The present invention generally relates to vehicle lighting systems and more particularly relates to vehicle lighting systems employing photoluminescent structures.
Illumination arising from the use of photoluminescent structures offers a unique and attractive viewing experience. It is therefore desired to implement such structures in automotive vehicles for various lighting applications.
According to one aspect of the present invention, a vehicle handle assembly is provided that includes a light-producing-assembly with a first light source and a second light source. The first and second light sources are configured to emit light of different wavelengths. A photoluminescent structure is configured to luminesce in response to excitation by light emitted by the first light source and a phosphorescent structure is configured to phosphoresce in response to excitation by light emitted by the second light source.
According to another aspect of the present invention, a vehicle handle assembly is provided that includes a substrate and a light-producing-assembly with first LEDs and second LEDs. The first LEDs configured to emit light of a different wavelength than the second LEDs. A disinfecting layer is activated based on light of at least one of the first and second LEDs.
According to yet another aspect of the present invention, a method of disinfecting a handle is provided that includes the steps of providing a handle with a light-producing-assembly having first LEDs and second LEDs, energizing a disinfecting layer and a phosphorescent structure using light from the second LEDs, and altering a direction of electrical current across the light-producing-assembly to activate the first LEDs and deactivate the second LEDs.
These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
In the drawings:
As required, detailed embodiments of the present invention are disclosed herein. However, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to a detailed design and some schematics may be exaggerated or minimized to show function overview. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
As used herein, the term “and/or,” when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, and/or C, the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.
Referring to
Referring to the depicted embodiment of
The substrate 24 may be an insert molded plastic component or other suitable material to which the light-producing-assembly 26 may be coupled (e.g., via thermal forming and/or adhesively). The hiding layer 28 may be a polymeric coating which has been produced to aid in hiding or obscuring the light-producing-assembly 26 from viewers of the handle assembly 14. The hiding layer 28 may optionally be colored, hazed, or subjected to a vacuum metallization process to aid in the hiding of the light-producing-assembly 26. Positioned on the hiding layer 28 is the protective layer 30. The protective layer 30 may be a plastic or rubber material configured to prevent interaction between the disinfecting layer 32, the light-producing-assembly 26 and/or the hiding layer 28. In one embodiment, the protective layer 30 may be silicone (e.g., polymerized siloxanes or polysiloxanes). In various embodiments, the protective layer 30 may be applied using chemically enhanced plasma deposition, vacuum deposition, cathodic arc deposition, sputtering, physical vapor deposition, other plasma deposition techniques, and/or conventional vacuum coating technology. After deposition, the protective layer 30 forms a hard coat which protects the underlying structure from the disinfecting layer 32. The protective layer 30 may have a thickness in a range between about 1 nm and about 50 nm, between about 5 nm and about 40 nm, or between about 10 nm and about 25 nm. In various embodiments, the protective layer 30 may be substantially transmissive to light emitted from the light-producing-assembly 26. For example, the protective layer 30 may have a transmissivity greater than about 80%, greater than about 90% greater than about 95%, or greater than about 99%. In some embodiments, the protective layer 30 may be variably transmissive (e.g., between about 50% and about 100% transmissive) based on the wavelength of light being passed through the protective layer 30.
Positioned on the protective layer 30 is the disinfecting layer 32. The disinfecting layer 32 may be configured to disinfect or kill bacteria, fungi, viruses and/or pathogens capable of infecting human or animal hosts. Additionally, the disinfecting layer 32 may breakdown organic compounds (e.g., oils and greases) dirt, grime, and other compounds typically present on human hands. The disinfecting layer 32 may be passive, or configured to constantly (e.g., substantially all the time) break down the above noted materials, or may be active and be activated upon the excitation of light (e.g., ultraviolet light) or energy from the light-producing-assembly 26. In some embodiments, the disinfecting layer 32 may always have some minimal level of disinfecting property which may be increased through activation of the light-producing-assembly 26. In various embodiments, activation of the disinfecting layer 32 by the light-producing-assembly 26 may result in the disinfecting layer 32 releasing charged or uncharged hydroxyl radicals which may react with the above noted bacteria, dirt, oils, and other contaminants to create the disinfecting property. The disinfecting layer 32 may include antimicrobial agents such as metal particles (e.g., titanium, cobalt nickel, copper, zinc, zirconium, molybdenum, tin, cerium and/or lead) and oxides thereof in sufficient quantities to have an antimicrobial or antiviral effect. For example, the disinfecting layer 32 may include TiO2, ZnO, CuO, SnO2 and/or combinations thereof. In various embodiments, the antimicrobial agents of the disinfecting layer 32 may have a size on the order of nano-scale particles (e.g., particles having an average diameter of less than about 1μ, less than about 500 nm, less than about 100 nm, less than about 10 nm, less than about 2 nm, or less than about 1 nm). In one exemplary embodiment, the disinfecting layer 32 may include a plurality of TiO2 nanoparticles which activate and become antimicrobial, antifungal, antiviral, and/or anti-organic upon application of ultraviolet light (e.g., light having a wavelength less than about 375 nm) from the light-producing-assembly 26. The disinfecting layer 32 may be applied via sputter coating, physical vapor deposition, chemical vapor deposition, plasma deposition, vacuum deposition, cathodic arc deposition, other plasma deposition techniques, and/or conventional vacuum coating technology.
