Information storage devices are used to retrieve and/or store data in computers and other consumer electronics devices. A magnetic hard disk drive is an example of an information storage device that includes one or more heads that can both read and write, but other information storage devices also include heads—sometimes including heads that cannot write.
In a modern magnetic hard disk drive device, each head is a sub-component of a head gimbal assembly (HGA) that typically includes a head, and a suspension assembly with a laminated flexure to carry the electrical signals to and from the head. The HGA, in turn, is a sub-component of a head stack assembly (HSA) that typically includes a plurality of HGAs, an actuator, and a flexible printed circuit. The plurality of HGAs are attached to various arms of the actuator.
Modern laminated flexures typically include conductive copper traces (e.g. an alloy of copper) that are isolated from a stainless steel structural layer by a polyimide dielectric layer. So that the signals from/to the head can reach the flexible printed circuit (FPC) on the actuator body, each suspension assembly includes a flexure tail that extends away from the head along a corresponding actuator arm and ultimately attaches to the FPC adjacent the actuator body. That is, the flexure includes traces that extend from adjacent the head and continue along the flexure tail to a plurality of flexure bond pads for electrical connection to the FPC. The FPC includes conductive electrical traces that terminate in a plurality of FPC bond pads that correspond to and are electrically connected to the flexure bond pads.
To facilitate electrical connection of the conductive traces of the flexure tails to the conductive electrical terminals of the FPC during the HSA manufacturing process, the flexure tails must first be properly positioned relative to the FPC so that the flexure bond pads are aligned with the FPC bond pads. Then the flexure tails must be held or constrained against the FPC bond pads while the aforementioned electrical connections are made, e.g., by ultrasonic bonding, solder jet bonding, solder bump reflow, or anisotropic conductive film (ACF) bonding.
An anisotropic conductive film is typically an adhesive doped with conductive beads of similar size or diameter. As the doped adhesive is compressed and cured, it is heated and squeezed between the surfaces to be bonded with sufficient uniform pressure that a single layer of the conductive beads makes contact with both surfaces to be bonded. In this way, the thickness of the adhesive layer between the bonded surfaces becomes approximately equal to the size of the conductive beads. The cured adhesive film may conduct electricity via the contacting beads axially, i.e. in a direction normal to the bonded surfaces, since each bead is forced to contact both of the surfaces to be bonded. However, the cured adhesive film may not conduct electricity parallel to the bonded surfaces, since the beads may not touch each other laterally—hence the term “anisotropic”.
Prior to HSA assembly, HGAs are typically tested for acceptable function. For example, the HGAs may undergo so-called dynamic electrical testing (DET) to ensure acceptable function (and/or to characterize HGA performance for subsequent optimization or compensation in the HSA and/or in the assembled disk drive). Such testing typically requires that testing probes make reliable electrical connections to the HSA. In some cases, the flexure tail may include an extra length with enlarged testing pads to facilitate temporary test probe contact. However, such extra length must be cut-away as an extra processing step before or during HSA assembly, and in that case the enlarged testing pads are ultimately not part of the assembled HSA or the assembled disk drive. DET may also require that a reliable ground connection be made between the HGA and the testing apparatus.
Hence, there is a need in the art for a head suspension assembly flexure tail design that can facilitate reliable electrical connections with testing probes and/or ground, without the need for an extra length (e.g. with enlarged testing pads) that must be cut away as an extra processing step before or during HSA assembly.
The disk drive 100 further includes an actuator 116 that is rotatably mounted on disk drive base 102. Voice coil motor 112 rotates the actuator 116 through a limited angular range so that at least one head gimbal assembly (HGA) 114 is desirably positioned relative to one or more tracks of information on a corresponding one of the disks 104. In the embodiment of
Each HGA 114 preferably includes a head 150 for reading from one of the disks 104. The head 150 may be referred to herein as a read head, even though it may also perform other functions and contain other structures such as a writer for writing data, a microactuator, a heater, a lapping guide, etc. The actuator 116 may occasionally be latched at an extreme angular position within the limited angular range, by latch 120. Electrical signals to/from the HGAs 114 are carried to other drive electronics via a flexible printed circuit that includes a flex cable 122 (preferably including a preamplifier circuit) and flex cable bracket 124.
Each HGA includes a head for reading and/or writing to an adjacent disk surface (e.g. HGA 254 includes head 280). The head 280 is attached to a tongue portion 272 of a laminated flexure 270. The laminated flexure 270 is part of the HGA 254, and is attached to a load beam (the part of the HGA 254 to which the numerical label 254 points). The laminated flexure 270 may include a structural layer (e.g. stainless steel), a dielectric layer (e.g. polyimide), and a conductive layer into which traces are patterned (e.g. copper). The HSA 200 also includes a flexible printed circuit (FPC) 260 adjacent the actuator body 232. The FPC 260 includes a flex cable 262 and a preamplifier 266. The FPC 260 may comprise a laminate that includes two or more conventional dielectric and conductive layer materials (e.g. one or more polymeric materials, copper, etc.). The laminated flexure 270 includes a flexure tail 274 that runs along the actuator arm 238 to a terminal region 278 of the laminated flexure 270 that is electrically connected to bond pads of the FPC 260.
