This invention generally relates to vanity mirrors and, more specifically, to vanity mirrors that are hingedly mountable on a support surface to be movable between a normal retracted position in proximity to the support surface and an extended position that exposes and provides access to the support surface so that it can be cleaned and/or disinfected.
Health care-acquired infections (HAIs) in hospitals, assisted living facilities, etc., are serious health problems. It has been estimated that HAIs cause or contribute in excess of 99,000 deaths annually in the United States. The Center for Disease Control (CDC) reports 1 in 25 patients will contract at least one infection during their stay. Various bacteria become immune or resistant to disinfectants applied to surfaces in hospitals and other medical facilities, these bacterias commonly cause what are being referred to as “staph” infections because they are resistant to many chemical disinfectants used to clean counter tops and other surfaces in hospital rooms and the like. The general problem is discussed, for example, in the Official Publication of the International Ultra Violet Association, IUVANews. http://www.iuva.org/Publications. These infections are considered preventable. In 2011 the federal government stopped reimbursing hospitals for the care of patient that acquired an infection during their stay. Additional penalties for high infection rates have since been added that are in some situations as much as 40% of the overall revenue.
One of the hurdles to success are multi drug resistant organisms (MDRO) that are resistant to standard disinfection products and practices. This has opened the door for new technologies such as ultraviolet germicidal irradiation (UVGI) that primarily uses short-wavelength ultraviolet (UV-C) light to kill or inactivate microorganisms such as bacteria, viruses, molds and other pathogens.
Each year over 1,400,000 patients contract diseases unrelated to their initial stay at a hospital. Approximately 100,000 Americans die each year for this reason. The cost, both emotionally and financially is staggering and difficult to calculate.
The greatest concentration of pathogens within a hospital room occurs at the surface in the area surrounding the sink in the bathroom. Specifically, the faucet and the handles and the surface between these controls, and the back splash behind the sink, including the wall surface just above the sink is the most infected area in the typical hospital room.
Various UV devices have been proposed to reduce infectious pathogens. For example, bathrooms in airplanes have started to use UV LED strips to reduce pathogens while in flight. Other facilities are being outfitted with various devices to expose pathogens to UV light sources. However, UV light sources have generally been independent or stand alone devices that are specifically designed for intermittent applications. Vanity mirrors, including backlit mirrors mounted on cabinets or housings mountable on a support surface, are generally fixedly mounted to the support surface so that the mirrors cannot be moved and the support surfaces behind the mirrors serve as breeding grounds or havens for pathogens but are not accessible for cleaning and/or disinfecting to eliminate bacteria and/or other pathogens.
In order to address the above and other problems associated with sanitizing or sterilizing airborne pathogens it is an object of the invention to provide a disinfecting vanity mirror that can be easily, quickly and conveniently moved away from a support surface to expose pathogens that can and do proliferate and accumulate on such support surfaces, that are normally covered by vanity mirror cabinets, so that the support surface can be cleaned with a disinfectant to destroy or neutralize such pathogens and makes them ineffective or less effective.
It is another object of the invention to provide a disinfecting vanity mirror as in the previous object that is simple in construction and economical to manufacture.
It is still another object of the invention to provide a disinfecting vanity mirror as in the previous objects that is simple and convenient to install above sinks, countertops and other areas in medical and other facilities that require sanitary conditions.
It is yet another object to the invention to provide a backlit vanity mirror that is hingedly mounted to allow the mirror, including any cabinet or housing for the mirror, to be moved between a normal position against a support surface, such as a wall, and an extended position to expose substantially the entire, normally covered support surface for cleaning and/or disinfecting to sanitize the surface and eliminate or substantially reduce bacteria and other pathogens thereon.
It is an additional object to pivotally mount a vanity mirror cabinet along one vertical edge, side or end so that it can be easily pivoted and, with little effort, moved away from the normally covered or hidden mounting surface to provide access for cleaning and/or disinfecting.
A vanity mirror in accordance with the invention, that can include a backlit mirror, comprises a substantially enclosed cabinet having top, bottom and lateral ends and rear and front walls when mounted on a wall, said cabinet ends and said walls together forming a substantially enclosed space defining a vertical direction extending between said top and bottom ends. Said front wall comprises a mirror panel. Mounting means is provided for mounting said cabinet on a wall, said mounting means including a chassis hinge at one of said one lateral ends to movably mount said cabinet between a normally closed position substantially juxtaposed against the wall and an open position to provide access to a surface normally covered by said cabinet when in said closed position, whereby said normally covered surface can be cleaned, disinfected and/or sanitized.
