Disk drive employing multiple read elements to increase radial band for two-dimensional magnetic recording

Information

  • Patent Grant
  • 9245556
  • Patent Number
    9,245,556
  • Date Filed
    Monday, March 10, 2014
    10 years ago
  • Date Issued
    Tuesday, January 26, 2016
    8 years ago
Abstract
A disk drive is disclosed comprising a disk comprising a plurality of tracks, and a head comprising at least three read elements including a first read element, a second read element, and a third read element. When the head is within a first radial band of the disk, data recorded on the disk is detected using the first read element and the second read element. When the head is within a second radial band of the disk different from the first radial band, data recorded on the disk is detected using the first read element and the third read element. The first read element is substantially aligned down-track with the third read element when the head is over a first radial location of the disk.
Description
BACKGROUND

Disk drives comprise a disk and a head connected to a distal end of an actuator arm which is rotated about a pivot by a voice coil motor (VCM) to position the head radially over the disk. The disk comprises a plurality of radially spaced, concentric tracks for recording user data sectors and servo sectors. The servo sectors comprise head positioning information (e.g., a track address) which is read by the head and processed by a servo control system to control the actuator arm as it seeks from track to track.



FIG. 1 shows a prior art disk format 2 as comprising a number of servo tracks 4 defined by servo sectors 60-6N recorded around the circumference of each servo track. Each servo sector 6i comprises a preamble 8 for storing a periodic pattern, which allows proper gain adjustment and timing synchronization of the read signal, and a sync mark 10 for storing a special pattern used to symbol synchronize to a servo data field 12. The servo data field 12 stores coarse head positioning information, such as a servo track address, used to position the head over a target data track during a seek operation. Each servo sector 6i further comprises groups of servo bursts 14 (e.g., N and Q servo bursts), which are recorded with a predetermined phase relative to one another and relative to the servo track centerlines. The phase based servo bursts 14 provide fine head position information used for centerline tracking while accessing a data track during write/read operations. A position error signal (PES) is generated by reading the servo bursts 14, wherein the PES represents a measured position of the head relative to a centerline of a target servo track. A servo controller processes the PES to generate a control signal applied to a head actuator (e.g., a voice coil motor) in order to actuate the head radially over the disk in a direction that reduces the PES.


Data is typically written to data sectors within a data track by modulating the write current of a write element, for example, using a non-return to zero (NRZ) signal, thereby writing magnetic transitions onto the disk surface. A read element (e.g., a magnetoresistive (MR) element) is then used to transduce the magnetic transitions into a read signal that is demodulated by a read channel. The recording and reproduction process may be considered a communication channel, wherein communication demodulation techniques may be employed to demodulate the read signal.


When reading data from the disk, a read channel typically samples the read signal to generate read signal samples that are equalized according to a target response (e.g., a partial response). A sequence detector (e.g., a Viterbi detector) detects an estimated data sequence from the equalized samples, and errors in the estimated data sequence are corrected, for example, using a Reed-Solomon error correction code (ECC) or using a Low Density Parity Check (LDPC) code.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a prior art disk format comprising a plurality of servo tracks defined by servo sectors.



FIG. 2A shows a disk drive according to an embodiment comprising a disk having a plurality of tracks, and a head comprising at least three read elements including a first read element, a second read element, and a third read element.



FIG. 2B is a flow diagram according to an embodiment wherein when the head is within a first radial band of the disk, data recorded on the disk is detected using the first read element and the second read element, and when the head is within a second radial band of the disk, data recorded on the disk is detected using the first read element and the third read element.



FIG. 2C shows an embodiment wherein two of the three heads are used to read data from the disk depending on the skew angle of the head.



FIGS. 3A-3C show an embodiment wherein the second and third read elements are used to read data from the disk as the head moves from the middle diameter toward the outer diameter of the disk, and then the first and third read elements are used when the skew angle of the head exceeds a threshold relative to the track pitch of the data tracks.



FIGS. 3D-3F show an embodiment wherein the first and second read elements are used to read data from the disk as the head moves from the middle diameter toward the inner diameter of the disk, and then the first and third read elements are used when the skew angle of the head exceeds a threshold relative to the track pitch of the data tracks.



FIGS. 4A and 4B show an embodiment wherein data recorded on the disk is detected using a single head and a one-dimensional demodulation algorithm at the outer and inner diameter radial bands, and data is detected using two of the heads and a two-dimensional demodulation algorithm at the inner diameter radial bands.



FIG. 5 illustrates the extent that the two-dimensional demodulation algorithm may be used to detect data recorded on the disk relative to the skew angle of the head and the track pitch of the data tracks according to an embodiment.



FIG. 6 illustrates an embodiment where the radial density of the data tracks is varied relative to the skew angle of the head and whether a one-dimensional or two-dimensional algorithm may be used to detect data recorded on the disk.



FIG. 7A shows a disk drive according to an embodiment comprising a disk having a plurality of tracks accessed using a one-dimensional or two-dimensional demodulation algorithm.



FIG. 7B is a flow diagram according to an embodiment wherein when the head is within a first radial band of the disk, data recorded on the disk is detected using a two-dimensional demodulation algorithm, and when the head is within a second radial band of the disk, data recorded on the disk is detected using a one-dimensional demodulation algorithm.



FIGS. 8A-8F show an embodiment where the first and third read elements may be fabricated with a relative radial offset (intentionally or due to manufacturing tolerances).





DETAILED DESCRIPTION


FIG. 2A shows a disk drive according to an embodiment comprising a disk 16 comprising a plurality of tracks 18, and a head 20 comprising at least three read elements including a first read element 221, a second read element 222, and a third read element 223 (FIG. 2C). The disk drive further comprises control circuitry 24 configured to execute the flow diagram of FIG. 2B, wherein when the head is within a first radial band 25A of the disk (block 26), data recorded on the disk is detected using the first read element and the second read element (block 28). When the head is within a second radial band 25B of the disk different from the first radial band (block 30), data recorded on the disk is detected using the first read element and the third read element (block 32). As shown in FIG. 2C, in one embodiment the first read element 221 is substantially aligned down-track with the third read element 223 when the head 20 is over a first radial location of the disk 16 (e.g., near the middle diameter of the disk 16). In another embodiment, the control circuitry 24 selects two of the three read elements 221-223 to detect user data recorded on the disk based on the radial location of the head (e.g., the radial band), while the unselected read element is not used to read the user data.


