly may be housed within the wash chamber of the tub in fluid communication with the pump to receive wash fluid therefrom. The fluid recirculation duct may extend from a path inlet to a path outlet to recirculate air within the wash chamber. The path inlet may be defined in fluid communication between the wash chamber and the path outlet. The path outlet may be defined in fluid communication between the path inlet and the wash chamber downstream from the path inlet. The cold water line may define a cold water nozzle disposed within the fluid recirculation duct to provide a condensing, cold-water flow into the fluid recirculation duct between the path inlet and the path outlet. The variable-speed fan may be configured to rotate at a plurality of discrete speeds. The variable-speed fan may be in fluid communication with the fluid recirculation duct to selectively motivate a variable airflow from the path inlet to the path outlet.
In another exemplary aspect of the present disclosure, a dishwashing appliance is provided. The dishwashing appliance may include a cabinet, a tub, a pump, a spray assembly, a fluid recirculation duct, a cold water line, and a variable-flow restrictor. The tub may be housed within the cabinet and define a wash chamber. The pump may be configured to deliver a wash fluid to the wash chamber. The spray assembly may be housed within the wash chamber of the tub in fluid communication with the pump to receive wash fluid therefrom. The fluid recirculation duct may extend from a path inlet to a path outlet to recirculate air within the wash chamber. The path inlet may be defined in fluid communication between the wash chamber and the path outlet. The path outlet may be defined in fluid communication between the path inlet and the wash chamber downstream from the path inlet. The cold water line may define a cold water nozzle disposed within the fluid recirculation duct to provide a condensing, cold-water flow into the fluid recirculation duct between the path inlet and the path outlet. The variable-flow restrictor may be mounted to the cold water line. The variable-flow restrictor may be configured to selectively vary the condensing, cold-water flow to the fluid recirculation duct.
In yet another exemplary aspect of the present disclosure, a dishwashing appliance is provided. The dishwashing appliance may include a cabinet, a tub, a pump, a spray assembly, a fluid recirculation duct, a cold water line, and a fan. The tub may be housed within the cabinet and define a wash chamber. The pump may be configured to deliver a wash fluid to the wash chamber. The spray assembly may be housed within the wash chamber of the tub in fluid communication with the pump to receive wash fluid therefrom. The fluid recirculation duct may extend from a path inlet to a path outlet to recirculate air within the wash chamber. The path inlet may be defined in fluid communication between the wash chamber and the path outlet. The path outlet may be defined in fluid communication between the path inlet and the wash chamber downstream from the path inlet. The cold water line may define a cold water nozzle disposed within the fluid recirculation duct to provide a condensing, cold-water flow into the fluid recirculation duct between the path inlet and the path outlet. The fan may be fan configured to selectively motivate an airflow from the path inlet to the path outlet. The fan may be mounted downstream from the path inlet in upstream fluid communication with the wash chamber.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures.
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
As used herein, the terms “first,” “second,” and “third” may be used interchangeably to distinguish one component from another and are not intended to signify location or importance of the individual components. The terms “includes” and “including” are intended to be inclusive in a manner similar to the term “comprising.” Similarly, the term “or” is generally intended to be inclusive (i.e., “A or B” is intended to mean “A or B or both”). In addition, here and throughout the specification and claims, range limitations may be combined or interchanged. Such ranges are identified and include all the sub-ranges contained therein unless context or language indicates otherwise. For example, all ranges disclosed herein are inclusive of the endpoints, and the endpoints are independently combinable with each other. The singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.
Approximating language, as used herein throughout the specification and claims, may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as “generally,” “about,” “approximately,” and “substantially,” are not to be limited to the precise value specified. In at least some instances, the approximating language may correspond to the precision of an instrument for measuring the value, or the precision of the methods or machines for constructing or manufacturing the components or systems. For example, the approximating language may refer to being within a 10 percent margin (i.e., including values within ten percent greater or less than the stated value). In this regard, for example, when used in the context of an angle or direction, such terms include within ten degrees greater or less than the stated angle or direction (e.g., “generally vertical” includes forming an angle of up to ten degrees in any direction, such as, clockwise or counterclockwise, with the vertical direction V).