Referring now to
Referring now to
The light source 60 may correspond to a thin-film or printed light emitting diode (LED) assembly and includes a base member 68 as its lowermost layer. The base member 68 may include a polycarbonate, poly-methyl methacrylate (PMMA), or polyethylene terephthalate (PET) material, or any other material known in the art, in the range of about 0.005 to 0.060 inches thick and is arranged over the intended vehicle 10 surface on which the light-producing-assembly 26 is to be received (e.g., substrate 24). Alternatively, as a cost saving measure, the base member 68 may directly correspond to a preexisting vehicle structure (e.g., substrate 24). The light-producing-assembly 26 may be thermoformed, or otherwise formed, to take the basic shape of the substrate 24 of the handle 16. Thereafter, the light-producing-assembly 26 may be insert molded or otherwise adhered to the substrate 24.
The light source 60 includes a positive electrode 70 arranged over the base member 68. The positive electrode 70 includes a conductive epoxy such as, but not limited to, a silver-containing or copper-containing epoxy. The positive electrode 70 is electrically connected to at least a first portion of a plurality of LED sources 72a and a second portion of a plurality of LEDs 72b arranged within a semiconductor ink 74 and applied over the positive electrode 70. Likewise, a negative electrode 76 is also electrically connected to at least a portion of the LED sources 72a, 72b. The negative electrode 76 is arranged over the semiconductor ink 74 and includes a transparent or translucent conductive material such as, but not limited to, indium tin oxide. Additionally, each of the positive and negative electrodes 70, 76 are electrically connected to a controller 78 and a power source 80 via corresponding bus bars 82, 84 and conductive leads 86, 88. The bus bars 82, 84 may be printed along opposite edges of the positive and negative electrodes 70, 76 and the points of connection between the bus bars 82, 84 and the conductive leads 86, 88 may be at opposite corners of each bus bar 82, 84 to promote uniform current distribution along the bus bars 82, 84. It should be appreciated that in alternate embodiments, the orientation of components within the light source 60 may be altered without departing from the concepts of the present disclosure. For example, the negative electrode 76 may be disposed below the semiconductor ink 74 and the positive electrode 70 may be arranged over the aforementioned semiconductor ink 74. Likewise, additional components, such as the bus bars 82, 84 may also be placed in any orientation such that the light source 60 may emit inputted light 100 towards a desired location.
The first portion of LED sources 72a and the second portion of LED sources 72b, may be dispersed in a random or controlled fashion within the semiconductor ink 74 and may be configured to emit focused or non-focused light toward the photoluminescent structure 62. The LED sources 72a, 72b may correspond to micro-LEDs of gallium nitride elements in the range of about 5 to about 400 microns in diameter, width, and/or length and the semiconductor ink 74 may include various binders and dielectric material including, but not limited to, one or more of gallium, indium, silicon carbide, phosphorous, and/or translucent polymeric binders.