Those skilled in the art will appreciate the improvements and advantages that derive from the present invention upon reading the following detailed description, claims, and drawings, in which:
The twenty or so most prevalent and dangerous pathogens in hospitals that congregate around sinks and counter-top surfaces can be very significantly reduced when exposed to ultraviolet waves especially in the range of 260-280 nanometers, a fact that is now well documented. The UV diodes that generate this particular wave length (referred to as UVC waves) have in the last few years become commercially available.
The applicant of the subject application has developed a UV generating electrified wall mirror that is also a lighting fixture that is:
The unit is hinge-mounted, and somewhat similar to the permanently mounted, back lit electrified mirrors that applicant is currently selling to the hotel industry.
Referring now specifically to the figures, in which the identical or similar parts are designated by the same reference numerals throughout, and first referring to
The mirror 10 is generally rectangular in shape as shown and includes a top end 10a and a bottom end 10b. The mirror 10 includes a substantially enclosed cabinet 11 having top, bottom, left, right and rear walls 11a, 11b, 11c, 11d and 11e, respectively. The cabinet 11 also has a front wall in the form of a mirror panel 12 having a central reflective surface 12a and a frosted peripheral strip 12b. The mirror panel 12 may be 3/16″ clear hospitality grade mirror. The mirror 10 may be similar in appearance to back-lit mirrors of the type manufactured by MunnWorks LLC in Mount Vernon, N.Y. The LED Strip 14 emits visible light, for example, at 2700 k that provides lighting through the frosted peripheral strip 12b in a conventional manner.
Referring to
Referring specifically to
Referring to
Any suitable or conventional hinge can be used to mount the mirror panel 12. However, as shown in
A feature of the mirror 10 is the integration of a source of UV light 30 that extends along at least a portion but preferably along the entire width of the bottom end 10b to expose pathogens to UV radiation and the heat generated the LEDs also promotes convection of air and updraft efficiency by locally heating air proximate to the bottom end 10b to generate airflow 20 (
The UV light source 30 is in the form of a strip of LEDs that emit UV light within the range of 200-280 nm and, preferably within the range of 240-280 nm. As indicated in the IUVANews publication ultraviolet radiation is defined most broadly as consisting of radiation within the range of 10-400 nm. However, most effective for germicidal applications is the short wave ultraviolet light normally designated as UV-C. UV-C includes wavelengths of 100-280 nm, although 240-280 nm are most effective for sanitizing or sterilizing airborne pathogens. UV light in that range is most efficiently absorbed by DNA, with maximum absorption being at approximately 260 nm. UV-C has been used for air purification, sterilization and disinfection. High intensity UV at 240-280 nm radiation can destroy DNA in living micro organisms. The effectiveness of the UV radiation is directly related to the intensity and exposure time(s). The present disinfecting vanity mirror 10 is convenient, inexpensive and an effective way to neutralize micro-organisms and pathogens by constantly circulating and recycling the air that passes through the plenum space 13, forcing the air to be continuously exposed to the UV LED-strip 30.
To enhance the quantity of air moved through the plenum space 13 the mirror 10 may also advantageously utilizes a thermal strip 32, (not shown), for providing additional heating of the air in proximity to the UV LED strip 30 at the bottom end 10b of the mirror. Between the heating of the air by the UV LED strip 30 and a thermal strip the air below the vanity mirror 10 can be heated more quickly and more vigorously and to a higher temperature. This causes higher quantities of air to move up through the plenum space 13 thereby exposing increased numbers of pathogens to the UV light source 30.
By using a mirror 10, for example, that is 24-30″ wide and 34-40″ tall at a height of approximately 10″ above a sink or countertop C most harmful pathogens can be neutralized if power is applied for only approximately 30 minutes per day. The LED strips are conventionally powered when a wall switch is turned on (e.g. in a bathroom where a sink, countertop and vanity mirror are typically situated). Normally the vanity is used for at least 30 minutes per day.
The disinfecting vanity mirror 10 is, therefore, an inexpensive and reliable way of exposing air contaminated with pathogens to UV-C light on an ongoing or continuing basis when energized to increase the effectiveness of the sanitization and decontamination of airborne and surface of microorganisms found on countertops.
By locating the UV light source 30 along the bottom edge of the mirror, behind the mirror panel 12, a number of advantages are achieved. The user is protected from UV radiation that can be harmful to the user's eyes and skin. Also, the light does not reflect onto the mirror to avoid undesirable shades or tones or lighting distortions. Using LED light strips considerably increases the life of the sources over conventional UV sources, such as mercury lamps or bulbs. By integrating the UV light source into the vanity mirror there is no need to have an operator use specialized UV equipment to periodically sanitize a facility.