Methods of electrical connection of the flexure tails (e.g. flexure tail 274) to the FPC 260 include ultrasonic bonding of gold coatings thereon, solder reflow, solder ball jet (SBJ), and anisotropic conductive film (ACF) bonding, and are preferably but not necessarily automated. To electrically connect and securely attach the flexure tails to the FPC 260, the flexure tails are first aligned with the FPC 260, and then may be pressed against the FPC 260 (at least temporarily) while electrical connection is established and secure attachment is completed. Maintaining alignment and sufficient uniform pressure and temperature to groups of bond pads may be desirable during this process.
The FPC 260 may include an optional insulative cover layer 320 having windows exposing the regions where the flexure tail terminal regions and the pre-amplifier chip 315 are bonded thereto. The cover layer 320 is shown cut away in the view of
The flexure tail terminal region 400 may also include other layers, such as an additional conductive layer and an additional dielectric layer (e.g. in the case of a dual conductive layer flexure), but the layers described herein would still be included as described. In certain embodiments, the thickness of the structural layer 410 may be preferably less than 20 microns, the thickness of the dielectric layer 420 may be preferably less than 15 microns, the thickness of the conductive layer 430 may be preferably less than 15 microns.
Now referring to
In certain embodiments, a conventional anisotropic conductive film may be disposed between the FPC 260 and the flexure tail terminal region 400, and the flexure tail terminal region 400 may optionally overlap the anisotropic conductive film in the bonding area 460 but not in the adjacent area 470. In such embodiments, each of the plurality of flexure bond pads 432 is bonded to the corresponding one of the plurality of FPC bond pads 380 by the anisotropic conductive film in the bonding area 460.
Still referring to
In certain embodiments, the anisotropic conductive film may comprise an adhesive material that includes a plurality of electrically conductive beads. In such embodiments, the electrically conductive beads may be of substantially similar size, and the plurality of electrically conductive beads may be arranged in a monolayer with each of the plurality of electrically conductive beads in electrical contact with one of the plurality of flexure bond pads 432 and the corresponding one of the plurality of FPC bond pads 380. The dielectric layer 420 may optionally include a plurality of through openings 422, for example to control the spread of ACF material used to make electrical connections to the flexure bond pads 432.
In the embodiment of
Now referring to
In the embodiment of
In the embodiment of
In the embodiment of
In the embodiment of
In the embodiment of
Now referring to
In the embodiment of
In certain embodiments, the noble metal testing pads 552, 554 may advantageously facilitate reliable temporary electrical contact to the backing islands 512, 514 of the structural layer 510, by electrically conductive testing probes of an electrical tester (e.g. a DET tester). In certain embodiments, each of the plurality of backing islands 512, 514 of the structural layer 510 is itself electrically connected to a corresponding one of the plurality of flexure bond pads 532, 534 by a conductive via through the dielectric layer 520. In such embodiments, the temporary electrical contact made by the testing probes to the backing islands 512, 514 of the structural layer 510, may provide the electrical tester with further electrical conduction to the flexure bond pads 532, 534 and then to the electrical traces 538. Moreover, the grounding pad 556 of the noble metal layer may enhance the reliability of a temporary ground connection made during such testing.
In the foregoing specification, the invention is described with reference to specific exemplary embodiments, but those skilled in the art will recognize that the invention is not limited to those. It is contemplated that various features and aspects of the invention may be used individually or jointly and possibly in a different environment or application. The specification and drawings are, accordingly, to be regarded as illustrative and exemplary rather than restrictive. For example, the word “preferably,” and the phrase “preferably but not necessarily,” are used synonymously herein to consistently include the meaning of “not necessarily” or optionally. “Comprising,” “including,” and “having,” are intended to be open-ended terms.
This application claims priority under 35 U.S.C. §120 as a continuation-in part to pending U.S. patent application Ser. No. 14/322,616 filed on Jul. 2, 2014, entitled “DISK DRIVE HEAD SUSPENSION TAIL WITH GROUND PAD OUTSIDE OF BONDING REGION,” which claims priority under 35 U.S.C. §120 as a continuation-in part to pending U.S. patent application Ser. No. 14/209,909 filed on Mar. 13, 2014, entitled “DISK DRIVE HEAD SUSPENSION TAIL WITH STIFFENED EDGE ALIGNMENT FEATURES,” which claims priority to provisional U.S. Patent Application Ser. No. 61/914,315, entitled “DISK DRIVE HEAD SUSPENSION TAIL ALIGNMENT FEATURE,” filed on Dec. 10, 2013.