The semiconductor ink 74 can be applied through various printing processes, including ink jet and silk screen processes, to selected portion(s) of the positive electrode 70. More specifically, it is envisioned that the portions of LED sources 72a, 72b are dispersed within the semiconductor ink 74, and shaped and sized such that a substantial quantity of the LED sources 72a, 72b align with the positive and negative electrodes 70, 76 during deposition of the semiconductor ink 74. The portion of the LED sources 72a, 72b that ultimately are electrically connected to the positive and negative electrodes 70, 76 may be illuminated by a combination of the bus bars 82, 84, controller 78, power source 80, and conductive leads 86, 88. According to one embodiment, the power source 80 may correspond to a vehicular power source 80 operating at 12 volts DC to 16 volts DC. When the portions of LED sources 72a, 72b are activated, they may emit light ranging from not visible (e.g., infrared, near-infrared, ultraviolet, and/or near-ultraviolet) to visible (e.g., violet, indigo, blue, green, yellow, orange, and/or red). Additional information regarding the construction of light-producing assemblies is disclosed in U.S. Patent Publication No. 2014/0264396 A1 to Lowenthal et al., entitled “ULTRA-THIN PRINTED LED LAYER REMOVED FROM SUBSTRATE,” filed Mar. 12, 2014, the entire disclosure of which is incorporated herein by reference. The first portion of LED sources 72a may be configured to activate upon application of current across the light-producing-assembly 26 in a first direction and the second portion of LED sources 72b may be configured to activate upon the application of current across the light-producing-assembly 26 in a second direction. By configuring the first and second portions of LED sources 72a, 72b to be activated by differing directions of current application, the controller 78 may selectively choose which portion of LED sources 72a, 72b to activate based on the direction of current the controller 78 provides. It will be understood that in some embodiments the controller 78 may appear to be activating both portions of LED sources 72a, 72b by applying alternating current to the light source 60.
Referring still to
The energy conversion layer 90 includes at least one photoluminescent material 96 having energy converting elements with phosphorescent or fluorescent properties. For example, the photoluminescent material 96 may include organic or inorganic fluorescent dyes including rylenes, xanthenes, porphyrins, phthalocyanines. Additionally, or alternatively, the photoluminescent material 96 may include phosphors from the group of Ce-doped garnets such as YAG:Ce. The energy conversion layer 90 may be prepared by dispersing the photoluminescent material 96 in a polymer matrix to form a homogenous mixture using a variety of methods. Such methods may include preparing the energy conversion layer 90 from a formulation in a liquid carrier medium and coating the energy conversion layer 90 to the negative electrode 76 or other desired base member 68 (e.g., substrate 24). The energy conversion layer 90 may be applied to the negative electrode 76 by painting, screen printing, flexography, spraying, slot coating, dip coating, roller coating, bar coating, and/or any other methods known in the art. Alternatively, the energy conversion layer 90 may be prepared by methods that do not use a liquid carrier medium. For example, the energy conversion layer 90 may be rendered by dispersing the photoluminescent material 96 into a solid state solution (homogenous mixture in a dry state) that may be incorporated in a polymer matrix formed by extrusion, injection seal, compression seal, calendaring, thermoforming, etc.
To protect the photoluminescent material 96 contained within the energy conversion layer 90 from photolytic and thermal degradation, the photoluminescent structure 62 may include the stability layer 92. The stability layer 92 may be configured as a separate layer optically coupled and adhered to the energy conversion layer 90 or otherwise integrated therewith. The photoluminescent structure 62 may also include the protection layer 94 optically coupled and adhered to the stability layer 92 or other layer (e.g., the energy conversion layer 90 in the absence of the stability layer 92) to protect the photoluminescent structure 62 from physical and chemical damage arising from environmental exposure. The stability layer 92 and/or the protection layer 94 may be combined with the energy conversion layer 90 through sequential coating or printing of each layer, sequential lamination or embossing, or any other suitable means. Additional information regarding the construction of photoluminescent structures is disclosed in U.S. Pat. No. 8,232,533 to Kingsley et al., entitled “PHOTOLYTICALLY AND ENVIRONMENTALLY STABLE MULTILAYER STRUCTURE FOR HIGH EFFICIENCY ELECTROMAGNETIC ENERGY CONVERSION AND SUSTAINED SECONDARY EMISSION,” filed Nov. 8, 2011, the entire disclosure of which is incorporated herein by reference.
In operation, the photoluminescent material 96 is formulated to become excited upon receiving inputted light 100 of a specific wavelength from at least a portion of the LED sources (e.g., the first or second portions 72a, 72b) of the light source 60. As a result, the inputted light 100 undergoes an energy conversion process and is re-emitted at a different wavelength. It will be understood that not all of the inputted light 100 may be converted and that a portion of the inputted light 100 may pass through the photoluminescent structure 62. According to one embodiment, the photoluminescent material 96 may be formulated to convert inputted light 100 into a longer wavelength light (e.g., from blue light to red light), otherwise known as down conversion. Alternatively, the photoluminescent material 96 may be formulated to convert inputted light 100 into a shorter wavelength light (e.g., red light to blue light), otherwise known as up conversion. Under either approach, light converted by the photoluminescent material 96 may be immediately outputted 102 from the photoluminescent structure 62 or otherwise used in an energy cascade, wherein the converted light serves as inputted light to excite another formulation of photoluminescent material 96 located within the energy conversion layer 90, whereby the subsequent converted light may then be outputted from the photoluminescent structure 62 or used as inputted light, and so on. With respect to the energy conversion processes described herein, the difference in wavelength between the inputted light 100 and the converted outputted light 102 is known as the Stokes shift and may serve as the principle driving mechanism for an energy conversion process corresponding to a change in wavelength of light.