In the embodiment of FIG. 2A, a plurality of concentric servo tracks are defined by embedded servo sectors 340-34N, wherein a plurality of concentric data tracks 18 are defined relative to the servo tracks at the same or different radial density. The control circuitry 24 processes a read signal 36 emanating from at least one of the read elements to demodulate the servo sectors and generate a position error signal (PES) representing an error between the actual position of the head and a target position relative to a target track. The control circuitry 24 filters the PES using a suitable compensation filter to generate a control signal 38 applied to a voice coil motor (VCM) 40 which rotates an actuator arm 42 about a pivot in order to actuate the head 20 radially over the disk 16 in a direction that reduces the PES. The servo sectors 340-34N may comprise any suitable head position information, such as a track address for coarse positioning and servo bursts for fine positioning. The servo bursts may comprise any suitable pattern, such as an amplitude based servo pattern or a phase based servo pattern.


In one embodiment, the read signal generated by at least two of the read elements are processed to detect data recorded in a target data track using a two-dimensional demodulation algorithm meaning that the inter-track interference (ITI) caused by at least one adjacent data track is compensated in order to detect the data recorded in the target data track. FIG. 3A illustrates an example of this embodiment wherein when the head 20 is at the middle diameter of the disk 16, the read signal generated by the second read element 222 and the read signal generated by the third read element 223 are processed to detect data recorded in the target data track 44B. That is, when detecting the data recorded in the target data track 44B, the ITI caused by the adjacent data track 44C is compensated by processing the read signal generated by the third read element 223. The ITI compensation may be implemented in any suitable manner, such as by subtracting the read signal generated by the third read element 223 from the read signal generated by the second read element 222 in the analog or digital domain. In another embodiment, the control circuitry 24 may employ two-dimensional digital equalization followed by a suitable two-dimensional sequence detector (e.g., a trellis type sequence detector such as a Viterbi detector). In another embodiment, the control circuitry 24 may employ two-dimensional (2D) to one-dimensional (1D) or 2D-to-1D digital equalization followed by a suitable one-dimensional sequence detector. In still another embodiment, the control circuitry 24 may process the read signal generated by the third read element 223 to detect a data sequence recorded in the adjacent data track 44C, convert the detected data sequence into ideal signal samples, and then subtract the ideal signal samples from the equalized signal samples of the read signal generated by the second read element 222. The resulting compensated signal samples may then be processed using a suitable one-dimensional sequence detector. Although in the embodiment of FIG. 3A the second read element 222 does not overlap the third read element 223 when the head 20 is near the middle diameter of the disk, in another embodiment the read elements may be fabricated so there is a small amount of overlap which may improve the ITI compensation near the middle diameter of the disk.


Referring to FIG. 3B, as the head 20 moves toward the outer diameter of the disk 16, the skew angle of the head causes the third read element 223 to overlap with the target data track 46B over which the second read element 222 is positioned. That is, part of the third read element 223 is over the target data track 46B, and part of the third read element 223 is over the adjacent data track 46C. At this skew angle, the data recorded in the target data track may still be detected by processing the read signal generated by the second and third read elements 222 and 223. As the head 20 moves further toward the outer diameter of the disk 16 as illustrated in FIG. 3C, the overlap of the second and third read elements 222 and 223 becomes excessive. That is, there is a point (e.g., up to one-quarter of a data track) where using the third read element to compensate for ITI for the second read element begins to degrade due to an excessive overlap of the read elements within the target data track. Accordingly, in one embodiment when the head skew exceeds a threshold (i.e., when the head 20 is within a second radial band 25B of the disk 16 as shown in FIG. 2A), data recorded on the disk 16 is detected using the first read element 221 and the third read element 223 as shown in FIG. 3C. That is, the first read element 221 is positioned over the target data track 48B and the third read element 223 is positioned over an adjacent data track 48A such that the third read element 223 is used to compensate for ITI when detecting the data recorded in the target data track 48B. In an alternative embodiment, the third read element 223 may be positioned over the target data track 48B and the first read element 221 used to compensate for ITI from the adjacent data track 48C. That is, the ITI may be compensated from the adjacent data track on either side of the target data track, and in one embodiment a retry operation may attempt to compensate for the ITI from each of the adjacent data tracks as well as from both of the adjacent data tracks (e.g., by buffering data during an initial revolution of the disk).



FIGS. 3D-3F illustrate a similar toggling between read elements as the head moves from the middle diameter toward the inner diameter of the disk (i.e., when the head skew is reversed). In this embodiment, the read signals from the first and second read elements 221 and 222 are processed to detect data recorded in the target data track when the head is in the first band 25A of FIG. 2A as shown in FIGS. 3D and 3E, and then when the head transitions into the third band 25C toward the inner diameter of the disk as shown in FIG. 3F, the read signals from the first and third read elements 221 and 223 are processed to detect data recorded in the target data track.


In one embodiment, the control circuitry 24 may detect data recorded in a first data track and in a second data track. Referring again to the example embodiment shown in FIG. 3A, the control circuitry 24 may process the read signals from the second read element 222 and from the third read element 223 to detect data in both data track 44B and data track 44C. The control circuitry 24 may process the read signals to detect the data from either data track using a one-dimensional or two-dimensional algorithm. For example, in one embodiment the data may be detected in both data tracks using a two-dimensional demodulation algorithm wherein the ITI from each of the adjacent data tracks is compensated. In another embodiment, the data may be detected in one of the data tracks using a one-dimensional demodulation algorithm, whereas the data recorded in the other data track may be detected using a two-dimensional demodulation algorithm.



FIGS. 4A and 4B show an embodiment wherein when the skew angle of the head 20 exceeds a threshold toward the outer diameter and inner diameter of the disk, there may be insufficient overlap of a target data track by the first and third read elements 221 and 223. Accordingly, the disk 16 may comprise an outer diameter radial band of data tracks and an inner diameter radial band of data tracks where only one of the read elements is used to detect data recorded in a target data track. In the embodiment of FIG. 4B, the read signal generated by the first read element 221 is processed to detect data recorded in a target data track when the head 20 is in the outer most diameter band of data tracks (1D-OD BAND), and the read signal generated by the third read element 223 is processed to detect data recorded in a target data track when the head 20 is in the inner most diameter band of data tracks (1D-ID BAND). However, any one of the read elements be used to read data in the 1D-OD BAND and the 1D-ID band, including the second read element


When the head is within one of the 1D-OD BAND or the 1D-ID BAND, the data recorded in a target data track is detected by processing the read signal using a one-dimensional demodulation algorithm meaning that the ITI from an adjacent data track is not compensated. When the head is within one of the 2D-OD BAND, the 2D-MD BAND, or the 2D-ID BAND, the data recorded in a target data track is detected by processing the first and second read signals using a two-dimensional demodulation algorithm. In one embodiment, the linear and/or the radial recording density of the data tracks in the 2D bands may be increased due to the improved accuracy of a two-dimensional demodulation algorithm as compared to a one-dimensional demodulation algorithm.