Number | Name | Date | Kind |
---|---|---|---|
4714435 | Stipanuk et al. | Dec 1987 | A |
5103356 | Fujiwara et al. | Apr 1992 | A |
5103359 | Marazzo | Apr 1992 | A |
5235482 | Schmitz | Aug 1993 | A |
5348488 | Green et al. | Sep 1994 | A |
5415555 | Sobhani | May 1995 | A |
5422764 | McIlvanie | Jun 1995 | A |
5465186 | Bajorek et al. | Nov 1995 | A |
5612841 | Johnson | Mar 1997 | A |
5631786 | Erpelding | May 1997 | A |
5668684 | Palmer et al. | Sep 1997 | A |
5827084 | Biernath | Oct 1998 | A |
5861661 | Tang et al. | Jan 1999 | A |
5903056 | Canning et al. | May 1999 | A |
5903413 | Brooks, Jr. et al. | May 1999 | A |
5920465 | Tanaka | Jul 1999 | A |
5947750 | Alcoe et al. | Sep 1999 | A |
6007669 | Crumly et al. | Dec 1999 | A |
6036813 | Schulz et al. | Mar 2000 | A |
6046889 | Berding et al. | Apr 2000 | A |
6052890 | Malagrino, Jr. et al. | Apr 2000 | A |
6061206 | Foisy et al. | May 2000 | A |
6076256 | Drake et al. | Jun 2000 | A |
6101876 | Brooks et al. | Aug 2000 | A |
6134770 | Heeren et al. | Oct 2000 | A |
6145188 | Brooks, Jr. et al. | Nov 2000 | A |
6147831 | Kennedy et al. | Nov 2000 | A |
6151189 | Brooks | Nov 2000 | A |
6151197 | Larson et al. | Nov 2000 | A |
6185067 | Chamberlain | Feb 2001 | B1 |
6185074 | Wang et al. | Feb 2001 | B1 |
6185075 | Tsujino et al. | Feb 2001 | B1 |
6208486 | Gustafson et al. | Mar 2001 | B1 |
6212046 | Albrecht et al. | Apr 2001 | B1 |
6215616 | Phan et al. | Apr 2001 | B1 |
6228689 | Liu | May 2001 | B1 |
6272694 | Weaver et al. | Aug 2001 | B1 |
6288866 | Butler et al. | Sep 2001 | B1 |
6292333 | Blumentritt et al. | Sep 2001 | B1 |
6344950 | Watson et al. | Feb 2002 | B1 |
6349464 | Codilian et al. | Feb 2002 | B1 |
6351352 | Khan et al. | Feb 2002 | B1 |
6360426 | Summers et al. | Mar 2002 | B1 |
6367144 | Holaway et al. | Apr 2002 | B1 |
6381099 | Mei | Apr 2002 | B1 |
6382499 | Satoh et al. | May 2002 | B1 |
6386434 | Wong | May 2002 | B1 |
6388873 | Brooks et al. | May 2002 | B1 |
6399889 | Korkowski et al. | Jun 2002 | B1 |
6417979 | Patton, III et al. | Jul 2002 | B1 |
6421208 | Oveyssi | Jul 2002 | B1 |
6441998 | Abrahamson | Aug 2002 | B1 |
6462914 | Oveyssi et al. | Oct 2002 | B1 |
6466398 | Butler et al. | Oct 2002 | B1 |
6469871 | Wang | Oct 2002 | B1 |
6502300 | Casey et al. | Jan 2003 | B1 |
6519116 | Lin et al. | Feb 2003 | B1 |
6529345 | Butler et al. | Mar 2003 | B1 |
6529350 | Itoh | Mar 2003 | B1 |
6529351 | Oveyssi et al. | Mar 2003 | B1 |
6535358 | Hauert et al. | Mar 2003 | B1 |
6545382 | Bennett | Apr 2003 | B1 |
6549381 | Watson | Apr 2003 | B1 |
6560065 | Yang et al. | May 2003 | B1 |
6571460 | Casey et al. | Jun 2003 | B1 |
6574073 | Hauert et al. | Jun 2003 | B1 |
6580574 | Codilian | Jun 2003 | B1 |
6594111 | Oveyssi et al. | Jul 2003 | B1 |
6603620 | Berding | Aug 2003 | B1 |
6614623 | Nakamura et al. | Sep 2003 | B2 |
6618222 | Watkins et al. | Sep 2003 | B1 |
6624966 | Gustafson et al. | Sep 2003 | B1 |
6624980 | Watson et al. | Sep 2003 | B1 |
6624983 | Berding | Sep 2003 | B1 |
6628473 | Codilian et al. | Sep 2003 | B1 |
6634086 | Korkowski et al. | Oct 2003 | B2 |
6639757 | Morley et al. | Oct 2003 | B2 |
6654200 | Alexander et al. | Nov 2003 | B1 |
6656772 | Huang | Dec 2003 | B2 |