With continued reference to
In some embodiments, a decorative layer 98 may be disposed between the viewable portion 64 and the photoluminescent structure 62. The decorative layer 98 may include a polymeric material, or other suitable material and is configured to control or modify an appearance of the viewable portion 64 of the light source 60. For example, the decorative layer 98 may be configured to confer a reflective appearance to the viewable portion 64 when the viewable portion 64 is in an unilluminated state. In various embodiments, the decorative layer 98 may be optional if used in conjunction with the hiding layer 28 or the decorative layer 98 and the hiding layer 28 may cooperate to conceal or hide the light source 60 and/or light-producing-assembly 26. In other embodiments, the decorative layer 98 may be tinted any color to complement the vehicle structure on which the light source 60 is to be received. For example, the decorative layer 98 may be similar in color to that of the handle 16 (
The overmold material 66 is disposed around the light source 60 and photoluminescent structure 62 and may be formed integrally with the viewable portion 64. The overmold material 66 may protect the light source 60 from physical and chemical damage arising from environmental exposure. The overmold material 66 may have viscoelasticity (i.e., having both viscosity and elasticity), a low Young's modulus, and/or a high failure strain compared with other materials, so that the overmold material 66 may protect the light source 60 when contact is made thereto. For example, the overmold material 66 may protect the light source 60 from the damaging contact that may occur when the handle assembly 14 (
In some embodiments, the photoluminescent structure 62 may be employed separate and away from the light source 60. For example, the photoluminescent structure 62 may be positioned on a vehicle component or surface proximate (e.g., the protective layer 30 and/or the hiding layer 28), but not in physical contact with, the light source 60, as will be described in more detail below. It should be understood that in embodiments where the photoluminescent structure 62 is incorporated into distinct components separated from the light source 60, the light source 60 may still have the same or similar structure to the light source 60 described in reference to
Still referring to
According to one exemplary embodiment, the first portion of the LED sources 72a is configured to emit the inputted light 100 having an emission wavelength that only excites photoluminescent material 96 (e.g., blue light having a wavelength of about 470 nm) and results in the inputted light 100 being converted into a visible outputted light 102 of a first color (e.g., blue). Likewise, the second portion of the LED sources 72b is configured to emit the inputted light 100 having an emission wavelength that excites only the phosphorescent structure 108 (e.g., ultraviolet light) and the disinfecting layer 32 and results in the inputted light 100 being converted into a visible outputted light 102 of a second color (e.g., red) while the disinfecting layer 32 is activated. Preferably, the first and second colors are visually distinguishable from one another. In this manner, LED sources 72a and 72b may be selectively activated using the controller 78 to cause the photoluminescent structure 62 to luminesce and the phosphorescent structure 108 to phosphoresce in different colors from one another such that it can be quickly determined if the disinfecting layer 32 is active based on the color of the viewable portion 64. For example, the controller 78 may activate only LED sources 72a to exclusively excite the photoluminescent material 96, resulting in the viewable portion 64 illuminating in the first color. Alternatively, the controller 78 may activate only LED sources 72b to exclusively excite the phosphorescent structure 108, resulting in the viewable portion 64 illuminating in the second color while activating the disinfecting layer 32.
Alternatively still, the controller 78 may activate LED sources 72a and 72b in concert, which causes both of the photoluminescent material 96 and the phosphorescent structure 108 to become excited, resulting in the viewable portion 64 illuminating in a third color, which is a color mixture of the first and second color (e.g., purple). The intensities of the inputted light 100 emitted from each light source 72a, 72b may also be proportionally varied to one another such that additional colors may be obtained. For energy conversion layers 90 containing more than two distinct photoluminescent materials, a greater diversity of colors may be achieved. Contemplated colors include red, green, blue, and combinations thereof, including white, all of which may be achieved by selecting the appropriate photoluminescent materials and correctly manipulating the corresponding LED sources 72a, 72b.