In an embodiment illustrated in FIG. 5, the number of data tracks spanned by the 2D bands depends on the track pitch (track width) of the data tracks (for a given configuration of the read elements). As the track pitch decreases leading to narrower data tracks, the width of the 2D bands decreases as shown in FIG. 5. Accordingly, in one embodiment the disk drive may be analyzed to determine an optimal track pitch that maximizes the capacity of each disk surface. That is, given the 2D bands enable a higher recording density than the 1D bands, there may be an optimal track pitch shown in FIG. 5 that optimizes the width of 2D and 1D bands to achieve the maximum capacity.


In one embodiment, the track pitch within the 2D bands may increase as the head nears each of the 1D bands. Referring to the example of FIG. 6, the 2D-MD BAND may comprise data tracks having the smallest track pitch, whereas the 2D-OD BAND and the 2D-ID BAND may comprise data tracks with a track pitch that increases toward the outer diameter and inner diameter of the disk, respectively. Increasing the track pitch toward the boundaries of the 2D bands may enable the 2D bands to span a greater number of data tracks, which may further optimizing the capacity of each disk surface. In the example of FIG. 6, the data tracks in the 1D bands comprise the largest track pitch since the one-dimensional demodulation algorithm does not compensate for ITI from an adjacent data track.



FIG. 7A shows a disk drive according to an embodiment comprising a disk 50 comprising a plurality of tracks, and a head 52 comprising at least two read elements (e.g., as shown in FIG. 2C). The disk drive further comprises control circuitry 54 configured to execute the flow diagram of FIG. 7B, wherein when the head is within a first radial band of the disk (block 56) such as the 2D-OD BAND, data recorded on the disk is detected by processing a first read signal generated by the first read element and by processing a second read signal generated by the second read element using a two-dimensional demodulation algorithm (block 58). When the head is within a second radial band of the disk different from the first radial band (block 60) such as the 1D-OD BAND, data recorded on the disk is detected by processing the first read signal using a one-dimensional demodulation algorithm (block 62).


Although the figures in the above embodiments show the read elements as having a width proximate the width of a data track, in an alternative embodiment one or more of the read elements may have a width that spans less than a full data track (e.g., eighty percent of a data track), and in other embodiments one or more of the read elements may have a width that spans more than a full data track. In one embodiment, the read elements of the head 20 may be fabricated with relative radial and/or down-track offsets that may be selected based on a target width for the data tracks (i.e., a target track pitch). In another embodiment, the relative radial and/or down-track offsets of the read elements may be measured by the control circuitry 24 executing a suitable calibration procedure, and then the target track pitch selected based on the measured offsets. In one embodiment, the target track pitch may also be selected based on the width of the write element, and in another embodiment the data tracks may be written in a shingled manner so that the target track pitch may be selected based on an amount of overlap of the shingled data tracks.



FIG. 2C shows an embodiment wherein the head 20 comprises three read elements fabricated with a particular configuration. However, other embodiments may employ a head 20 having more than three read elements fabricated in any suitable configuration and utilized in any suitable toggling sequence as the skew angle changes when the head 20 moves radially over the disk. FIGS. 8A-8F show an embodiment where the first and third read elements 221 and 223 may be fabricated with a relative radial offset (intentionally or due to manufacturing tolerances). In this embodiment, the first read element 221 may be substantially aligned down-track with the third read element 223 when the head 20 reaches a radial location of the disk 16 toward the OD as shown in FIG. 8B (as compared to near the ID as in the example of FIG. 2C). Also in one embodiment when the first and third read elements comprise a relative radial offset, the radial bands for employing either one-dimensional or two-dimensional demodulation may be asymmetric as compared to the symmetric example shown in FIG. 5.


In one embodiment, when data recorded on the disk is unrecoverable using a first two of the read elements, the control circuitry 24 may execute a retry operation using a different two of the read elements. Referring to the example of FIG. 3A, the control circuitry 24 may select read elements 222 and 223 when attempting to detect data in data track 44B during a first disk revolution, and if that fails, the control circuitry 24 may select read elements 221 and 222 to detect data during a retry revolution of the disk. In one embodiment, the control circuitry 24 may jog the read elements by a radial offset when selecting a different two of read elements for a retry operation. Referring to the example of FIG. 8A, if a read operation fails using read elements 221 and 222, during a retry revolution of the disk the control circuitry 24 may jog the read elements and then attempt to detect data in the same data track using a different two of read elements (e.g., read elements 221 and 223).


Any suitable control circuitry may be employed to implement the flow diagrams in the above embodiments, such as any suitable integrated circuit or circuits. For example, the control circuitry may be implemented within a read channel integrated circuit, or in a component separate from the read channel, such as a disk controller, or certain operations described above may be performed by a read channel and others by a disk controller. In one embodiment, the read channel and disk controller are implemented as separate integrated circuits, and in an alternative embodiment they are fabricated into a single integrated circuit or system on a chip (SOC). In addition, the control circuitry may include a suitable preamp circuit implemented as a separate integrated circuit, integrated into the read channel or disk controller circuit, or integrated into a SOC.


In one embodiment, the control circuitry comprises a microprocessor executing instructions, the instructions being operable to cause the microprocessor to perform the flow diagrams described herein. The instructions may be stored in any computer-readable medium. In one embodiment, they may be stored on a non-volatile semiconductor memory external to the microprocessor, or integrated with the microprocessor in a SOC. In another embodiment, the instructions are stored on the disk and read into a volatile semiconductor memory when the disk drive is powered on. In yet another embodiment, the control circuitry comprises suitable logic circuitry, such as state machine circuitry.


The various features and processes described above may be used independently of one another, or may be combined in various ways. All possible combinations and subcombinations are intended to fall within the scope of this disclosure. In addition, certain method, event or process blocks may be omitted in some implementations. The methods and processes described herein are also not limited to any particular sequence, and the blocks or states relating thereto can be performed in other sequences that are appropriate. For example, described tasks or events may be performed in an order other than that specifically disclosed, or multiple may be combined in a single block or state. The example tasks or events may be performed in serial, in parallel, or in some other manner. Tasks or events may be added to or removed from the disclosed example embodiments. The example systems and components described herein may be configured differently than described. For example, elements may be added to, removed from, or rearranged compared to the disclosed example embodiments.


While certain example embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions disclosed herein. Thus, nothing in the foregoing description is intended to imply that any particular feature, characteristic, step, module, or block is necessary or indispensable. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the embodiments disclosed herein.