6657811 | Codilian | Dec 2003 | B1 |
6661597 | Codilian et al. | Dec 2003 | B1 |
6661603 | Watkins et al. | Dec 2003 | B1 |
6672879 | Neidich et al. | Jan 2004 | B2 |
6674600 | Codilian et al. | Jan 2004 | B1 |
6690637 | Codilian | Feb 2004 | B1 |
6693767 | Butler | Feb 2004 | B1 |
6693773 | Sassine | Feb 2004 | B1 |
6697217 | Codilian | Feb 2004 | B1 |
6698286 | Little et al. | Mar 2004 | B1 |
6700736 | Wu et al. | Mar 2004 | B1 |
6703556 | Darveniza | Mar 2004 | B2 |
6703566 | Shiraishi et al. | Mar 2004 | B1 |
6704167 | Scura et al. | Mar 2004 | B1 |
6707637 | Codilian et al. | Mar 2004 | B1 |
6707641 | Oveyssi et al. | Mar 2004 | B1 |
6708389 | Carlson et al. | Mar 2004 | B1 |
6710980 | Hauert et al. | Mar 2004 | B1 |
6710981 | Oveyssi et al. | Mar 2004 | B1 |
6728062 | Ou-Yang et al. | Apr 2004 | B1 |
6728063 | Gustafson et al. | Apr 2004 | B1 |
6731470 | Oveyssi | May 2004 | B1 |
6735033 | Codilian et al. | May 2004 | B1 |
6741426 | Girard | May 2004 | B2 |
6741428 | Oveyssi | May 2004 | B1 |
6751051 | Garbarino | Jun 2004 | B1 |
6754042 | Chiou et al. | Jun 2004 | B1 |
6757132 | Watson et al. | Jun 2004 | B1 |
6757136 | Buske et al. | Jun 2004 | B2 |
6757137 | Mei | Jun 2004 | B1 |
6758686 | Burdick | Jul 2004 | B2 |
6759784 | Gustafson et al. | Jul 2004 | B1 |
6765763 | SeeToh et al. | Jul 2004 | B2 |
6781780 | Codilian | Aug 2004 | B1 |
6781787 | Codilian et al. | Aug 2004 | B1 |
6781791 | Griffin et al. | Aug 2004 | B1 |
6790066 | Klein | Sep 2004 | B1 |
6791791 | Alfred et al. | Sep 2004 | B1 |
6791801 | Oveyssi | Sep 2004 | B1 |
6795262 | Codilian et al. | Sep 2004 | B1 |
6798603 | Singh et al. | Sep 2004 | B1 |
6801389 | Berding et al. | Oct 2004 | B1 |
6801404 | Oveyssi | Oct 2004 | B1 |
6816342 | Oveyssi | Nov 2004 | B1 |
6816343 | Oveyssi | Nov 2004 | B1 |
6825622 | Ryan et al. | Nov 2004 | B1 |
6826009 | Scura et al. | Nov 2004 | B1 |
6831810 | Butler et al. | Dec 2004 | B1 |
6839199 | Alexander, Jr. et al. | Jan 2005 | B1 |
6844996 | Berding et al. | Jan 2005 | B1 |
6847504 | Bennett et al. | Jan 2005 | B1 |
6847506 | Lin et al. | Jan 2005 | B1 |
6856491 | Oveyssi | Feb 2005 | B1 |
6856492 | Oveyssi | Feb 2005 | B2 |
6862154 | Subrahmanyam et al. | Mar 2005 | B1 |
6862156 | Lin et al. | Mar 2005 | B1 |
6862176 | Codilian et al. | Mar 2005 | B1 |
6865049 | Codilian et al. | Mar 2005 | B1 |
6865055 | Ou-Yang et al. | Mar 2005 | B1 |
6867946 | Berding et al. | Mar 2005 | B1 |
6867950 | Lin | Mar 2005 | B1 |
6876514 | Little | Apr 2005 | B1 |
6879466 | Oveyssi et al. | Apr 2005 | B1 |
6888697 | Oveyssi | May 2005 | B1 |
6888698 | Berding et al. | May 2005 | B1 |
6891696 | Ou-Yang et al. | May 2005 | B1 |
6898052 | Oveyssi | May 2005 | B1 |
6900961 | Butler | May 2005 | B1 |
6906880 | Codilian | Jun 2005 | B1 |
6906897 | Oveyssi | Jun 2005 | B1 |
6908330 | Garrett et al. | Jun 2005 | B2 |
6922308 | Butler | Jul 2005 | B1 |
6930848 | Codilian et al. | Aug 2005 | B1 |
6930857 | Lin et al. | Aug 2005 | B1 |
6934126 | Berding et al. | Aug 2005 | B1 |
6937441 | Okamoto et al. | Aug 2005 | B2 |
6937444 | Oveyssi | Aug 2005 | B1 |
6940698 | Lin et al. | Sep 2005 | B2 |
6941642 | Subrahmanyam et al. | Sep 2005 | B1 |
6947251 | Oveyssi et al. | Sep 2005 | B1 |
6950275 | Ali et al. | Sep 2005 | B1 |