The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” In addition, references to “an embodiment” or “one embodiment” does not necessarily refer to the same embodiment, although it may. Any implementation described herein as “exemplary” or “an embodiment” is not necessarily to be construed as preferred or advantageous over other implementations. Moreover, each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Turning now to the figures,
Generally, cabinet 102 may define a discrete vertical direction V, lateral direction L, and transverse direction T. Vertical direction V, lateral direction L, and transverse direction T are mutually perpendicular such that vertical direction V, lateral direction L, and transverse direction T form an orthogonal directional system. Cabinet 102 is generally configured for containing or supporting various components of appliance 100 and which may also define one or more internal chambers or compartments of appliance 100. In this regard, as used herein, the terms “cabinet,” “housing,” and the like are generally intended to refer to an outer frame or support structure for appliance 100 (e.g., including any suitable number, type, and configuration of support structures formed from any suitable materials, such as a system of elongated support members, a plurality of interconnected panels, or some combination thereof.) It should be appreciated that cabinet 102 does not necessarily require an enclosure and may simply include open structure supporting various elements of appliance 100. By contrast, cabinet 102 may enclose some or all portions of an interior of cabinet 102. It should be appreciated that cabinet 102 may have any suitable size, shape, and configuration while remaining within the scope of the present subject matter.
As is understood, the tub 104 may generally have a rectangular cross-section defined by various wall panels or walls. For example, as shown in
As particularly shown in
In some embodiments, a silverware basket 170 is removably mounted to lower rack assembly 122. However, in alternative exemplary embodiments, the silverware basket 170 may also be selectively attached to other portions of dishwashing appliance 100 (e.g., door 108) or absent therefrom. The silverware basket 170 defines one or more storage chambers and is generally configured to receive of silverware, flatware, utensils, and the like, that are too small to be accommodated by the upper and lower rack assemblies 120, 122. The silverware basket 170 may be constructed of any suitable material (e.g., metal or plastic) and define a plurality of fluid slots for permitting wash fluid therethrough.
The dishwashing appliance 100 includes one or more spray assemblies housed within wash chamber 106. For instance, the dishwashing appliance 100 may include a lower spray-arm assembly 130 that is rotatably mounted within a lower region 132 of wash chamber 106 directly above the bottom wall 162 of the tub 104 so as to rotate in relatively close proximity to the rack assembly 122. As shown in
As is generally understood, the lower and mid-level spray-arm assemblies 130, 136 and the upper spray assembly 138 may generally form part of a fluid circulation assembly 140 for circulating fluid (e.g., water and dishwasher fluid) within the tub 104. As shown in
It should be appreciated that, although the dishwashing appliance 100 will generally be described herein as including three spray assemblies 130, 136, 138, the dishwashing appliance may, in alternative embodiments, include any other number of spray assemblies, including two spray assemblies, four spray assemblies or five or more spray assemblies. For instance, in addition to the lower and mid-level spray-arm assemblies 130, 136 and the upper spray assembly 138 (or as an alternative thereto), the dishwashing appliance 100 may include one or more other spray assemblies or wash zones for distributing fluid within wash chamber 106.
The dishwashing appliance 100 may be further equipped with a controller 146 configured to regulate operation of the dishwasher 100. The controller 146 may generally include one or more memory devices and one or more microprocessors, such as one or more general or special purpose microprocessors operable to execute programming instructions or micro-control code associated with a cleaning cycle. The memory may represent random access memory such as DRAM, or read only memory such as ROM or FLASH. In one embodiment, the processor executes programming instructions stored in memory. The memory may be a separate component from the processor or may be included onboard within the processor.
The controller 146 may be positioned in a variety of locations throughout dishwashing appliance 100. In the illustrated embodiment, the controller 146 is located within a control panel area 148 of the door 108, as shown in
In some embodiments, an air sensor 250 is mounted within wash chamber 106 (e.g., to tub 104) in communication (e.g., electric or wireless communication) with controller 146 to transmit one or more signals thereto. In particular, air sensor 250 may be configured detect a condition of the air or environment within wash chamber 106 and transmit one or more signals corresponding to the controller 146 based on or corresponding to the detected condition. Such conditions may include temperature or humidity within the wash chamber 106 (e.g., during a washing operation or dry cycle in which a heater, such as heater 260 or 261 is active to heat air and articles within wash chamber 106). In some embodiments, the air sensor 250 includes or is provided as a temperature sensor (e.g., thermistor, thermocouple, etc.) configured to detect air temperature (e.g., as an air temperature value), which may in turn be transmitted to the controller 146. In additional or alternative embodiments, the air sensor 250 includes or is provided as a humidity sensor (e.g., capacitive hygrometer, resistive hygrometer, thermal hygrometer, optical hygrometer, etc.) configured to detect water vapor or air humidity (e.g., as an air humidity value), which may in turn be transmitted to the controller 146.