Claims
  • 1. A disk drive comprising: a disk comprising a plurality of tracks;a head comprising at least three read elements including a first read element, a second read element, and a third read element; andcontrol circuitry configured to: when the head is within a first radial band of the disk, detect data recorded on the disk using the first read element and the second read element; andwhen the head is within a second radial band of the disk different from the first radial band, detect data recorded on the disk using the first read element and the third read element,wherein when the head is over approximately a middle diameter of the disk, the first read element is substantially aligned down-track with the third read element and the second read element is offset radially from the first read element and the third read element by at least half a width of the second read element.
  • 2. The disk drive as recited in claim 1, wherein the control circuitry is further configured to read data from the disk using the first read element and the third read element when the head is within a third radial band of the disk, wherein: the first radial band spans a plurality of middle diameter tracks;the second radial band spans a plurality of outer diameter tracks; andthe third radial band spans a plurality of inner diameter tracks.
  • 3. The disk drive as recited in claim 1, wherein when the head is within the first radial band the control circuitry is configured to: position the first read element at least partially over a first track;position the second read element at least partially over a second track; andprocess a first read signal generated by the first read element and a second read signal generated by the second read element to detect data recorded in at least one of the first track and the second track.
  • 4. The disk drive as recited in claim 3, wherein when the head is within the first radial band the control circuitry is configured to process the first read signal and the second read signal to detect data recorded in one of the first track and the second track using a two-dimensional demodulation algorithm.
  • 5. The disk drive as recited in claim 4, wherein when the head is within a third radial band of the disk outside one of the first radial band and the second radial band, the control circuitry is configured to process a read signal generated by the first read element to detect data recorded in a third track using a one-dimensional demodulation algorithm.
  • 6. The disk drive as recited in claim 4, wherein when the head is within the first radial band the control circuitry is configured to process the first read signal and the second read signal to detect data recorded in both the first track and the second track.
  • 7. The disk drive as recited in claim 1, wherein when the head is over approximately the middle diameter of the disk, the first read element is substantially aligned down-track with the third read element and the second read element is offset radially from the first read element and the third read element by approximately a full width of the second read element.
  • 8. A method of operating a disk drive, the method comprising: when a head is within a first radial band of a disk, detecting data recorded on the disk using a first read element and a second read element; andwhen the head is within a second radial band of the disk different from the first radial band, detecting data recorded on the disk using the first read element and a third read element,wherein when the head is over approximately a middle diameter of the disk, the first read element is substantially aligned down-track with the third read element and the second read element is offset radially from the first read element and the third read element by at least half a width of the second read element.
  • 9. The method as recited in claim 8, further comprising reading data from the disk using the first read element and the third read element when the head is within a third radial band of the disk, wherein: the first radial band spans a plurality of middle diameter tracks;the second radial band spans a plurality of outer diameter tracks; andthe third radial band spans a plurality of inner diameter tracks.
  • 10. The method as recited in claim 8, wherein when the head is within the first radial band the method further comprises: positioning the first read element at least partially over a first track;positioning the second read element at least partially over a second track; andprocessing a first read signal generated by the first read element and a second read signal generated by the second read element to detect data recorded in at least one of the first track and the second track.
  • 11. The method as recited in claim 10, wherein when the head is within the first radial band the method further comprises processing the first read signal and the second read signal to detect data recorded in one of the first track and the second track using a two-dimensional demodulation algorithm.
  • 12. The method as recited in claim 11, wherein when the head is within a third radial band of the disk outside one of the first radial band and the second radial band, the method further comprises processing a read signal generated by the first read element to detect data recorded in a third track using a one-dimensional demodulation algorithm.