Referring to
Referring now to
Use of the handle 16 and/or handle assembly 14, as described herein, may offer several advantages. For example, illuminating the handle 16 of the handle assembly 14 may make it easier for an occupant of the vehicle 10 to locate the handle 16 in low lighting conditions. Additionally, the illumination of the handle 16 allows for a variety of lighting effects to be achieved within the interior 22 of the vehicle 10 such as ambient lighting, effects lighting (e.g., pulsing with music), safety lighting and/or aesthetic lighting. The disinfecting properties of the handle 16 may decrease the transmission of pathogens between occupants, decrease the need to clean the handle 16 and/or prevent the transmission of contaminants from the hand of one occupant to another. Further, by providing different lighting for active and non-active states of the handle 16, the occupant may easily determine if the handle 16 has been disinfected while providing a clear message to the occupant that the handle 16 is being disinfected which may delight the occupant. While the handle assembly 14 and handle 16 are contemplated for use in automobiles, it should be appreciated that the handle 16 and handle assembly 14 provided herein may be similarly used in other types of vehicles designed to transport one or more passengers such as, but not limited to, aircraft, watercraft, and locomotives. Further, it will be understood that this disclosure may equally be applied to non-vehicle applications such as building door handles, shopping carts, appliance handles, restroom fixtures, hand held remote controls and/or table tops.
For the purposes of describing and defining the present teachings, it is noted that the terms “substantially” and “approximately” are utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. The term “substantially” and “approximately” are also utilized herein to represent the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.
It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
Number | Name | Date | Kind |
---|---|---|---|
5053930 | Benavides | Oct 1991 | A |
5709453 | Krent et al. | Jan 1998 | A |
5839718 | Hase et al. | Nov 1998 | A |
6031511 | DeLuca et al. | Feb 2000 | A |
6117362 | Yen et al. | Sep 2000 | A |
6414213 | Ohmori | Jul 2002 | B2 |
6419854 | Yocom et al. | Jul 2002 | B1 |
6494490 | Trantoul | Dec 2002 | B1 |
6577073 | Shimizu et al. | Jun 2003 | B2 |
6729738 | Fuwausa et al. | May 2004 | B2 |
6737964 | Samman et al. | May 2004 | B2 |
6773129 | Anderson, Jr. et al. | Aug 2004 | B2 |
6820888 | Griffin | Nov 2004 | B1 |
6851840 | Ramamurthy et al. | Feb 2005 | B2 |
6859148 | Miller | Feb 2005 | B2 |
6871986 | Yamanaka et al. | Mar 2005 | B2 |
6953536 | Yen et al. | Oct 2005 | B2 |
6990922 | Ichikawa et al. | Jan 2006 | B2 |
7161472 | Strumolo et al. | Jan 2007 | B2 |
7213923 | Liu et al. | May 2007 | B2 |
7216997 | Anderson, Jr. | May 2007 | B2 |
7264366 | Hulse | Sep 2007 | B2 |
7264367 | Hulse | Sep 2007 | B2 |
7441914 | Palmer et al. | Oct 2008 | B2 |
7501749 | Takeda et al. | Mar 2009 | B2 |
7575349 | Bucher et al. | Aug 2009 | B2 |
7635212 | Seidler | Dec 2009 | B2 |
7745818 | Sofue et al. | Jun 2010 | B2 |
7753541 | Chen et al. | Jul 2010 | B2 |
7834548 | Jousse et al. | Nov 2010 | B2 |
7862220 | Cannon et al. | Jan 2011 | B2 |
7987030 | Flores et al. | Jul 2011 | B2 |
8016465 | Egerer et al. | Sep 2011 | B2 |
8022818 | la Tendresse et al. | Sep 2011 | B2 |
8066416 | Bucher | Nov 2011 | B2 |