6950284 | Lin | Sep 2005 | B1 |
6952318 | Ngo | Oct 2005 | B1 |
6954329 | Ojeda et al. | Oct 2005 | B1 |
6958884 | Ojeda et al. | Oct 2005 | B1 |
6958890 | Lin et al. | Oct 2005 | B1 |
6961212 | Gustafson et al. | Nov 2005 | B1 |
6961218 | Lin et al. | Nov 2005 | B1 |
6963469 | Gustafson et al. | Nov 2005 | B1 |
6965500 | Hanna et al. | Nov 2005 | B1 |
6967800 | Chen et al. | Nov 2005 | B1 |
6967804 | Codilian | Nov 2005 | B1 |
6967820 | Horie et al. | Nov 2005 | B2 |
6970329 | Oveyssi et al. | Nov 2005 | B1 |
6972924 | Chen et al. | Dec 2005 | B1 |
6972926 | Codilian | Dec 2005 | B1 |
6975476 | Berding | Dec 2005 | B1 |
6979931 | Gustafson et al. | Dec 2005 | B1 |
6980391 | Haro | Dec 2005 | B1 |
6980401 | Narayanan et al. | Dec 2005 | B1 |
6982853 | Oveyssi et al. | Jan 2006 | B1 |
6989953 | Codilian | Jan 2006 | B1 |
6990727 | Butler et al. | Jan 2006 | B1 |
6992862 | Childers et al. | Jan 2006 | B2 |
6996893 | Ostrander et al. | Feb 2006 | B1 |
7000309 | Klassen et al. | Feb 2006 | B1 |
7006324 | Oveyssi et al. | Feb 2006 | B1 |
7013731 | Szeremeta et al. | Mar 2006 | B1 |
7031104 | Butt et al. | Apr 2006 | B1 |
7035050 | Kulangara | Apr 2006 | B1 |
7035053 | Oveyssi et al. | Apr 2006 | B1 |
7050270 | Oveyssi et al. | May 2006 | B1 |
7057852 | Butler et al. | Jun 2006 | B1 |
7059868 | Yan | Jun 2006 | B1 |
7062837 | Butler | Jun 2006 | B1 |
7064921 | Yang et al. | Jun 2006 | B1 |
7064922 | Alfred et al. | Jun 2006 | B1 |
7064932 | Lin et al. | Jun 2006 | B1 |
7075701 | Novotny et al. | Jul 2006 | B2 |
7085098 | Yang et al. | Aug 2006 | B1 |
7085108 | Oveyssi et al. | Aug 2006 | B1 |
7092216 | Chang et al. | Aug 2006 | B1 |
7092251 | Henry | Aug 2006 | B1 |
7099099 | Codilian et al. | Aug 2006 | B1 |
7099117 | Subrahmanyam et al. | Aug 2006 | B1 |
7110222 | Erpelding | Sep 2006 | B2 |
7113371 | Hanna et al. | Sep 2006 | B1 |
7142397 | Venk | Nov 2006 | B1 |
7145753 | Chang et al. | Dec 2006 | B1 |
7154708 | Chhabra et al. | Dec 2006 | B2 |
RE39478 | Hatch et al. | Jan 2007 | E |
7161768 | Oveyssi | Jan 2007 | B1 |
7161769 | Chang et al. | Jan 2007 | B1 |
7180711 | Chang et al. | Feb 2007 | B1 |
7193819 | Chen et al. | Mar 2007 | B1 |
7205484 | Shiraishi et al. | Apr 2007 | B2 |
7209317 | Berding et al. | Apr 2007 | B1 |
7209319 | Watkins et al. | Apr 2007 | B1 |
D542289 | Diebel | May 2007 | S |
7212377 | Ou-Yang et al. | May 2007 | B1 |
7215513 | Chang et al. | May 2007 | B1 |
7215514 | Yang et al. | May 2007 | B1 |
7224551 | Ou-Yang et al. | May 2007 | B1 |
D543981 | Diebel | Jun 2007 | S |
7227725 | Chang et al. | Jun 2007 | B1 |
7239475 | Lin et al. | Jul 2007 | B1 |
7245458 | Zhang et al. | Jul 2007 | B2 |
7271978 | Santini et al. | Sep 2007 | B1 |
7274534 | Choy et al. | Sep 2007 | B1 |
7280311 | Ou-Yang et al. | Oct 2007 | B1 |
7280317 | Little et al. | Oct 2007 | B1 |
7280319 | McNab | Oct 2007 | B1 |
7292406 | Huang | Nov 2007 | B1 |
7298584 | Yamada et al. | Nov 2007 | B1 |
7298593 | Yao et al. | Nov 2007 | B2 |
7327537 | Oveyssi | Feb 2008 | B1 |
7339268 | Ho et al. | Mar 2008 | B1 |
7342746 | Lin | Mar 2008 | B1 |
7344060 | Koh | Mar 2008 | B2 |
RE40203 | Hatch et al. | Apr 2008 | E |
7353524 | Lin et al. | Apr 2008 | B1 |
7359154 | Yao et al. | Apr 2008 | B2 |