The method of using the mirror 10 is to position a mirror panel 12 a predetermined space from a wall of a medical facility, work space or other chamber where vanity mirrors are utilized to create a plenum space 13 behind the mirror. UV light is then provided at the lower end of the mirror to heat the air and cause it to rise through the plenum space and expose pathogens in the air to the UV light in the range of 10-400 nm and generally 240-280 nm. An optimum wavelength is in the range of 260-270 nm for maximum effectiveness.
The method advantageously includes the additional step of providing enhanced heating of the air to promote movement of the air through the plenum space. This accelerates exposure of the air to be disinfected or sterilized to the UV light. This can be achieved by placing a thermal strip at the lower end of the mirror.
An additional UV-LED strip (not shown) may be provided along the vertical edge of the mirror proximate to the hinge 24 where buildup of bacteria is most likely and manual maintenance may be most problematic, the additional UV-LED strip serving to sanitize bacteria that may have attached to the surface of the hinge since the hinge is not always as easily manually cleaned or sanitized, the action of the UV-LED strip ensures that the hinge remains bacteria free with or without manual maintenance. Suitable heat sinks may be provided to prevent excessive heat from developing in the UV-LED strips to promote reliability and longevity of the UV-LED strips by preventing excessive heat buildup.
Another important feature of the invention is the provision providing at least one UV light source 31 within the enclosed space 13. A plurality of such UV light sources may be provided within the enclosed space.
The UV-LED strips may be replaced by UV mercury lamps or bulbs in the form of miniature florescent tubes that can be mercury lamps, xenon lamps or any lamp with UV wave generating components, waves or light. The invention contemplates the use of any UV source that generates suitable UV light behind a mirror in order to disinfect the area behind the mirror as well as in proximity to the mounting hinge.
In order to promote or enhance the flow of air 20 (
In view of the foregoing, the present invention broadly contemplates an electric backlit mirror that is attached to a wall with a hinge for ease of movement to expose and disinfect the interior surfaces in the cabinet as well as surfaces below the cabinet 11. In this connection the driver, electronics, LED diodes, UV diodes, UV light bulbs, tubes or lamps may all be mounted on the mirror itself, allowing the wall behind the mirror to be free of any attachments other than the metal angle that carries the mirror. This facilitates and promotes the manual disinfecting of the entire wall behind the mirror where bacteria is likely to deposit.
To avoid potential safety issues to patients and occupants of the enclosures in which the mirrors are mounted from excessive exposure to UV light the mirrors of the invention may be provided with circuitry for intermittently de-activating or interrupting the UV light sources or generators so that these are not always on to emit UV light continuously but intermittently but sufficiently to be effective for sanitizing or disinfecting the areas within the enclosure. Referring to
Referring to
The mirror panel 12 is mounted on a cabinet “and at least one UV light source is mounted on the bottom end of the cabinet”, the UV light source being configured to direct UV light vertically downwardly to sanitize air and surfaces below the mirror panel. The vanity mirror 10 is provided with a chassis hinge 80 that enables the pivoting of the cabinet to a position or juxtaposed against the mounting surface or wall in close proximity thereto as shown, for example, in
A feature of the invention is the provision of a metal flange or bracket 88 running along the bottom end or edge 11b of the cabinet 11 on which there are mounted UV LEDs, as shown in
Referring to
Another feature of the invention is the provision of removable metal flange 88 shown in
Accordingly, the invention includes the following structural features:
A vanity mirror that can comprise a substantially enclosed cabinet having top, bottom and lateral ends and rear and front walls when mounted on a wall, the cabinet ends and the walls together forming a substantially enclosed space defining a vertical direction extending between the top and bottom ends, the front wall comprising a mirror panel that may be a backlit mirror. Mounting means is provided for mounting the cabinet on a wall and includes a hinge at one of the lateral ends to movably mount the cabinet for movement between a normally closed position substantially juxtaposed against the wall and an open position to provide access to a surface normally covered by the cabinet, when in the closed position, whereby the normally covered surface can be cleaned and disinfected.
The chassis hinge is connected to one of the cabinet lateral ends and connectable to a mounting surface, such as a wall.
A mirror hinge may be provided for pivotably mounting the mirror panel relative to the cabinet so that the mirror panel can be moved between a closed position to enclose the cabinet space and an open position to provide access to the cabinet space.
Preferably, the chassis and mirror hinges are arranged for independent pivotable movements.
At least one of the hinges may be formed of metal and/or at least one of said hinges may be formed of plastic.
The mirror hinge preferably pivotably mounts the mirror panel to the cabinet so that the mirror panel can be moved between a closed position to enclose the cabinet space and an open position to provide access to the cabinet space.