Generally, air sensor 250 may be disposed at any suitable location within wash chamber 106. In some embodiments, air sensor 250 is located below one or more spray assemblies 130, 136, 138. In additional or alternative embodiments, air sensor 250 is located below one or both of rack assemblies 120, 122 (e.g., upper rack 120). Moreover, as shown, air sensor 250 may be mounted at the bottom half or third of top. In other words, air sensor 250 may be provided at a height below a halfway or two-thirds point of a total height of wash chamber 106 (e.g., from bottom wall 162 to top wall 160) along the vertical direction V.
In additional or alternative embodiments, a water sensor 252 (
Additionally or alternatively, as shown in
Optionally, as shown in
In additional or alternative embodiments, a heater 260 (e.g., electric heating element) is mounted within wash chamber 106. Generally, heater 260 may include or be provided as any suitable air heating element, such as a resistive heat element, radiant heat element, etc. When assembled, heater 260 may be positioned on or above a bottom wall of tub 104. Moreover, heater 260 may be in operative (e.g., electrical or wireless) communication with controller 146. Controller 146 may thus selectively activate heater 260 to operate or otherwise generate heat within wash chamber 106.
It should be appreciated that the present subject matter is not limited to any particular style, model, or configuration of dishwashing appliance. The exemplary embodiments depicted in
Turning now to
As shown, multiple discrete fluid paths 210, 212 are provided to selectively circulate air or vapor through dishwashing appliance 100 (e.g., as part of a drying or dry cycle). In particular, a discrete air path 210 and water path 212 may be provided. As will be described in greater detail below, during use, air path 210 (e.g., defined by fluid recirculation duct 220) may generally permit the recirculation of air through wash chamber 106 while water path 212 (e.g., defined by cold water line 230) permits the addition of a condensing, cold-water flow 232 to air path 210 (e.g., to a circulating airflow 222). During use, the condensing, cold-water flow 232 may advantageously prompt vaporized moisture within air path 210 (e.g., from wash chamber 106) to rapidly condense and separate from air before such air is returned to wash chamber 106.
A fluid recirculation duct 220 may define air path 210. For instance, fluid recirculation duct 220 extends from a path inlet 214 to a path outlet 216. Path inlet 214 may be defined (e.g., at an intake port 224) in fluid communication between wash chamber 106 and path outlet 216. Path outlet 216 may be defined (e.g., at an output port 226) downstream from path inlet 214 in fluid communication between path inlet 214 and wash chamber 106. For instance, path outlet 216 may be defined above path inlet 214. During use, air or vapor may exit wash chamber 106 and enter air path 210 through path inlet 214. From path inlet 214, at least a portion of the received air or vapor may flow through air path 210 before returning to wash chamber 106 through path outlet 216.
Generally, fluid recirculation duct 220 may be provided at any suitable location on or within cabinet 102. For instance, fluid recirculation duct may be mounted to one of the sidewalls 164. In turn, intake port 224 may be held on or extend through one wall while output port is held on or extends through the same or, alternatively, a different wall between top wall and bottom wall 162. Thus, fluid recirculation duct may direct air out of and around at least a portion of wash chamber 106 before returning it to wash chamber 106 at another location relative to tub 104.
As shown, a fan or blower 218 may be provided to motivate air or vapor from path inlet 214 to path outlet 216. Generally, fan 218 may include or be provided as any suitable air handler, such as an axial fan, tangential fan, etc. In some embodiments, fan 218 is mounted along air path 210 (e.g., within fluid recirculation duct 220). Fan 218 may be positioned between the path inlet 214 and path outlet 216 (i.e., downstream from path inlet 214 or upstream from path outlet 216). Additionally or alternatively, fan 218 may be mounted downstream from the path inlet in upstream fluid communication with the wash chamber 106. Further additionally or alternatively, fan 218 may be mounted in fluid communication between the nozzle 234 and path outlet 216 (i.e., downstream from the nozzle 234 and upstream from the path outlet 216 along path 210).
When assembled, fan 218 may be in operative (e.g., electrical or wireless) communication with controller 146. Controller 146 may thus selectively direct fan 218 to rotate or otherwise motivate air through air path 210. In some embodiments, fan 218 is provided as a variable-speed fan and is thus configured to vary the speed of its rotation (i.e., the rotation of a blade or impeller of fan 218). For instance, fan 218 may be configured to rotate at a plurality of discrete speeds. As would be understood, varying the speed of rotation of fan 218 may in turn vary the airspeed (e.g., the volumetric flow rate of air) of a variable airflow 222 through air path 210. In some such embodiments, fan 218 is further configured to vary airspeed of the variable airflow 222 based on one or more detected air conditions. For instance, during the drying or dry cycle, controller 146 may receive one or more signals from air sensor 250, which correspond to a detected air condition (e.g., temperature value or humidity value).
