The present subject matter relates generally to dishwashing appliances and more particularly to dishwashing appliances having a pump and assembly for directing fluid therethrough.
Dishwashers or dishwashing appliances generally include a tub that defines a wash chamber for receipt of articles for washing. A door provides or permits selective access to the wash chamber. During wash and rinse cycles, dishwashing appliances generally circulate a fluid through the wash chamber over articles, such as pots, pans, silverware, etc. The fluid can be, for example, various combinations of water and detergent during the wash cycle or water (which may include additives) during the rinse cycle. After the rinse cycle is complete, a drain cycle can be performed to remove the fluid from the wash chamber. Typically, one or more pumps are provided to motivate the fluid through or from the wash chamber. For example, the fluid within a dishwashing appliance is typically circulated during a given cycle using a circulation pump. Fluid is collected in a sump at or near a bottom of the wash chamber and pumped back into the wash chamber through, for example, nozzles in spray arms and other openings that direct the fluid against the articles to be cleaned or rinsed. After the rinse cycle is complete, the drain pump may be activated to pump fluid out of the wash chamber.
Generally, the circulation or drain pumps include a housing having lines or defined channels for directing fluid through the housing. However, challenges exist with existing configurations. For instance, it is often difficult to guide fluid to various portions of the dishwashing appliance without incurring significant variations in pressure. In some instances, these may greatly reduce the efficiency of the corresponding pump or dishwasher. Features, such as fluid channels or vanes, that create a predefined path to gradually redirect fluid flow or mitigate pressure variations may be difficult to assemble or incorporate into existing designs. Moreover, they may be difficult to seal and ensure that fluid does not deviate from the predefined path.
As a result, it would be useful to provide a dishwashing appliance addressing one or more of the above identified issues. In particular, it may be advantageous to provide a dishwashing appliance that includes features for directing fluid through a pump housing while preventing fluid or pressure leaks therein.
Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
In one exemplary aspect of the present disclosure, a dishwashing appliance is provided. The dishwashing appliance may include a tub, a sump, a chamber pump, a vane, and a threaded engagement joint. The tub may define a wash chamber. The sump may be positioned at a bottom portion of the tub. The sump may define an axial direction. The chamber pump housing may be mounted within at least a portion of sump. The chamber pump housing may define an inner wall surface. The vane may be positioned within the chamber pump housing. The vane may extend from an inner radial end to an outer radial end. The vane may define a foil profile. The threaded engagement joint may be formed between the inner wall surface and the vane. The threaded engagement joint may include a first radial thread profile and a second radial thread profile. The first radial thread profile may extend radially from the vane at the outer radial end. The second radial thread profile may be formed on the inner wall surface. The second radial thread profile may be complementary to the first radial thread profile.
In another exemplary aspect of the present disclosure, a dishwashing appliance is provided. The dishwashing appliance may include a tub, a sump, a chamber pump, a vane, and a threaded engagement joint. The tub may define a wash chamber. The sump may be positioned at a bottom portion of the tub. The sump may define an axial direction. The chamber pump housing may be mounted within at least a portion of sump. The chamber pump housing may define an inner wall surface. The vane may be positioned within the chamber pump housing. The vane may extend from an inner radial end to an outer radial end. The vane may define a foil profile. The threaded engagement joint may be formed between the inner wall surface and the vane. The threaded engagement joint may include a first radial thread profile and a second radial thread profile. The first radial thread profile may extend radially from the vane at the outer radial end. The first radial thread profile may be bounded within a radial cross-section of the foil profile. The second radial thread profile may be formed on the inner wall surface. The second radial thread profile may be complementary to the first radial thread profile.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures.
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
As used herein, the term “or” is generally intended to be inclusive (i.e., “A or B” is intended to mean “A or B or both”). The terms “first,” “second,” and “third” may be used interchangeably to distinguish one component from another and are not intended to signify location or importance of the individual components. The terms “upstream” and “downstream” refer to the relative flow direction with respect to fluid flow in a fluid pathway. For example, “upstream” refers to the flow direction from which the fluid flows, and “downstream” refers to the flow direction to which the fluid flows.