  • 13. The method as recited in claim 11, wherein when the head is within the first radial band the method further comprises processing the first read signal and the second read signal to detect data recorded in both the first track and the second track.
  • 14. The method as recited in claim 8, wherein when the head is over approximately the middle diameter of the disk, the first read element is substantially aligned down-track with the third read element and the second read element is offset radially from the first read element and the third read element by approximately a full width of the second read element.
  • 15. A disk drive comprising: a disk comprising a plurality of tracks;a head comprising at least three read elements including a first read element, a second read element, and a third read element; andcontrol circuitry configured to: select the first read element and the second read element to detect first user data recorded on the disk when the head is at a first radial location over the disk, wherein the third read element is not used to detect the first user data; andselect the second read element and the third read element to detect second user data recorded on the disk when the head is at a second radial location over the disk different from the first radial location, wherein the first read element is not used to detect the second user data.
  • 16. The disk drive as recited in claim 15, wherein: the first user data is the same as the second user data;the first radial location corresponds to a first read operation during a first revolution of the disk; andthe second radial location corresponds to a retry read operation during a second revolution of the disk.
  • 17. The disk drive as recited in claim 15, wherein: the first radial location is within a first radial band of the disk; andthe second radial location is within a second radial band of the disk.
  • 18. The disk drive as recited in claim 17, wherein when the head is within the first radial band the control circuitry is configured to: position the first read element at least partially over a first track;position the second read element at least partially over a second track; andprocess a first read signal generated by the first read element and a second read signal generated by the second read element to detect the first user data recorded in at least one of the first track and the second track.
  • 19. The disk drive as recited in claim 18, wherein when the head is within the first radial band the control circuitry is configured to process the first read signal and the second read signal to detect the first user data recorded in one of the first track and the second track using a two-dimensional demodulation algorithm.
  • 20. A method of operating a disk drive, the method comprising: selecting a first read element and a second read element to detect first user data recorded on a disk when a head is at a first radial location over the disk, wherein a third read element is not used to detect the first user data; andselecting the second read element and the third read element to detect second user data recorded on the disk when the head is at a second radial location over the disk different from the first radial location, wherein the first read element is not used to detect the second user data.
  • 21. The method as recited in claim 20, wherein: the first user data is the same as the second user data;the first radial location corresponds to a first read operation during a first revolution of the disk; andthe second radial location corresponds to a retry read operation during a second revolution of the disk.
  • 22. The method as recited in claim 20, wherein: the first radial location is within a first radial band of the disk; andthe second radial location is within a second radial band of the disk.
  • 23. The method as recited in claim 22, wherein when the head is within the first radial band the method further comprises: positioning the first read element at least partially over a first track;positioning the second read element at least partially over a second track; andprocessing a first read signal generated by the first read element and a second read signal generated by the second read element to detect the first user data recorded in at least one of the first track and the second track.
  • 24. The method as recited in claim 23, wherein when the head is within the first radial band the method further comprises processing the first read signal and the second read signal to detect the first user data recorded in one of the first track and the second track using a two-dimensional demodulation algorithm.
US Referenced Citations (525)
Number Name Date Kind
3780266 Mudsam et al. Dec 1973 A
4007493 Behr et al. Feb 1977 A
4012781 Lin Mar 1977 A
4152736 Jansen et al. May 1979 A
4462053 Lum et al. Jul 1984 A
4589038 Radtke May 1986 A
4597023 Rijckaert Jun 1986 A
4729048 Imakoshi et al. Mar 1988 A
4903151 Mizukami et al. Feb 1990 A
5010430 Yamada et al. Apr 1991 A
5229901 Mallary Jul 1993 A
5270892 Naberhuis Dec 1993 A
5309305 Nepela et al. May 1994 A
5321557 Shimotashiro et al. Jun 1994 A
5353176 Kosuge Oct 1994 A
5388014 Brug et al. Feb 1995 A
5508868 Cheng et al. Apr 1996 A
5523904 Saliba Jun 1996 A
5684658 Shi et al. Nov 1997 A
5696654 Gill et al. Dec 1997 A
5721008 Huang et al. Feb 1998 A
5796535 Tuttle et al. Aug 1998 A
5831888 Glover Nov 1998 A
5912779 Llewellyn et al. Jun 1999 A
5963400 Cates et al. Oct 1999 A
6018789 Sokolov et al. Jan 2000 A
6021024 Akiyama et al. Feb 2000 A
6065095 Sokolov et al. May 2000 A
6071007 Schaenzer et al. Jun 2000 A
6078452 Kittilson et al. Jun 2000 A