Based on the detected air condition, the airspeed or speed of rotation of the fan 218 may increase or decrease. As an example, a chart, formula, or look-up table may be provided on controller 146 that correlates a detected air condition to a directed airspeed or rotation speed at fan 218. The correlation incorporated into the chart, formula, or look-up table may further consider additional variables, such as the water flow rate from water path 212, water temperature within water path 212, heat output from one or more heaters 260, 261, etc.
In certain embodiments, airspeed or rotation speed at fan 218 generally increases relative to the detected temperature (e.g., linearly or, alternatively, non-linearly according to a predetermined relationship). Thus, a larger detected temperature may generally prompt the controller 146 to direct the fan 218 to a larger directed airspeed or rotation speed. In additional or alternative embodiments, airspeed or rotation speed at fan 218 generally decreases relative to the detected humidity (e.g., linearly or, alternatively, non-linearly according to a predetermined relationship). Thus, a larger detected humidity may generally prompt the controller 146 to direct the fan 218 to a smaller directed airspeed or rotation speed.
In certain embodiments, fluid recirculation duct 220 defines a collection outlet 228 through which liquid (e.g., condensed water) may flow from water path 212. When assembled, collection outlet 228 may be downstream from path inlet 214 and upstream from path outlet 216. For instance, collection outlet 228 may be defined at a bottom end of fluid recirculation duct 220. As the water vapor within water path 212 condenses, the condensed water may collect (e.g., as motivated by gravity or fan 218) and flow from water path 212 through collection outlet 228 (e.g., to water path 212) without passing through path outlet 216.
Separate from air path 210, water path 212 may be defined, at least in part, by a cold water line 230 (e.g., formed from one or more conduits or pipes through which liquid water may flow). As shown, a portion of water path 212 terminates at a portion of air path 210. For instance, cold water line 230 may extend from a domestic water source (e.g., municipal water supply) and terminate at a portion of air path 210.For instance, cold water line 230 may extend from an area outside of fluid recirculation duct 220 to the interior of fluid recirculation duct 220, which defines air path 210. Thus, cold water line 230 may extend through fluid recirculation duct 220 (e.g., a wall thereof). Within fluid recirculation duct 220, a cold water nozzle 234 defined by cold water line 230 may be disposed. Thus, cold water nozzle 234 may be disposed in fluid communication between path inlet 214 and path outlet 216 to provide a condensing, cold-water flow 232 (e.g., at a relatively cold temperature from cold water source 264) into fluid recirculation duct 220 or air path 210.
Generally, cold water nozzle 234 defines one or more spray outlets from which a condensing, cold-water flow 232 may be directed (e.g., from cold water line 230 to the air path 210). Any suitable shape or configuration of nozzle may be provided at cold water nozzle 234. During use, as the condensing, cold-water flow 232 sprays within air path 210, the water thereof may mix or entrain with the air from the wash chamber 106, including vaporized moisture in the air. As the condensing, cold-water flow 232 mixes with the air from wash chamber 106, the vaporized moisture within air path 210 may condense and separate upstream from collection outlet 228 or path outlet 216. In turn, a separate liquid water stream 236 (e.g., of the mixture of condensing, cold-water flow 232 and the condensed moisture from wash chamber 106) and a separated air stream 240 (e.g., of the remaining air from wash chamber 106) may be formed within fluid recirculation duct 220. In optional embodiments, cold water nozzle 234 is positioned above collection outlet 228 or path outlet 216. The liquid water stream 236 may thus flow downward (e.g., as motivated by gravity) before reaching collection outlet 228 or path outlet 216.
A flow restrictor 268 may be provided to selectively release water to air path 210. Specifically, variable-flow restrictor 268 may be mounted along water path 212 to selectively vary cold-water flow 232 to and from nozzle 234. Generally, variable-flow restrictor 268 may include or be provided as any suitable pump or valve to permit water (e.g., condensed water from liquid water stream 236) through drain line 262 or water path 212. In some such embodiments, flow restrictor 268 includes or is provided as a variable-flow restrictor 268, such as a pump or non-binary valve that defines multiple intermediate positions (e.g., between fully open and fully closed) to restrict-permit water through water path 212, such as a ball valve, gate valve, butterfly valve, etc. (e.g., actuated by electronic motor or solenoid).