In certain embodiments, a spout 160 is positioned adjacent sump 170 of dishwashing appliance 100. Spout 160 is configured for directing liquid into sump 170. Spout 160 may receive liquid from, for example, a water supply (not shown) or any other suitable source. In alternative embodiments, spout 160 may be positioned at any suitable location within dishwashing appliance 100 (e.g., such that spout 160 directs liquid into tub 104). Spout 160 may include a valve (not shown) such that liquid may be selectively directed into tub 104. Thus, for example, during the cycles described below, spout 160 may selectively direct water or wash fluid into sump 170 as required by the current cycle of dishwashing appliance 100.
Rack assemblies 130 and 132 may be slidably mounted within wash compartment 106. In some embodiments, each of the rack assemblies 130 and 132 is fabricated into lattice structures including a plurality of elongated members 134. Each rack of the rack assemblies 130 and 132 is generally adapted for movement between an extended loading position (not shown) in which the rack is substantially positioned outside the wash compartment 106, and a retracted position (shown in
In certain embodiments, dishwashing appliance 100 includes a lower spray assembly 144 that is rotatably mounted within a lower region 146 of the wash compartment 106 and above sump 170 so as to rotate in relatively close proximity to rack assembly 132. Optionally, a mid-level spray assembly 148 is located in an upper region of the wash compartment 106 and may be located in close proximity to upper rack 130. Additionally or alternatively, an upper spray assembly 150 may be located above the upper rack 130.
In exemplary embodiments, lower and mid-level spray assemblies 144 and 148 and the upper spray assembly 150 are fed by a fluid circulation assembly 152 for circulating water and dishwasher fluid in the tub 104. Fluid circulation assembly 152 includes one or more fluid pumps (e.g., a circulation pump 154 or a cross-flow/drain pump 156). As will be discussed in greater detail below, some embodiments include circulation pump 154 positioned at least partially within sump 170 and drain pump positioned below circulation pump 154 in fluid communication with sump 170. Additionally, drain pump 156 may be configured for urging the flow of wash fluid from sump 170 to a drain 158 when activated. By contrast, circulation pump 154 may be configured for supplying a flow of wash fluid from sump 170 to spray assemblies 144, 148 and 150 by way of one or more circulation conduits 226 when activated. Moreover, a filter assembly may be also positioned at least partially in sump 170 for filtering food particles or other debris, referred to herein generally as soils, from wash fluid prior to such wash fluid flowing to circulation pump 154.
Spray assemblies 144 and 148 include an arrangement of discharge nozzles or orifices for directing wash fluid onto dishes or other articles located in rack assemblies 130 and 132. The arrangement of the discharge nozzles in spray assemblies 144 and 148 provides a rotational force by virtue of wash fluid flowing through the discharge ports. The resultant rotation of the spray assemblies 144 and 148 provides coverage of dishes and other dishwasher contents with a spray of wash fluid.
Dishwashing appliance 100 is further equipped with a controller 137 to regulate operation of the dishwashing appliance 100. Controller 137 may include a memory (e.g., non-transitive media) and microprocessor, such as a general or special purpose microprocessor operable to execute programming instructions or micro-control code associated with a washing operation. The memory may represent random access memory such as DRAM, or read only memory such as ROM or FLASH. In one embodiment, the processor executes programming instructions stored in memory. The memory may be a separate component from the processor or may be included onboard within the processor. Alternatively, controller 137 may be constructed without using a microprocessor (e.g., using a combination of discrete analog or digital logic circuitry, such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, and the like) to perform control functionality instead of relying upon software.
Controller 137 may be positioned in a variety of locations throughout dishwashing appliance 100. In the illustrated embodiment, controller 137 may be located within a control panel area 121 of door 120 as shown. In such an embodiment, input/output (“I/O”) signals may be routed between controller 137 and various operational components of dishwashing appliance 100 along wiring harnesses that may be routed through the bottom 122 of door 120. Typically, controller 137 includes a user interface panel 136 through which a user may select various operational features and modes and monitor progress of the dishwashing appliance 100. In one embodiment, user interface 136 may represent a general purpose I/O (“GPIO”) device or functional block. In one embodiment, user interface 136 may include input components, such as one or more of a variety of electrical, mechanical or electro-mechanical input devices including rotary dials, push buttons, and touch pads. User interface 136 may include a display component, such as a digital or analog display device designed to provide operational feedback to a user. User interface 136 may be in communication (e.g., electrical or wired communication) with controller 137 via one or more signal lines or shared communication busses.