7369368 | Mohajerani | May 2008 | B1 |
7372669 | Deguchi et al. | May 2008 | B2 |
7372670 | Oveyssi | May 2008 | B1 |
7375874 | Novotny et al. | May 2008 | B1 |
7375929 | Chang et al. | May 2008 | B1 |
7379266 | Ou-Yang et al. | May 2008 | B1 |
7381904 | Codilian | Jun 2008 | B1 |
7385784 | Berding et al. | Jun 2008 | B1 |
7388731 | Little et al. | Jun 2008 | B1 |
7388733 | Swanson et al. | Jun 2008 | B2 |
7391594 | Fu et al. | Jun 2008 | B2 |
7394139 | Park et al. | Jul 2008 | B2 |
7414814 | Pan | Aug 2008 | B1 |
7420771 | Hanke et al. | Sep 2008 | B1 |
7434987 | Gustafson et al. | Oct 2008 | B1 |
7436625 | Chiou et al. | Oct 2008 | B1 |
7440234 | Cheng et al. | Oct 2008 | B1 |
7440236 | Bennin et al. | Oct 2008 | B1 |
7450346 | Arya et al. | Nov 2008 | B2 |
7477488 | Zhang et al. | Jan 2009 | B1 |
7477489 | Chen et al. | Jan 2009 | B1 |
7482800 | Ooyabu et al. | Jan 2009 | B2 |
7484291 | Ostrander et al. | Feb 2009 | B1 |
7505231 | Golgolab et al. | Mar 2009 | B1 |
7515240 | Lu et al. | Apr 2009 | B2 |
7518830 | Panchal et al. | Apr 2009 | B1 |
7522382 | Pan | Apr 2009 | B1 |
7525767 | Erpelding | Apr 2009 | B2 |
7525769 | Yao et al. | Apr 2009 | B2 |
7529064 | Huang et al. | May 2009 | B1 |
7538981 | Pan | May 2009 | B1 |
7561374 | Codilian et al. | Jul 2009 | B1 |
7567410 | Zhang et al. | Jul 2009 | B1 |
7576955 | Yang et al. | Aug 2009 | B1 |
7593181 | Tsay et al. | Sep 2009 | B1 |
7605999 | Kung et al. | Oct 2009 | B1 |
7609486 | Little | Oct 2009 | B1 |
7610672 | Liebman | Nov 2009 | B1 |
7616408 | Choi et al. | Nov 2009 | B2 |
7633721 | Little et al. | Dec 2009 | B1 |
7633722 | Larson et al. | Dec 2009 | B1 |
7652890 | Ohsawa et al. | Jan 2010 | B2 |
7656609 | Berding et al. | Feb 2010 | B1 |
7660075 | Lin et al. | Feb 2010 | B1 |
7672083 | Yu et al. | Mar 2010 | B1 |
7684155 | Huang et al. | Mar 2010 | B1 |
7686555 | Larson et al. | Mar 2010 | B1 |
7697102 | Hirakata et al. | Apr 2010 | B2 |
7709078 | Sevier et al. | May 2010 | B1 |
7715149 | Liebman et al. | May 2010 | B1 |
7729091 | Huang et al. | Jun 2010 | B1 |
7751145 | Lin et al. | Jul 2010 | B1 |
7760470 | Wu et al. | Jul 2010 | B2 |
7764467 | Hanya et al. | Jul 2010 | B2 |
7819980 | Hsia et al. | Oct 2010 | B2 |
7826177 | Zhang et al. | Nov 2010 | B1 |
7852601 | Little | Dec 2010 | B1 |
7864488 | Pan | Jan 2011 | B1 |
7876664 | Tsukagoshi et al. | Jan 2011 | B2 |
7898770 | Zhang et al. | Mar 2011 | B1 |
7903369 | Codilian et al. | Mar 2011 | B1 |
7907369 | Pan | Mar 2011 | B1 |
7911742 | Chang et al. | Mar 2011 | B1 |
7926167 | Liebman et al. | Apr 2011 | B1 |
7957095 | Tsay et al. | Jun 2011 | B1 |
7957102 | Watson et al. | Jun 2011 | B1 |
7961436 | Huang et al. | Jun 2011 | B1 |
8004782 | Nojaba et al. | Aug 2011 | B1 |
8009384 | Little | Aug 2011 | B1 |
8015692 | Zhang et al. | Sep 2011 | B1 |
8018687 | Little et al. | Sep 2011 | B1 |
8030576 | Kamei et al. | Oct 2011 | B2 |
8031431 | Berding et al. | Oct 2011 | B1 |
8064168 | Zhang et al. | Nov 2011 | B1 |
8064170 | Pan | Nov 2011 | B1 |
8068314 | Pan et al. | Nov 2011 | B1 |
8081401 | Huang et al. | Dec 2011 | B1 |
8100017 | Blick et al. | Jan 2012 | B1 |
8111483 | Arai | Feb 2012 | B2 |
8116038 | Zhang et al. | Feb 2012 | B1 |