6081447 Lofgren et al. Jun 2000 A
6092149 Hicken et al. Jul 2000 A
6092150 Sokolov et al. Jul 2000 A
6094707 Sokolov et al. Jul 2000 A
6104562 Ottesen et al. Aug 2000 A
6105104 Guttmann et al. Aug 2000 A
6111717 Cloke et al. Aug 2000 A
6145052 Howe et al. Nov 2000 A
6154335 Smith et al. Nov 2000 A
6157510 Schreck et al. Dec 2000 A
6175893 D'Souza et al. Jan 2001 B1
6178056 Cloke et al. Jan 2001 B1
6191909 Cloke et al. Feb 2001 B1
6191925 Watson Feb 2001 B1
6195218 Guttmann et al. Feb 2001 B1
6205494 Williams Mar 2001 B1
6208477 Cloke et al. Mar 2001 B1
6216242 Schaenzer Apr 2001 B1
6223303 Billings et al. Apr 2001 B1
6230233 Lofgren et al. May 2001 B1
6246346 Cloke et al. Jun 2001 B1
6249393 Billings et al. Jun 2001 B1
6256695 Williams Jul 2001 B1
6262857 Hull et al. Jul 2001 B1
6263459 Schibilla Jul 2001 B1
6271998 Coehoorn et al. Aug 2001 B1
6272694 Weaver et al. Aug 2001 B1
6278568 Cloke et al. Aug 2001 B1
6279089 Schibilla et al. Aug 2001 B1
6289484 Rothberg et al. Sep 2001 B1
6292912 Cloke et al. Sep 2001 B1
6310740 Dunbar et al. Oct 2001 B1
6311551 Boutaghou Nov 2001 B1
6317850 Rothberg Nov 2001 B1
6327106 Rothberg Dec 2001 B1
6337778 Gagne Jan 2002 B1
6341102 Sato et al. Jan 2002 B1
6369969 Christiansen et al. Apr 2002 B1
6369982 Saliba Apr 2002 B2
6373648 O'Connor Apr 2002 B2
6384999 Schibilla May 2002 B1
6388833 Golowka et al. May 2002 B1
6405342 Lee Jun 2002 B1
6408357 Hanmann et al. Jun 2002 B1
6408406 Parris Jun 2002 B1
6411452 Cloke Jun 2002 B1
6411458 Billings et al. Jun 2002 B1
6412083 Rothberg et al. Jun 2002 B1
6415349 Hull et al. Jul 2002 B1
6425128 Krapf et al. Jul 2002 B1
6441981 Cloke et al. Aug 2002 B1
6442328 Elliott et al. Aug 2002 B1
6445524 Nazarian et al. Sep 2002 B1
6449131 Guo et al. Sep 2002 B2
6449767 Krapf et al. Sep 2002 B1
6453115 Boyle Sep 2002 B1
6462541 Wang et al. Oct 2002 B1
6469878 Mack et al. Oct 2002 B1
6470420 Hospodor Oct 2002 B1
6480020 Jung et al. Nov 2002 B1
6480349 Kim et al. Nov 2002 B1
6480932 Vallis et al. Nov 2002 B1
6483986 Krapf Nov 2002 B1
6487032 Cloke et al. Nov 2002 B1
6490635 Holmes Dec 2002 B1
6493173 Kim et al. Dec 2002 B1
6496333 Han et al. Dec 2002 B1
6499083 Hamlin Dec 2002 B1
6519104 Cloke et al. Feb 2003 B1
6525892 Dunbar et al. Feb 2003 B1
6545830 Briggs et al. Apr 2003 B1
6546489 Frank, Jr. et al. Apr 2003 B1
6550021 Dalphy et al. Apr 2003 B1
6552880 Dunbar et al. Apr 2003 B1
6553457 Wilkins et al. Apr 2003 B1
6578106 Price Jun 2003 B1
6580573 Hull et al. Jun 2003 B1
6594183 Lofgren et al. Jul 2003 B1
6600620 Krounbi et al. Jul 2003 B1
6601137 Castro et al. Jul 2003 B1
6603622 Christiansen et al. Aug 2003 B1
6603625 Hospodor et al. Aug 2003 B1
6604220 Lee Aug 2003 B1
6606682 Dang et al. Aug 2003 B1
6606714 Thelin Aug 2003 B1
6606717 Yu et al. Aug 2003 B1
6611393 Nguyen et al. Aug 2003 B1
6615312 Hamlin et al. Sep 2003 B1
6639748 Christiansen et al. Oct 2003 B1
6647481 Luu et al. Nov 2003 B1
6654193 Thelin Nov 2003 B1
6657810 Kupferman Dec 2003 B1
6661591 Rothberg Dec 2003 B1
6665772 Hamlin Dec 2003 B1
6674618 Engel et al. Jan 2004 B2
6687073 Kupferman Feb 2004 B1
6687078 Kim Feb 2004 B1
6687850 Rothberg Feb 2004 B1
6690523 Nguyen et al. Feb 2004 B1
6690882 Hanmann et al. Feb 2004 B1
6691198 Hamlin Feb 2004 B1
6691213 Luu et al. Feb 2004 B1
6691255 Rothberg et al. Feb 2004 B1
6693760 Krounbi et al. Feb 2004 B1
6694477 Lee Feb 2004 B1
6697914 Hospodor et al. Feb 2004 B1
6704153 Rothberg et al. Mar 2004 B1
6708251 Boyle et al. Mar 2004 B1
6710951 Cloke Mar 2004 B1
6711628 Thelin Mar 2004 B1
6711635 Wang Mar 2004 B1
6711660 Milne et al. Mar 2004 B1
6715044 Lofgren et al. Mar 2004 B2
6724982 Hamlin Apr 2004 B1
6725329 Ng et al. Apr 2004 B1
6735650 Rothberg May 2004 B1
6735693 Hamlin May 2004 B1
6744772 Eneboe et al. Jun 2004 B1
6745283 Dang Jun 2004 B1
6751402 Elliott et al. Jun 2004 B1
6757481 Nazarian et al. Jun 2004 B1
6772281 Hamlin Aug 2004 B2
6781826 Goldstone et al. Aug 2004 B1
6782449 Codilian et al. Aug 2004 B1
6791779 Singh et al. Sep 2004 B1
6792486 Hanan et al. Sep 2004 B1
6799274 Hamlin Sep 2004 B1
6811427 Garrett et al. Nov 2004 B2
6826003 Subrahmanyam Nov 2004 B1
6826614 Hanmann et al. Nov 2004 B1
6832041 Boyle Dec 2004 B1
6832929 Garrett et al. Dec 2004 B2
6842312 Alstrin et al. Jan 2005 B1
6845405 Thelin Jan 2005 B1
6845427 Atai-Azimi Jan 2005 B1
6850443 Lofgren et al. Feb 2005 B2
6851055 Boyle et al. Feb 2005 B1
6851063 Boyle et al. Feb 2005 B1
6853731 Boyle et al. Feb 2005 B1
6854022 Thelin Feb 2005 B1
6862660 Wilkins et al. Mar 2005 B1
6880043 Castro et al. Apr 2005 B1
6882486 Kupferman Apr 2005 B1
6884085 Goldstone Apr 2005 B1
6888831 Hospodor et al. May 2005 B1
6892217 Hanmann et al. May 2005 B1
6892249 Codilian et al. May 2005 B1
6892313 Codilian et al. May 2005 B1
6895455 Rothberg May 2005 B1
6895500 Rothberg May 2005 B1
6898730 Hanan May 2005 B1
6910099 Wang et al. Jun 2005 B1
6921592 Tani et al. Jul 2005 B2
6928470 Hamlin Aug 2005 B1
6931439 Hanmann et al. Aug 2005 B1
6934104 Kupferman Aug 2005 B1
6934713 Schwartz et al. Aug 2005 B2
6940873 Boyle et al. Sep 2005 B2
6943978 Lee Sep 2005 B1
6947247 Schwarz et al. Sep 2005 B2
6948165 Luu et al. Sep 2005 B1
6950267 Liu et al. Sep 2005 B1
6954733 Ellis et al. Oct 2005 B1
6961814 Thelin et al. Nov 2005 B1
6965489 Lee et al. Nov 2005 B1
6965563 Hospodor et al. Nov 2005 B1
6965966 Rothberg et al. Nov 2005 B1
6967799 Lee Nov 2005 B1
6968422 Codilian et al. Nov 2005 B1
6968450 Rothberg et al. Nov 2005 B1
6973495 Milne et al. Dec 2005 B1
6973570 Hamlin Dec 2005 B1
6976190 Goldstone Dec 2005 B1