It should be appreciated that the subject matter disclosed herein is not limited to any particular style, model or configuration of dishwashing appliance, and that the embodiments depicted in the figures are for illustrative purposes only. For example, instead of the racks 130 and 132 depicted in
Turning now to
As noted above, sump 170 is positioned at a bottom portion 112 of tub 104 (
As shown, sump 170 includes a side wall 202 and a bottom wall 204. Sidewall 202 may define a substantially cylindrical shape along the axial direction A, although in other embodiments, sidewall 202 may instead define another suitable shape, such as a frustoconical shape, or alternatively an inverted frustoconical shape along the axial direction A.
In exemplary embodiments, bottom wall 204 extends radially inward from sidewall 202 and defines a recessed chamber 206 bounded by walls 202, 204. Recessed chamber 206 is defined at its perimeter by a rim portion of bottom wall 204 extending downward generally downward (e.g., toward the axial direction A or parallel thereto). Recessed chamber 206 also defines an opening 210 having, for example, a generally circular shape. Moreover, bottom wall 204 defines a drain opening 208 in a portion that opens into the recessed chamber 206.
In some embodiments, a filter assembly is positioned at least partially within sump 170 along the axial direction A (e.g., with or as a portion of pump assembly 200). The filter assembly may include multiple panels, such as a side panel 212, a bottom panel 214, or a top panel (not pictured). One or more of side panel 212, bottom panel 214, and top panel may include a filter medium defining a plurality of openings or pores configured to allow wash fluid to pass therethrough while preventing soils, such as food particles or other debris, larger than a predetermined size to pass therethrough. For example, in certain embodiments, one or more of side panel 212, bottom panel 214, and the top panel may include a fine mesh material.
In exemplary embodiments, a circulation pump 154 is included within pump assembly 200. More particularly, circulation pump 154 includes a fluid impeller (e.g., circulation impeller 232) and a chamber pump housing 234. When assembled, circulation impeller 232 is positioned within pump assembly 200 and may be enclosed by chamber pump housing 234. In some embodiments, circulation pump 154, including chamber pump housing 234, is held in position along the axial direction A by, for example, one or more elastomer columns 222.
As will be further described below, pump housing 234 defines a plurality of internal channels 236 that are downstream of impeller 232 and in fluid communication with circulation conduit 226 (
As illustrated, some embodiments include an electric motor 242 mounted within a portion of the sump 170. For instance, the electric motor 242 may be enclosed within a portion of chamber pump housing 234 radially inward from the vane(s) 270.
In optional embodiments, at least one elastomer column 222 and corresponding support tube 250 form a mated electrical plug-socket 252. For instance, at least one elastomer column 222 may include an electrical male plug 252A, while corresponding support tube 250 includes an electrical female socket 252B. Alternatively, the electrical male plug 252A may be provided within the support tube 250 while the female socket 252B is provided on or within the elastomer column 222. the elastomer column 222 may be in conductive or electrical communication with a power source (e.g., through one or more intermediate conductive wires or buses). The support tube 250 may be in conductive or electrical communication with the electric motor 242. When assembled, the mated electrical plug-socket 252 may connect the power source to the electric motor 242. An electrical connection may thus be formed with the electric motor 242 through at least one elastomer column 222.
In some embodiments, pump assembly 200 includes a drain pump 156, which itself includes a fluid impeller (e.g., drain impeller 238) and a drain pump housing 240. When assembled, drain impeller 238 may be enclosed by drain pump housing 240, and drain pump housing 240 may be attached to or otherwise formed by sump 170. More particularly, drain pump housing 240 is positioned below and in fluid communication with the recessed chamber 206 defined by bottom wall 204 of sump 170 assembly through a drain opening 208 of bottom wall 204 of sump 170. Optionally, drain pump housing 240 may be formed integrally with sump 170, or, alternatively, may be attached to sump 170 in any suitable manner.
As shown, a volute cover 254 may be positioned over or across at least a portion of drain opening 208. In some embodiments, volute cover 254 is mounted to chamber pump housing 234 (e.g., via one or more adhesives, mechanical fasteners, or integral unitary members). When assembled, volute cover 254 may thus be positioned between electric motor 242 and drain impeller 238 (e.g., along the axial direction A). A cover opening or inlet 256 is defined through volute cover 254 (e.g., along the axial direction A or a direction that is parallel or otherwise nonorthogonal to the vertical direction V). Fluid communication and a flow F between recessed chamber 206 and drain pump housing 240 may thus be permitted through the cover inlet 256.