8125740 | Yang et al. | Feb 2012 | B1 |
8142671 | Pan | Mar 2012 | B1 |
8156633 | Foisy | Apr 2012 | B1 |
8159785 | Lee et al. | Apr 2012 | B1 |
8169746 | Rice et al. | May 2012 | B1 |
8189298 | Lee et al. | May 2012 | B1 |
8194348 | Jacoby et al. | Jun 2012 | B2 |
8194354 | Zhang et al. | Jun 2012 | B1 |
8194355 | Pan et al. | Jun 2012 | B1 |
8203806 | Larson et al. | Jun 2012 | B2 |
8223453 | Norton et al. | Jul 2012 | B1 |
8228631 | Tsay et al. | Jul 2012 | B1 |
8233239 | Teo et al. | Jul 2012 | B1 |
8248733 | Radavicius et al. | Aug 2012 | B1 |
8259417 | Ho et al. | Sep 2012 | B1 |
8274760 | Zhang et al. | Sep 2012 | B1 |
8276256 | Zhang et al. | Oct 2012 | B1 |
8279560 | Pan | Oct 2012 | B1 |
8284514 | Garbarino | Oct 2012 | B1 |
8289646 | Heo et al. | Oct 2012 | B1 |
8295013 | Pan et al. | Oct 2012 | B1 |
8295014 | Teo et al. | Oct 2012 | B1 |
8300352 | Larson et al. | Oct 2012 | B1 |
8305708 | Tacklind | Nov 2012 | B2 |
8320084 | Shum et al. | Nov 2012 | B1 |
8320086 | Moradnouri et al. | Nov 2012 | B1 |
8322021 | Berding et al. | Dec 2012 | B1 |
8325446 | Liu et al. | Dec 2012 | B1 |
8325447 | Pan | Dec 2012 | B1 |
8339748 | Shum et al. | Dec 2012 | B2 |
8345387 | Nguyen | Jan 2013 | B1 |
8363351 | Little | Jan 2013 | B1 |
8369044 | Howie et al. | Feb 2013 | B2 |
8411389 | Tian et al. | Apr 2013 | B1 |
8416522 | Schott et al. | Apr 2013 | B1 |
8416534 | Heo et al. | Apr 2013 | B1 |
8422171 | Guerini | Apr 2013 | B1 |
8422175 | Oveyssi | Apr 2013 | B1 |
8432641 | Nguyen | Apr 2013 | B1 |
8437101 | German et al. | May 2013 | B1 |
8438721 | Sill | May 2013 | B1 |
8446688 | Quines et al. | May 2013 | B1 |
8451559 | Berding et al. | May 2013 | B1 |
8467153 | Pan et al. | Jun 2013 | B1 |
8472131 | Ou-Yang et al. | Jun 2013 | B1 |
8477459 | Pan | Jul 2013 | B1 |
8477460 | Liebman | Jul 2013 | B1 |
8488270 | Brause et al. | Jul 2013 | B2 |
8488280 | Myers et al. | Jul 2013 | B1 |
8499652 | Tran et al. | Aug 2013 | B1 |
8514514 | Berding et al. | Aug 2013 | B1 |
8530032 | Sevier et al. | Sep 2013 | B1 |
8542465 | Liu et al. | Sep 2013 | B2 |
8547664 | Foisy et al. | Oct 2013 | B1 |
8553356 | Heo et al. | Oct 2013 | B1 |
8553366 | Hanke | Oct 2013 | B1 |
8553367 | Foisy et al. | Oct 2013 | B1 |
8564909 | Dunn et al. | Oct 2013 | B1 |
8611052 | Pan et al. | Dec 2013 | B1 |
8616900 | Lion | Dec 2013 | B1 |
8665555 | Young et al. | Mar 2014 | B1 |
8665566 | Pan et al. | Mar 2014 | B1 |
8667667 | Nguyen et al. | Mar 2014 | B1 |
8693139 | Tian et al. | Apr 2014 | B2 |
8693140 | Weiher et al. | Apr 2014 | B1 |
8699179 | Golgolab et al. | Apr 2014 | B1 |
8702998 | Guerini | Apr 2014 | B1 |
8705201 | Casey et al. | Apr 2014 | B2 |
8705209 | Seymour et al. | Apr 2014 | B2 |
8711521 | Feng et al. | Apr 2014 | B2 |
8717706 | German et al. | May 2014 | B1 |
8743509 | Heo et al. | Jun 2014 | B1 |
8755148 | Howie et al. | Jun 2014 | B1 |
8756776 | Chen et al. | Jun 2014 | B1 |
8760800 | Brown et al. | Jun 2014 | B1 |
8760812 | Chen et al. | Jun 2014 | B1 |
8760814 | Pan et al. | Jun 2014 | B1 |
8760816 | Myers et al. | Jun 2014 | B1 |
8773812 | Gustafson et al. | Jul 2014 | B1 |
8780491 | Perlas et al. | Jul 2014 | B1 |
8780504 | Teo et al. | Jul 2014 | B1 |
8792205 | Boye-Doe et al. | Jul 2014 | B1 |