When assembled, flow restrictor 268 may be in operative (e.g., electrical or wireless) communication with controller 146. A variable-flow restrictor 268 may be configured to move to or held at a plurality of discrete positions (e.g., fully open, fully closed, and one or more intermediate positions therebetween). Controller 146 may thus selectively direct flow restrictor 268 to move (e.g., between a fully open and fully closed position) or otherwise vary the flowrate (e.g., volumetric flow rate) of cold-water flow 232 through water path 212-and thereby at stream 236. In some embodiments, variable-flow restrictor 268 is further configured to vary volumetric flowrate of cold-water flow 232 based on one or more detected air conditions. For instance, during the drying or dry cycle, controller 146 may receive one or more signals from air sensor 250, which correspond to a detected air condition (e.g., temperature value or humidity value).
Based on the detected air condition, the volumetric flowrate of cold-water flow 232 through water path 212 and to air path 210 may increase or decrease. As an example, a chart, formula, or look-up table may be provided on controller 146 that correlates a detected air condition to a directed volumetric flowrate or position at variable-flow restrictor 268. In certain embodiments, volumetric flowrate or position at variable-flow restrictor 268 generally increases relative to the detected temperature (e.g., linearly or, alternatively, non-linearly according to a predetermined relationship). Thus, a larger detected temperature may generally prompt the controller 146 to direct the variable-flow restrictor 268 to a larger directed volumetric flowrate or open position. In additional or alternative embodiments, volumetric flowrate or position at variable-flow restrictor 268 generally decreases relative to the detected humidity (e.g., linearly or, alternatively, non-linearly according to a predetermined relationship). Thus, a larger detected humidity may generally prompt the controller 146 to direct the variable-flow restrictor 268 to a smaller directed volumetric flowrate or open position.
In optional embodiments, a heater 261 (e.g., heating element) is mounted along fluid recirculation duct 220 to selectively direct heat to air within air path 210. As shown, heater 261 may be mounted along fluid recirculation duct 220 downstream from cold water nozzle 234 or collection outlet 228. Air returned to wash chamber 106 may thus be provided at an elevated temperature, advantageously increasing the drying efficacy and moisture capacity of the air within wash chamber. Optionally, heater 261 may be horizontally spaced apart from cold water nozzle 234 or collection outlet 228. Condensed water (e.g., within the liquid water stream 236) may thus separate from the dry air prior to the dry air reaching heater 261 along air path 210. Generally, heater 261 may include any suitable heating element to be selectively activated (e.g., as directed by controller 146). For instance, heater 261 may include a resistive heating element, halogen heating element, radiant heating element, etc.
As noted above, the spray of water to air path 210 generally causes water vapor to condense and fall (e.g., as motivated by gravity) to outlet 228. In some embodiments, drain line 262 may extend from collection outlet 228 to a downstream drain outlet. For instance, downstream drain outlet 266 may extend to wash chamber 106 (e.g., below path outlet 216). Thus, water may flow from the liquid water stream 236, through the collection outlet 228 and drain line 262 to wash chamber 106 (e.g., at sump 152-
As would be understood in light of the present disclosure, controller 146 may be configured to initiate or direct a dry cycle (e.g., following a drain or wash cycle). Such a drain cycle may include directing one or more heaters 260, 261 to an active state (e.g., according to a predetermined heat output or duty cycle), and thereby heat air within the wash chamber 106. While the heater is active, the controller 146 may further direct fan to rotate and, thus, motivate air through air path 210. Moreover, flow restrictor 268 may be directed to permit a cold-water flow 232 to nozzle 234 (e.g., and thus to air path 210 as a stream 236) while heater and fan are active. During the dry cycle, the controller 146 may repeatedly receive air condition signals from air sensor 250, as described above. As also described above, the flow of air or water within air path 210 may be varied based on such signals. For instance, controller 146 may direct fan 218 to vary the airspeed based on the received air condition signals (e.g., repeatedly over the course of the dry cycle). Additionally or alternatively, controller 146 may direct variable flow restrictor 268 to vary the volumetric flow rate of water to air path 210 based on the received air condition signals (e.g., repeatedly over the course of the dry cycle). Advantageously, such dry cycles may quickly and efficiently prompt vaporized moisture within air path 210 (e.g., from wash chamber 106) to condense and separate from air before such air is returned to wash chamber 106, thereby improving drying times for the dishwasher appliance 100.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.