In some embodiments, volute cover 254 includes a radial flange (e.g., along a radial or outer perimeter of volute cover 254). For instance, radial 258 flange may be disposed about the axial direction A at a radial outermost portion of volute cover 254. When assembled, radial flange 258 may be positioned, at least in part, above an elastomer seal 260 that extends about or around drain opening 208.
As shown, an elastomer seal 260 may be mounted on sump 170 (e.g., on bottom wall 204) at a position that is generally higher than drain impeller 238 relative to the vertical direction V or axial direction A. Elastomer seal 260 may further be positioned, at least in part, between radial flange 258and recessed chamber 206 (or between radial flange 258 and drain impeller 238) along the axial direction A. In some embodiments, elastomer seal 260 includes a ring support body and an interface surface extending therefrom. For instance, interface surface may extend radially inward from ring support body toward the axial direction A.
In some embodiments, pump assembly 200 includes an axial shaft 244 engaged (e.g., in mechanical communication) with electric motor 242. During operations, axial shaft 244 may thus be rotated by electric motor 242. As shown, electric motor 242 may be positioned above drain impeller 238 or circulation impeller 232 (e.g., along the vertical direction V or axial direction A). Moreover, circulation impeller 232 may be positioned above volute cover 254. In exemplary embodiments, axial shaft 244 extends through circulation impeller 232, through volute cover 254 (e.g., at cover inlet 256), and into drain impeller 238 along the axial direction A. Axial shaft 244 may be selectively engaged (e.g., in mechanical communication) with drain impeller 238 and circulation impeller 232, such that rotation of axial shaft 244 rotates drain impeller 238 or rotates circulation impeller 232.
In optional embodiments, circulation pump 154 may include a one-way clutch (not shown) in mechanical communication with circulation impeller 232 and axial shaft 244. When axial shaft 244 is rotated in a first direction by electric motor 242, the one-way clutch of circulation impeller 232 is configured to engage circulation impeller 232 and rotate circulation impeller 232. Alternatively, circulation impeller 232 may be fixed to axial shaft 244 (e.g., such that rotation of axial shaft 242 in either a first or second direction rotates circulation impeller 232).
In additional or alternative embodiments, drain pump 156 further includes a one-way clutch 268 in mechanical communication with drain impeller 238 and axial shaft 244. When axial shaft 244 is rotated in a second direction by electric motor 242, the second direction being an opposite direction of the first direction, the one-way clutch 268 of the drain impeller 238 is configured to engage drain impeller 238 and rotate drain impeller 238. In some such embodiments, only one of circulation pump 154 and drain pump 156 may be activated at a given time. Alternatively, drain impeller 238 may be fixed to axial shaft 244 (e.g., such that rotation of axial shaft 242 in either a first or second direction rotates drain impeller 238).
Advantageously, the present pump assembly 200, including electric motor 242 and impellers 232, 238 may be assembled by lowering chamber pump housing 234 into sump 170, without requiring a separate electric motor in an area below recessed chamber 206, or without requiring access to the same. Additionally or alternatively, most, if not all, of the pump assembly 200 (e.g., electric motor 242, chamber pump housing 234, volute cover 254, and impellers 232, 238) may be preassembled prior to being mounted within sump 170.
Referring now particularly to
During operation of circulation pump 154, soils in wash fluid may gravitate towards recessed chamber 206 defined in bottom wall 204 of sump 170. For example, an inlet 248 of circulation pump 154 is positioned adjacent bottom panel 214 of the filter assembly, and thus wash fluid may first be pulled through bottom panel 214 of the filter assembly. Additionally or alternatively, as recessed chamber 206 is positioned at a bottom of sump 170, gravitational forces may also cause soils to gravitate towards recessed chamber 206. Such a configuration may allow for efficient draining and cleaning of sump 170, as the drain opening 208 opens into recessed chamber 206 defined by bottom wall 204. As shown, bottom wall 204 may include or be provided as a solid continuous surface. Thus, at least a portion of the bottom wall 204 (e.g., a lowermost surface thereof, which is directly beneath recessed chamber 206 and impeller 238) may be free of an openings or apertures (e.g., vertical openings) through which water may pass.