The chassis and mirror hinges may be connected to a common cabinet lateral end. According to a presently preferred embodiment the chassis hinge comprises two spaced hinges proximate to the top and bottom ends and the mirror hinge is arranged between the two spaced chassis hinges.
Preferably, the mirror panel is a backlit mirror provided with one or more light sources and a circuit is provided for energizing the mirror panel.
The method comprises providing a substantially enclosed cabinet having top, bottom and lateral ends and rear and front walls when mounted on a wall, the cabinet ends and the walls together forming a substantially enclosed space defining a vertical direction extending between the top and bottom ends, the front wall comprising a mirror panel. Pivotably or hingedly mounting the cabinet on a support surface, such as a wall, with a hinge at one of the lateral ends to movably mount the cabinet between a normally closed position substantially juxtaposed against the wall and an open position to provide access to a surface normally covered by the cabinet when in the closed position, whereby a normally covered support surface can be cleaned and/or disinfected.
A feature of the vanity mirror is that it can also include a magnetic or other wall lock for normally retaining the cabinet in the closed position and selectively enabling movement of the cabinet to an open position to expose the normally covered wall surface.
A plurality of UV light sources may also be provided within the enclosed space. The plurality of UV light sources can comprise UV LEDs spaced from each other along the vertical direction of the cabinet.
The foregoing is considered as illustrative only of the principles of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.
This application is a continuation of U.S. patent application Ser. No. 16/173,164, filed Oct. 29, 2018 for System and Method of Disinfecting Surfaces Within and Around Vanity Mirrors, which is a continuation-in-part of U.S. patent application Ser. No. 16/057,433, filed Aug. 7, 2018 for Disinfecting Vanity Mirrors, which is a continuation-in-part of U.S. patent application Ser. No. 15/601,607, filed May 22, 2017 for Hazard-Free Disinfecting Vanity Mirrors issued as U.S. Pat. No. 10,039,853, which is a continuation-in-part of U.S. patent application Ser. No. 15/418,231 for Disinfecting Vanity Mirror issued as U.S. Pat. No. 9,724,442 all of which are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2758900 | Marchand | Aug 1956 | A |
3776694 | Leittl | Dec 1973 | A |
6773682 | Benda | Aug 2004 | B1 |
7600886 | Sullivan | Oct 2009 | B1 |
8193515 | Kreitenberg | Jun 2012 | B2 |
8662705 | Roberts | Mar 2014 | B2 |
8779385 | Noori | Jul 2014 | B2 |
8900518 | Seck | Dec 2014 | B2 |
9308289 | Graff | Apr 2016 | B2 |
9480768 | Krosney et al. | Nov 2016 | B2 |
9724442 | Munn | Aug 2017 | B1 |
20020098127 | Bollini | Jul 2002 | A1 |
20070053188 | New et al. | Mar 2007 | A1 |
20080008620 | Alexiadis | Jan 2008 | A1 |
20080170309 | Helenowski | Jul 2008 | A1 |
20090041538 | Berger | Feb 2009 | A1 |
20090291029 | Ogasawara | Nov 2009 | A1 |
20100097013 | Inskeep | Apr 2010 | A1 |
20100296298 | Martin, Jr. | Nov 2010 | A1 |
20120199005 | Koji et al. | Aug 2012 | A1 |
20120261593 | Noori | Oct 2012 | A1 |
20130214174 | Domenig | Aug 2013 | A1 |
20140060104 | Shur | Mar 2014 | A1 |
20150320209 | Hasselback | Nov 2015 | A1 |
20150360606 | Thompson et al. | Dec 2015 | A1 |
20160074546 | Rizzone | Mar 2016 | A1 |
20170007736 | Engelhard | Jan 2017 | A1 |
20170105554 | Forrest | Apr 2017 | A1 |
20170202988 | Clark | Jul 2017 | A1 |
20180214595 | Munn | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
202526007 | Nov 2012 | CN |
202629828 | Dec 2012 | CN |
202908345 | Jan 2013 | CN |
203633880 | Jun 2014 | CN |
104524607 | Apr 2015 | CN |
205561091 | Sep 2016 | CN |
20120133286 | Dec 2012 | KR |
Entry |
---|
UV Antimicrobial Devices Used to Combat HAIs in Medical Facilities http://www.iuvanews.com/stories/122716/uv-antimicrobial-devics-used-combat-hais.shtml. |
Number | Date | Country | |
---|---|---|---|
20190175780 A1 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16173164 | Oct 2018 | US |
Child | 16268715 | US | |
Parent | 15601607 | May 2017 | US |
Child | 16057433 | US | |
Parent | 15418231 | Jan 2017 | US |
Child | 15601607 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16057433 | Aug 2018 | US |
Child | 16173164 | US |