6983316 Milne et al. Jan 2006 B1
6986007 Procyk et al. Jan 2006 B1
6986154 Price et al. Jan 2006 B1
6987408 Kim Jan 2006 B2
6995933 Codilian et al. Feb 2006 B1
6996501 Rothberg Feb 2006 B1
6996669 Dang et al. Feb 2006 B1
7002777 Ogawa et al. Feb 2006 B2
7002926 Eneboe et al. Feb 2006 B1
7003674 Hamlin Feb 2006 B1
7006316 Sargenti, Jr. et al. Feb 2006 B1
7009820 Hogg Mar 2006 B1
7023639 Kupferman Apr 2006 B1
7024491 Hanmann et al. Apr 2006 B1
7024549 Luu et al. Apr 2006 B1
7024614 Thelin et al. Apr 2006 B1
7027716 Boyle et al. Apr 2006 B1
7028174 Atai-Azimi et al. Apr 2006 B1
7031902 Catiller Apr 2006 B1
7046465 Kupferman May 2006 B1
7046488 Hogg May 2006 B1
7050252 Vallis May 2006 B1
7054937 Milne et al. May 2006 B1
7055000 Severtson May 2006 B1
7055167 Masters May 2006 B1
7057836 Kupferman Jun 2006 B1
7062398 Rothberg Jun 2006 B1
7075746 Kupferman Jul 2006 B1
7076604 Thelin Jul 2006 B1
7082494 Thelin et al. Jul 2006 B1
7088538 Codilian et al. Aug 2006 B1
7088545 Singh et al. Aug 2006 B1
7092186 Hogg Aug 2006 B1
7095577 Codilian et al. Aug 2006 B1
7099095 Subrahmanyam et al. Aug 2006 B1
7106537 Bennett Sep 2006 B1
7106549 Asakura Sep 2006 B2
7106947 Boyle et al. Sep 2006 B2
7110202 Vasquez Sep 2006 B1
7111116 Boyle et al. Sep 2006 B1
7114029 Thelin Sep 2006 B1
7120737 Thelin Oct 2006 B1
7120806 Codilian et al. Oct 2006 B1
7126776 Warren, Jr. et al. Oct 2006 B1
7129763 Bennett et al. Oct 2006 B1
7133600 Boyle Nov 2006 B1
7136244 Rothberg Nov 2006 B1
7146094 Boyle Dec 2006 B1
7149046 Coker et al. Dec 2006 B1
7150036 Milne et al. Dec 2006 B1
7155616 Hamlin Dec 2006 B1
7171108 Masters et al. Jan 2007 B1
7171110 Wilshire Jan 2007 B1
7193807 Liikanen et al. Mar 2007 B1
7194576 Boyle Mar 2007 B1
7200698 Rothberg Apr 2007 B1
7205805 Bennett Apr 2007 B1
7206497 Boyle et al. Apr 2007 B1
7215496 Kupferman et al. May 2007 B1
7215514 Yang et al. May 2007 B1
7215771 Hamlin May 2007 B1
7237054 Cain et al. Jun 2007 B1
7239465 Watson et al. Jul 2007 B1
7240161 Boyle Jul 2007 B1
7242547 Ogawa Jul 2007 B2
7249365 Price et al. Jul 2007 B1
7259927 Harris Aug 2007 B2
7263709 Krapf Aug 2007 B1
7271970 Tsuchiya Sep 2007 B2
7274639 Codilian et al. Sep 2007 B1
7274659 Hospodor Sep 2007 B2
7275116 Hanmann et al. Sep 2007 B1
7280302 Masiewicz Oct 2007 B1
7292774 Masters et al. Nov 2007 B1
7292775 Boyle et al. Nov 2007 B1
7296284 Price et al. Nov 2007 B1
7302501 Cain et al. Nov 2007 B1
7302579 Cain et al. Nov 2007 B1
7318088 Mann Jan 2008 B1
7319806 Willner et al. Jan 2008 B1
7324303 Ozue et al. Jan 2008 B2
7325244 Boyle et al. Jan 2008 B2
7330323 Singh et al. Feb 2008 B1
7346790 Klein Mar 2008 B1
7366641 Masiewicz et al. Apr 2008 B1
7369340 Dang et al. May 2008 B1
7369343 Yeo et al. May 2008 B1
7372650 Kupferman May 2008 B1
7380147 Sun May 2008 B1
7382585 Nibarger et al. Jun 2008 B1
7392340 Dang et al. Jun 2008 B1
7404013 Masiewicz Jul 2008 B1
7405907 Raastad Jul 2008 B2
7406545 Rothberg et al. Jul 2008 B1
7408730 Yamagishi Aug 2008 B2
7415571 Hanan Aug 2008 B1
7420758 Inoue et al. Sep 2008 B2
7436610 Thelin Oct 2008 B1
7436632 Li et al. Oct 2008 B2
7437502 Coker Oct 2008 B1
7440214 Ell et al. Oct 2008 B1
7451344 Rothberg Nov 2008 B1
7453671 Nibarger et al. Nov 2008 B1
7471483 Ferris et al. Dec 2008 B1
7471486 Coker et al. Dec 2008 B1
7486060 Bennett Feb 2009 B1
7496493 Stevens Feb 2009 B1
7502193 Albrecht et al. Mar 2009 B2
7518819 Yu et al. Apr 2009 B1
7526184 Parkinen et al. Apr 2009 B1
7539924 Vasquez et al. May 2009 B1
7543117 Hanan Jun 2009 B1
7551383 Kupferman Jun 2009 B1
7551393 Biskeborn et al. Jun 2009 B2
7562282 Rothberg Jul 2009 B1
7577973 Kapner, III et al. Aug 2009 B1
7596797 Kapner, III et al. Sep 2009 B1
7599139 Bombet et al. Oct 2009 B1
7602193 Baird et al. Oct 2009 B1
7619841 Kupferman Nov 2009 B1
7647544 Masiewicz Jan 2010 B1
7649704 Bombet et al. Jan 2010 B1
7652847 Weiss et al. Jan 2010 B2
7653927 Kapner, III et al. Jan 2010 B1
7656603 Xing Feb 2010 B1
7656610 Campos et al. Feb 2010 B1
7656763 Jin et al. Feb 2010 B1
7657149 Boyle Feb 2010 B2
7672072 Boyle et al. Mar 2010 B1
7673075 Masiewicz Mar 2010 B1
7688540 Mei et al. Mar 2010 B1
7724461 McFadyen et al. May 2010 B1
7725584 Hanmann et al. May 2010 B1
7730295 Lee Jun 2010 B1
7755863 Neumann et al. Jul 2010 B2
7760458 Trinh Jul 2010 B1
7768776 Szeremeta et al. Aug 2010 B1
7804657 Hogg et al. Sep 2010 B1
7813954 Price et al. Oct 2010 B1
7827320 Stevens Nov 2010 B1
7839588 Dang et al. Nov 2010 B1
7843660 Yeo Nov 2010 B1
7852596 Boyle et al. Dec 2010 B2
7859782 Lee Dec 2010 B1
7872822 Rothberg Jan 2011 B1
7898756 Wang Mar 2011 B1
7898762 Guo et al. Mar 2011 B1
7900037 Fallone et al. Mar 2011 B1
7907364 Boyle et al. Mar 2011 B2
7929234 Boyle et al. Apr 2011 B1
7933087 Tsai et al. Apr 2011 B1
7933090 Jung et al. Apr 2011 B1
7934030 Sargenti, Jr. et al. Apr 2011 B1
7940491 Szeremeta et al. May 2011 B2
7944639 Wang May 2011 B1
7945727 Rothberg et al. May 2011 B2
7949564 Hughes et al. May 2011 B1
7974029 Tsai et al. Jul 2011 B2
7974039 Xu et al. Jul 2011 B1
7982993 Tsai et al. Jul 2011 B1
7984200 Bombet et al. Jul 2011 B1
7990648 Wang Aug 2011 B1
7992179 Kapner, III et al. Aug 2011 B1
8004785 Tsai et al. Aug 2011 B1
8006027 Stevens et al. Aug 2011 B1
8009388 Oh et al. Aug 2011 B2
8014094 Jin Sep 2011 B1
8014977 Masiewicz et al. Sep 2011 B1
8019914 Vasquez et al. Sep 2011 B1
8040625 Boyle et al. Oct 2011 B1
8078943 Lee Dec 2011 B1
8079045 Krapf et al. Dec 2011 B2
8082433 Fallone et al. Dec 2011 B1
8085487 Jung et al. Dec 2011 B1
8089719 Dakroub Jan 2012 B1
8090902 Bennett et al. Jan 2012 B1