8071988 | Lee et al. | Dec 2011 | B2 |
8097843 | Agrawal et al. | Jan 2012 | B2 |
8136425 | Bostick | Mar 2012 | B2 |
8163201 | Agrawal et al. | Apr 2012 | B2 |
8178852 | Kingsley et al. | May 2012 | B2 |
8197105 | Yang | Jun 2012 | B2 |
8203260 | Li et al. | Jun 2012 | B2 |
8207511 | Bortz et al. | Jun 2012 | B2 |
8232533 | Kingsley et al. | Jul 2012 | B2 |
8247761 | Agrawal et al. | Aug 2012 | B1 |
8286378 | Martin et al. | Oct 2012 | B2 |
8408766 | Wilson et al. | Apr 2013 | B2 |
8415642 | Kingsley et al. | Apr 2013 | B2 |
8421811 | Odland et al. | Apr 2013 | B2 |
8466438 | Lambert et al. | Jun 2013 | B2 |
8519359 | Kingsley et al. | Aug 2013 | B2 |
8519362 | Labrot et al. | Aug 2013 | B2 |
8552848 | Rao et al. | Oct 2013 | B2 |
8606430 | Seder et al. | Dec 2013 | B2 |
8624716 | Englander | Jan 2014 | B2 |
8631598 | Li et al. | Jan 2014 | B2 |
8664624 | Kingsley et al. | Mar 2014 | B2 |
8683722 | Cowan | Apr 2014 | B1 |
8724054 | Jones | May 2014 | B2 |
8754426 | Marx et al. | Jun 2014 | B2 |
8773012 | Ryu et al. | Jul 2014 | B2 |
8846184 | Agrawal et al. | Sep 2014 | B2 |
8876352 | Robbins et al. | Nov 2014 | B2 |
8952341 | Kingsley et al. | Feb 2015 | B2 |
9006751 | Kleo et al. | Apr 2015 | B2 |
9018833 | Lowenthal et al. | Apr 2015 | B2 |
9057021 | Kingsley et al. | Jun 2015 | B2 |
9065447 | Buttolo et al. | Jun 2015 | B2 |
9187034 | Tarahomi et al. | Nov 2015 | B2 |
9299887 | Lowenthal et al. | Mar 2016 | B2 |
20020159741 | Graves et al. | Oct 2002 | A1 |
20020163792 | Formoso | Nov 2002 | A1 |
20030167668 | Fuks et al. | Sep 2003 | A1 |
20030179548 | Becker et al. | Sep 2003 | A1 |
20040213088 | Fuwausa | Oct 2004 | A1 |
20060087826 | Anderson, Jr. | Apr 2006 | A1 |
20060097121 | Fugate | May 2006 | A1 |
20070032319 | Tufte | Feb 2007 | A1 |
20070285938 | Palmer et al. | Dec 2007 | A1 |
20070297045 | Sakai et al. | Dec 2007 | A1 |
20090219730 | Syfert et al. | Sep 2009 | A1 |
20090251920 | Kino et al. | Oct 2009 | A1 |
20090260562 | Folstad et al. | Oct 2009 | A1 |
20090262515 | Lee et al. | Oct 2009 | A1 |
20110012062 | Agrawal et al. | Jan 2011 | A1 |
20120001406 | Paxton et al. | Jan 2012 | A1 |
20120104954 | Huang | May 2012 | A1 |
20120183677 | Agrawal et al. | Jul 2012 | A1 |
20120280528 | Dellock et al. | Nov 2012 | A1 |
20130335994 | Mulder et al. | Dec 2013 | A1 |
20140029281 | Suckling et al. | Jan 2014 | A1 |
20140065442 | Kingsley et al. | Mar 2014 | A1 |
20140103258 | Agrawal et al. | Apr 2014 | A1 |
20140264396 | Lowenthal et al. | Sep 2014 | A1 |
20140266666 | Habibi | Sep 2014 | A1 |
20140373898 | Rogers et al. | Dec 2014 | A1 |
20150046027 | Sura et al. | Feb 2015 | A1 |
20150109602 | Martin et al. | Apr 2015 | A1 |
20150138789 | Singer et al. | May 2015 | A1 |
20150267881 | Salter et al. | Sep 2015 | A1 |
20160016506 | Collins et al. | Jan 2016 | A1 |
20160236613 | Trier | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
1869381 | Nov 2006 | CN |
101337492 | Jan 2009 | CN |
201169230 | Feb 2009 | CN |
201193011 | Feb 2009 | CN |
202023408 | Nov 2011 | CN |
204127823 | Jan 2015 | CN |
204152305 | Feb 2015 | CN |
4120677 | Jan 1992 | DE |
29708699 | Jul 1997 | DE |
10319396 | Nov 2004 | DE |
1793261 | Jun 2007 | EP |
2778209 | Sep 2014 | EP |
2000159011 | Jun 2000 | JP |
2007238063 | Sep 2007 | JP |
20060026531 | Mar 2006 | KR |
2006047306 | May 2006 | WO |
2014063440 | May 2014 | WO |
2014088298 | Jun 2014 | WO |
2014115119 | Jul 2014 | WO |
Number | Date | Country | |
---|---|---|---|
20170129396 A1 | May 2017 | US |