Referring now particularly to
Turning now especially to
As shown, each vane 270 generally extends (e.g., along the radial direction R) from an inner radial end 274 to an outer radial end 276. Moreover, each diffuser vane 270 may define a foil profile 272. In turn, the outer surface of each diffuser vane 270 is generally curved or nonlinear between a first axial end 278 and a second axial end 280. The foil profile 272 may have a varied vane width or thickness (e.g., such that thickness of the foil profile 272 tapers between the two axial ends 278, 280) and generally serves to form a high-pressure side and a low pressure side. During use (e.g., during a circulation operation), fluid flow within chamber housing 234may be directed within internal channels 236 according to a curved or relatively helical path about the axial direction A.
In certain embodiments, a discrete inner diffuser bowl 282 and outer diffuser bowl 284 are included with chamber pump housing 234. As shown, inner diffuser bowl 282 is enclosed, at least in part, within outer diffuser bowl 284. When assembled, at least a portion of inner diffuser bowl 282 and outer diffuser bowl 284 may be spaced apart (e.g., along the radial direction R) to define, for example, the radial bounds of internal channels 236. For instance, internal channels 236 may be defined between an outer wall surface 286 of inner diffuser bowl 282 and an inner wall surface 288 of outer diffuser bowl 284. As shown, outer diffuser bowl 284 may define inlet 248 (e.g., below inner diffuser bowl 282) and a downstream outlet 249 (e.g., above inner diffuser bowl 282 and in fluid communication with one or more of the spray assemblies 142, 148, 150). Thus, internal channels 236 may extend across inner diffuser bowl 282 within outer diffuser bowl 284. Additionally or alternatively, impeller 232 may be housed within outer diffuser bowl 284 while remaining outside of inner diffuser bowl 282. Optionally, motor 242 may located radially inward from the diffuser vanes 270. For instance, motor 242 may be enclosed within inner diffuser bowl 282 and sealed from fluid communication with internal channels 236. As shown, axial shaft 244 may extend from inner diffuser bowl 282 and out through outer diffuser bowl 284 (e.g., to simultaneously mechanically couple with impellers 232 and 238).
In some embodiments, each vane 270 is fixed to inner diffuser bowl 282 or outer diffuser bowl 284 while being selectively attached to the other bowl 284 or 282. For instance, the inner radial end 274 of one or more vanes 270 may be formed on outer wall surface 286 of inner diffuser bowl 282 (e.g., as an integral monolithic or unitary structure). Outer radial end 276 of vane 270 may then be attached to outer diffuser bowl 284 (e.g., by a threaded engagement joint 290).
In the exemplary embodiments illustrated in
Any suitable thread shape may be provided. For instance, when viewed along the cross-section perpendicular to the axial direction A, threaded engagement joint 290 may define an angled, blunt-nose thread shape (e.g., as illustrated in
It is noted that while the first radial thread profile 292 is illustrated as a male extrusion extending radially outward from the foil profile 272 of vane 270, and the second radial thread profile 294 is illustrated as a female groove extending within outer diffuser bowl 284, it is understood that this relationship may be reversed. In other words, the first radial thread profile 292 may be provided as female groove extending radially inward from a foil profile 272 and within the corresponding vane 270, while the second thread profile is provided as a male extrusion extending radially inward from inner wall surface 288 of outer diffuser bowl 284.
Although both of the foil profile 272 and the first radial thread profile 292 provided on or defined by a common vane 270, each profile 272 or 292 may be unique from the other 292 or 272. Specifically, the first radial thread profile 292 is defined along a set or constant helical path. The first radial thread profile 292 thus has a curve and thread pitch that does not change (e.g., along the axial direction A). Optionally, the thread thickness or diameter (e.g., in the axial direction A or radial direction R) may be constant. In contrast to the first radial thread profile 292, the foil profile 272 may be defined along a varied or non-constant, curved path. The curve or angle of the foil profile 272 may thus change (e.g., along the axial direction A). Thus, the angle or shape of the foil profile 272 may be different at the second axial end 280 than the angle or shape of the foil profile 272 at the first axial end 278 (or at another portion of the foil profile 272 between the first axial end 278 and the second axial end 280).
In some embodiments, the first radial thread profile 292 is bounded within a radial cross-section of the foil profile 272. Thus, when viewed along the radial direction R (e.g., such that a plane perpendicular to the radial direction R is visible), the first radial thread profile 292 may appear to be wholly enclosed within the foil profile 272. In other words, the first radial thread profile 292 may be formed such that the non-radial extrema (i.e., extrema perpendicular to the radial direction R, such as the axial direction A) of the first radial thread profile 292 do not extend beyond the non-radial extrema defined by the corresponding foil profile 272 (e.g., at the outer radial end 276).