8090906 Blaha et al. Jan 2012 B1
8091112 Elliott et al. Jan 2012 B1
8094396 Zhang et al. Jan 2012 B1
8094401 Peng et al. Jan 2012 B1
8116020 Lee Feb 2012 B1
8116025 Chan et al. Feb 2012 B1
8134793 Vasquez et al. Mar 2012 B1
8134798 Thelin et al. Mar 2012 B1
8139301 Li et al. Mar 2012 B1
8139310 Hogg Mar 2012 B1
8144419 Liu Mar 2012 B1
8144424 Dugas et al. Mar 2012 B2
8145452 Masiewicz et al. Mar 2012 B1
8149528 Suratman et al. Apr 2012 B1
8154812 Boyle et al. Apr 2012 B1
8159768 Miyamura Apr 2012 B1
8161328 Wilshire Apr 2012 B1
8164849 Szeremeta et al. Apr 2012 B1
8174780 Tsai et al. May 2012 B1
8190575 Ong et al. May 2012 B1
8194338 Zhang Jun 2012 B1
8194340 Boyle et al. Jun 2012 B1
8194341 Boyle Jun 2012 B1
8201066 Wang Jun 2012 B1
8208228 Maat et al. Jun 2012 B2
8271692 Dinh et al. Sep 2012 B1
8279550 Hogg Oct 2012 B1
8281218 Ybarra et al. Oct 2012 B1
8285923 Stevens Oct 2012 B2
8289656 Huber Oct 2012 B1
8305705 Roohr Nov 2012 B1
8307156 Codilian et al. Nov 2012 B1
8310775 Boguslawski et al. Nov 2012 B1
8315006 Chahwan et al. Nov 2012 B1
8316263 Gough et al. Nov 2012 B1
8320067 Tsai et al. Nov 2012 B1
8324974 Bennett Dec 2012 B1
8332695 Dalphy et al. Dec 2012 B2
8339919 Lee Dec 2012 B1
8341337 Ong et al. Dec 2012 B1
8350628 Bennett Jan 2013 B1
8356184 Meyer et al. Jan 2013 B1
8370683 Ryan et al. Feb 2013 B1
8375225 Ybarra Feb 2013 B1
8375274 Bonke Feb 2013 B1
8380922 DeForest et al. Feb 2013 B1
8390948 Hogg Mar 2013 B2
8390952 Szeremeta Mar 2013 B1
8392689 Lott Mar 2013 B1
8407393 Yolar et al. Mar 2013 B1
8413010 Vasquez et al. Apr 2013 B1
8417566 Price et al. Apr 2013 B2
8421663 Bennett Apr 2013 B1
8422172 Dakroub et al. Apr 2013 B1
8427770 O'Dell et al. Apr 2013 B1
8427771 Tsai Apr 2013 B1
8429343 Tsai Apr 2013 B1
8433937 Wheelock et al. Apr 2013 B1
8433977 Vasquez et al. Apr 2013 B1
8441909 Thayamballi et al. May 2013 B1
8456980 Thayamballi Jun 2013 B1
8458526 Dalphy et al. Jun 2013 B2
8462466 Huber Jun 2013 B2
8467151 Huber Jun 2013 B1
8483027 Mak et al. Jul 2013 B1
8489841 Strecke et al. Jul 2013 B1
8493679 Boguslawski et al. Jul 2013 B1
8499198 Messenger et al. Jul 2013 B1
8508880 Gao et al. Aug 2013 B2
8514506 Li et al. Aug 2013 B1
8554741 Malina Oct 2013 B1
8560759 Boyle et al. Oct 2013 B1
8576509 Hogg Nov 2013 B1
8576511 Coker et al. Nov 2013 B1
8578100 Huynh et al. Nov 2013 B1
8578242 Burton et al. Nov 2013 B1
8582223 Garani et al. Nov 2013 B1
8582231 Kermiche et al. Nov 2013 B1
8589773 Wang et al. Nov 2013 B1
8593753 Anderson Nov 2013 B1
8599508 Burd Dec 2013 B1
8599512 Hogg Dec 2013 B2
8605379 Sun Dec 2013 B1
8611031 Tan et al. Dec 2013 B1
8611032 Champion et al. Dec 2013 B2
8612798 Tsai Dec 2013 B1
8619383 Jung et al. Dec 2013 B1
8619508 Krichevsky et al. Dec 2013 B1
8619529 Liew et al. Dec 2013 B1
8621115 Bombet et al. Dec 2013 B1
8621133 Boyle Dec 2013 B1
8625224 Lin et al. Jan 2014 B1
8625225 Wang Jan 2014 B1
8626463 Stevens et al. Jan 2014 B2
8630052 Jung et al. Jan 2014 B1
8631188 Heath et al. Jan 2014 B1
8635412 Wilshire Jan 2014 B1
8661193 Cobos et al. Feb 2014 B1
8665547 Yeo et al. Mar 2014 B1
8667248 Neppalli Mar 2014 B1
8670205 Malina et al. Mar 2014 B1
8671250 Lee Mar 2014 B2
8681442 Hogg Mar 2014 B2
8681445 Kermiche et al. Mar 2014 B1
8683295 Syu et al. Mar 2014 B1
8687306 Coker et al. Apr 2014 B1
8687307 Patton, III Apr 2014 B1
8687313 Selvaraj Apr 2014 B2
8693133 Lee et al. Apr 2014 B1
8698492 Mak et al. Apr 2014 B1
8699171 Boyle Apr 2014 B1
8699172 Gunderson et al. Apr 2014 B1
8711500 Fong et al. Apr 2014 B1
8711506 Giovenzana et al. Apr 2014 B1
8711517 Erden et al. Apr 2014 B2
8711665 Abdul Hamid Apr 2014 B1
8717694 Liew et al. May 2014 B1
8717695 Lin et al. May 2014 B1
8730612 Haralson May 2014 B1
8743502 Bonke et al. Jun 2014 B1
8749911 Sun et al. Jun 2014 B1
8786987 Edelman et al. Jul 2014 B2
8861114 Burd Oct 2014 B1
8988812 Brunnett et al. Mar 2015 B1
9013821 Chen Apr 2015 B1
9013824 Guo et al. Apr 2015 B1
20030002190 Teo et al. Jan 2003 A1
20030026036 Chew Feb 2003 A1
20030151855 Molstad et al. Aug 2003 A1
20040184181 Fukuda et al. Sep 2004 A1
20050036241 Tsuda et al. Feb 2005 A1
20050036437 Learned et al. Feb 2005 A1
20070242378 Ikegami et al. Oct 2007 A1
20090113702 Hogg May 2009 A1
20100020435 Chen et al. Jan 2010 A1
20100306551 Meyer et al. Dec 2010 A1
20110226729 Hogg Sep 2011 A1
20120159042 Lott et al. Jun 2012 A1
20120275050 Wilson et al. Nov 2012 A1
20120281963 Krapf et al. Nov 2012 A1
20120324980 Nguyen et al. Dec 2012 A1
20130223199 Lund et al. Aug 2013 A1
20130242428 Tetzlaff et al. Sep 2013 A1
20130250447 Erden Sep 2013 A1
20130286502 Erden et al. Oct 2013 A1
20140160590 Sankaranarayanan et al. Jun 2014 A1
Non-Patent Literature Citations (10)
Entry
Michael L. Mallary, et al. U.S. Appl. No. 14/099,849, filed Oct. 11, 2013, 38 pages.
Shaoping Li, et al. U.S. Appl. No. 13/928,799, filed May 21, 2013, 27 pages.
Donald Brunnett, et al. U.S. Appl. No. 14/325,643, filed Nov. 27, 2013, 27 pages.
Shaoping Li, et al. U.S. Appl. No. 14/097,157, filed Oct. 17, 2013, 38 pages.
Shaoping Li , et. al., U.S. Appl. No. 13/963,172, filed Aug. 8, 2013, 37 pages.
Paul E. Soderbloom, et. al., U.S. Appl. No. 14/264,244, filed Apr. 29, 2014, 24 pages.
Yiming Chen, et. al., U.S. Appl. No. 13/968,323, filed Aug. 15, 2013, 19 pages.
Donald Brunnett, et al., U.S. Appl. No. 14/304,347, 30 pgs.
Notice of Allowance dated Jul. 18, 2014 from U.S. Appl. No. 14/304,347, 9 pgs.
Notice of Allowance dated Nov. 7, 2014 from U.S. Appl. No. 14/304,347, 91 pgs.
Related Publications (1)
Number Date Country
20150255099 A1 Sep 2015 US