8797677 | Heo et al. | Aug 2014 | B2 |
8797689 | Pan et al. | Aug 2014 | B1 |
8810972 | Dunn | Aug 2014 | B1 |
8824095 | Dougherty | Sep 2014 | B1 |
8824098 | Huang et al. | Sep 2014 | B1 |
8885299 | Bennin et al. | Nov 2014 | B1 |
8934199 | Pan | Jan 2015 | B1 |
8941952 | Pan et al. | Jan 2015 | B1 |
20010017749 | Stefansky | Aug 2001 | A1 |
20010021596 | Tamura | Sep 2001 | A1 |
20020186508 | Kube et al. | Dec 2002 | A1 |
20030128474 | Schulz et al. | Jul 2003 | A1 |
20030147177 | Yao et al. | Aug 2003 | A1 |
20040228039 | Wu et al. | Nov 2004 | A1 |
20050030670 | Ando et al. | Feb 2005 | A1 |
20050042894 | Wu et al. | Feb 2005 | A1 |
20050237672 | Kamigama et al. | Oct 2005 | A1 |
20050243472 | Kamigama et al. | Nov 2005 | A1 |
20050254175 | Swanson et al. | Nov 2005 | A1 |
20060098347 | Yao et al. | May 2006 | A1 |
20060146262 | Yu et al. | Jul 2006 | A1 |
20060157869 | Huang et al. | Jul 2006 | A1 |
20070075056 | Ho et al. | Apr 2007 | A1 |
20070153427 | Izumi et al. | Jul 2007 | A1 |
20070246251 | Shiraishi et al. | Oct 2007 | A1 |
20070279807 | Kobayashi et al. | Dec 2007 | A1 |
20080002303 | Wang et al. | Jan 2008 | A1 |
20080068757 | Kamigama et al. | Mar 2008 | A1 |
20080088975 | Bennin et al. | Apr 2008 | A1 |
20080225439 | Komura | Sep 2008 | A1 |
20080247131 | Hitomi et al. | Oct 2008 | A1 |
20090151994 | Ohsawa et al. | Jun 2009 | A1 |
20090207529 | Yao | Aug 2009 | A1 |
20090211789 | Yeates et al. | Aug 2009 | A1 |
20090253233 | Chang et al. | Oct 2009 | A1 |
20100007993 | Contreras et al. | Jan 2010 | A1 |
20100046351 | Mccaslin et al. | Feb 2010 | A1 |
20100118444 | Rothenberg et al. | May 2010 | A1 |
20100176827 | Yamazaki et al. | Jul 2010 | A1 |
20100188778 | Castagna | Jul 2010 | A1 |
20100195474 | Tsukuda et al. | Aug 2010 | A1 |
20100220414 | Klarqvist et al. | Sep 2010 | A1 |
20110212281 | Jacoby et al. | Sep 2011 | A1 |
20110317309 | Shum et al. | Dec 2011 | A1 |
20120067626 | Mizutani | Mar 2012 | A1 |
20130038964 | Garbarino et al. | Feb 2013 | A1 |
20130091698 | Banshak, Jr. et al. | Apr 2013 | A1 |
20130155546 | Heo et al. | Jun 2013 | A1 |
20130290988 | Watson et al. | Oct 2013 | A1 |
Entry |
---|
US 7,337,529, 8/2014, Bennin, et al. (withdrawn). |
Tzong-Shii Pan, et al., U.S. Appl. No. 12/195,288, filed Aug. 20, 2008, 16 pages. |
Office Action dated Jun. 12, 2015 from U.S. Appl. No. 14/322,616, 10 pages. |
Notice of Allowance dated Jun. 22, 2015 from U.S. Appl. No. 14/209,909, 10 pages. |
Office Action dated Feb. 25, 2015 from U.S. Appl. No. 14/209,909, 13 pages. |
Chinse Patent Application No. 201410752943X, filed Dec. 10, 2014. |
Non-Final Office Action dated Feb. 25, 2015 from U.S. Appl. No. 14/209,909, 13 pages. |
Non-Final Office Action dated Jun. 12, 2015 U.S. Appl. No. 14/322,616, 10 pages. |
Yih-Jen D. Chen, et al., U.S. Appl. No. 13/952,874, filed Jul. 29, 2013, 20 pages. |
Yih-Jen D. Chen, et al., U.S. Appl. No. 14/209,909, filed Mar. 13, 2014, 31 pages. |
Yih-Jen D. Chen, et al., U.S. Appl. No. 14/322,616, filed Jul. 2, 2014, 20 pages. |
Number | Date | Country | |
---|---|---|---|
61914315 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14322616 | Jul 2014 | US |
Child | 14670374 | US | |
Parent | 14209909 | Mar 2014 | US |
Child | 14322616 | US |