Advantageously, the threaded engagement joint 190 may establish a seal between vane 270 and inner wall surface 288 or otherwise prevent crossover leakage (e.g., between the high pressure and low pressure sides of vane 270).
In certain embodiments, one or more portions of chamber pump housing 234 are provided as discrete and separable upper and lower housing sections. As an example, inner diffuser bowl 282 may include an inner upper section 282A that is selectively supported on an inner lower section 282B. As an additional or alternative example, outer diffuser bowl 284 may include an outer upper section 284A that is selectively supported on an outer lower section 284B. Thus, one or both of the diffuser bowls 282, 284 may be selectively separated or attached (e.g., while advantageously providing a fluid seal at the attachment points thereof).
In certain embodiments wherein inner diffuser bowl 282 includes an inner upper section 282A and an inner lower section 282B, one or more of the vanes 270 includes multiple discrete and separable segments. For instance, vane 270 may include a lower segment 270B fixed to the inner lower section 282B and an upper segment 270A fixed to the inner upper section 282A. Each of lower segment 270B and upper segment 270A may define separate portions of the foil profile 272. When the lower segment 270B and the upper segment 270A are attached together (e.g., in contact with each other) the foil profile 272 may be continuous across the entire vane 270. In some such embodiments, a complementary groove—notch joint is formed between the lower and upper segments 270B, 270A. For instance, the lower segment 270B may define an axial groove 296 (e.g., extending between inner radial end 274 and outer radial end 276) at a top surface of the lower segment 270B. Similarly, the upper segment 270A may define an axial notch 298 at a bottom surface of the upper segment 270A. When assembled, the axial notch 298 may be mated with and received within the axial groove 296 such that relative rotation between the segments 270A, 270B (e.g., about the axial direction A) is prevented or restricted.
In additional or alternative embodiments wherein outer diffuser bowl 284 includes an outer upper section 284A and an outer lower section 284B, one or more the vanes 270 includes multiple threaded engagement joints 290. For instance, a separate or unique threaded engagement joint 290, each including a complementary first and second radial thread profiles 292, 294, may be included with the upper and lower segments 270A, 270B of the vane 270. Thus, a lower threaded engagement joint 290 may be formed between the outer lower section 284B and the lower segment 270B of the vane 270. Moreover, an upper threaded engagement joint 290 may be formed between the outer upper section 284A and the upper segment 270A of the vane 270. In some such embodiments, the first radial thread profile 292 of both the lower segment 270B and the upper segment 270A are bounded within the radial cross-section of the foil profile 272 (e.g., within the portion of the foil profile 272 defined by the corresponding segment 270A, 270B).
Optionally, lower and upper threaded engagement joints 290 may be defined along identical paths (e.g., such that radial thread profiles 292, 294 are defined according to the same thread pitch or size). Alternatively, and as illustrated, lower and upper threaded engagement joints 290 may each be unique. As an example, each threaded engagement joint 290 may define a different thread pitch (e.g., axial distance between one crest of a thread and another axially adjacent crest—if the predetermined path were followed such that multiple crests were provided). In other words, the first and second radial thread profiles 292, 294 of the first engagement joint 290 may define a first thread pitch, and the first and second radial thread profile 292, 294 of the second engagement joint 290 may define a second thread pitch that is not equal the first thread pitch. For instance, the second thread pitch may be greater than the first thread pitch.
In further additional or alternative embodiments wherein outer diffuser bowl 284 includes an outer upper section 284A and an outer lower section 284B, a pair of complementary lips 310, 312 may be included on the outer upper section 284A and the outer lower section 284B. A lower radial lip 312 may extend outward from outer lower section 284B (e.g., opposite inner wall surface 288), while an upper radial lip 310 extends outward from outer upper section 284A. In some such embodiments, a complementary groove—notch joint is formed between the lower and upper segments 270B, 270A. For instance, the upper radial lip 310 may define an axial groove 314 (e.g., extending along a circumferential direction about the axial direction A) at a bottom surface of the upper radial lip 310. Similarly, the lower radial lip 312 may define an axial notch 316 at a top surface of the lower radial lip 312. When assembled, the axial notch 316 may be mated with and received within the axial groove 314 such that relative radial movement between the sections is prevented or restricted. Moreover, the complementary groove—notch joint may seal outer diffuser bowl 284 and prevent fluid from passing between the radial lips 310, 312.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.