This application claims priority to provisional U.S. Patent Application Ser. No. 61/871,279, filed on Aug. 28, 2012, which is hereby incorporated by reference in its entirety.
A disk drive comprises a disk rotated by a spindle motor, and a head connected to a distal end of an actuator arm which is rotated about a pivot by a voice coil motor (VCM) to position the head radially over the disk. The disk comprises a number of concentric data tracks each partitioned into a number of data sectors. Access operations are performed by seeking the head to a target data track, and performing a write/read operation on the data sectors within the data track. The disk comprises embedded servo sectors having position information recorded therein, such as coarse position information (e.g., a track address) and fine position information (e.g., servo bursts). Control circuitry processes the read signal emanating from the head in order to demodulate the servo sectors into a control signal applied to the VCM in order to position the head over the target data track.
Physical shocks to the disk drive may cause the head to deviate from the target track and corrupt data recorded in an adjacent track during a write operation. Therefore, if a physical shock is detected using a suitable sensor (e.g., an accelerometer), the write operation is typically aborted and then retried. However, the system noise (electrical and/or mechanical) may excite a resonant frequency of the shock sensor which can trigger a false shock detection, thereby degrading the performance of the disk drive due to the unnecessary slipped disk revolutions.
In the embodiment of
In one embodiment, the control circuitry 6 may abort a write operation to the disk when a shock event is detected so as to avoid corrupting data in adjacent tracks due to an off-track write. An example shock event detector is illustrated in
In one embodiment, a hysteresis in the sensitivity of the first shock detector is implemented by employing a second shock detector having a higher sensitivity than the first shock detector. In the embodiment of
In one embodiment, the sensitivity of the first shock detector may vary between different levels so as to tune the sensitivity based on the average amplitude of the shock signal 38. That is, as the average amplitude of the shock signal 38 increases, for example, due to an increase in electrical and/or mechanical noise, the sensitivity of the first shock detector may be incrementally decreased so as to reduce the number of false shock events detected. In one embodiment, as the sensitivity of the first shock detector is incrementally decreased by a level (e.g., by increasing the first shock threshold 40), there is a corresponding incremental decrease in the sensitivity of the second shock detector (e.g., by increasing the second shock threshold 46). Similarly, when the number of shock events 50 detected by the second shock detector falls below the lower event threshold such that the sensitivity of the first shock detector is incrementally increased (e.g., by decreasing the first shock threshold 40), the sensitivity of the second shock detector is also incrementally increased (e.g., by decreasing the second shock threshold 46).
This embodiment is understood with reference to the flow diagram of
In one embodiment, the first shock detector detects the shock events 44 at a lower frequency than the second shock detector detects the shock events 50 since the second shock detector operates at a higher sensitivity than the first shock detector.
In one embodiment, the amplifier 36 shown in
In one embodiment, the filter 34 shown in
In one embodiment, the sensitivity of the first and second shock detectors shown in
In the embodiment shown in
In the embodiment of
In one embodiment, the disk drive may employ a suitable microactuator (e.g., a piezoelectric element) for actuating the head 4 in fine movements while the VCM 28 actuates the head in coarse movements. The microactuator may actuate the head 4 in any suitable manner, such as by actuating a suspension relative to the actuator arm 30, or actuating the head 4 relative to the suspension. In a disk drive employing multiple disk surfaces having a head actuated over each disk surface, the microactuator of the active head may be used to drive the active head during an access operation, whereas one or more microactuators of the inactive heads may be used to generate a shock signal processed by the first and/or second shock detectors.
Referring again to the embodiment of
In one embodiment, the sensitivity of the first and/or second shock detectors may be adjusted based on the length of the shock event interval. Referring again to
Any suitable control circuitry may be employed to implement the flow diagrams in the above embodiments, such as any suitable integrated circuit or circuits. For example, the control circuitry may be implemented within a read channel integrated circuit, or in a component separate from the read channel, such as a disk controller, or certain operations described above may be performed by a read channel and others by a disk controller. In one embodiment, the read channel and disk controller are implemented as separate integrated circuits, and in an alternative embodiment they are fabricated into a single integrated circuit or system on a chip (SOC). In addition, the control circuitry may include a suitable preamp circuit implemented as a separate integrated circuit, integrated into the read channel or disk controller circuit, or integrated into a SOC.
In one embodiment, the control circuitry comprises a microprocessor executing instructions, the instructions being operable to cause the microprocessor to perform the flow diagrams described herein. The instructions may be stored in any computer-readable medium. In one embodiment, they may be stored on a non-volatile semiconductor memory external to the microprocessor, or integrated with the microprocessor in a SOC. In another embodiment, the instructions are stored on the disk and read into a volatile semiconductor memory when the disk drive is powered on. In yet another embodiment, the control circuitry comprises suitable logic circuitry, such as state machine circuitry.
The various features and processes described above may be used independently of one another, or may be combined in various ways. All possible combinations and subcombinations are intended to fall within the scope of this disclosure. In addition, certain method, event or process blocks may be omitted in some implementations. The methods and processes described herein are also not limited to any particular sequence, and the blocks or states relating thereto can be performed in other sequences that are appropriate. For example, described tasks or events may be performed in an order other than that specifically disclosed, or multiple may be combined in a single block or state. The example tasks or events may be performed in serial, in parallel, or in some other manner. Tasks or events may be added to or removed from the disclosed example embodiments. The example systems and components described herein may be configured differently than described. For example, elements may be added to, removed from, or rearranged compared to the disclosed example embodiments.
While certain example embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions disclosed herein. Thus, nothing in the foregoing description is intended to imply that any particular feature, characteristic, step, module, or block is necessary or indispensable. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the embodiments disclosed herein.
Number | Name | Date | Kind |
---|---|---|---|
5663847 | Abramovitch | Sep 1997 | A |
6011415 | Hahn et al. | Jan 2000 | A |
6014283 | Codilian et al. | Jan 2000 | A |
6052076 | Patton, III et al. | Apr 2000 | A |
6052250 | Golowka et al. | Apr 2000 | A |
6067206 | Hull et al. | May 2000 | A |
6078453 | Dziallo et al. | Jun 2000 | A |
6091564 | Codilian et al. | Jul 2000 | A |
6094020 | Goretzki et al. | Jul 2000 | A |
6101065 | Alfred et al. | Aug 2000 | A |
6104153 | Codilian et al. | Aug 2000 | A |
6115200 | Allen et al. | Sep 2000 | A |
6122133 | Nazarian et al. | Sep 2000 | A |
6122135 | Stich | Sep 2000 | A |
6141175 | Nazarian et al. | Oct 2000 | A |
6160368 | Plutowski | Dec 2000 | A |
6181502 | Hussein et al. | Jan 2001 | B1 |
6195222 | Heminger et al. | Feb 2001 | B1 |
6198584 | Codilian et al. | Mar 2001 | B1 |
6198590 | Codilian et al. | Mar 2001 | B1 |
6204988 | Codilian et al. | Mar 2001 | B1 |
6215608 | Serrano et al. | Apr 2001 | B1 |
6243223 | Elliott et al. | Jun 2001 | B1 |
6281652 | Ryan et al. | Aug 2001 | B1 |
6285521 | Hussein | Sep 2001 | B1 |
6292320 | Mason et al. | Sep 2001 | B1 |
6310742 | Nazarian et al. | Oct 2001 | B1 |
6320718 | Bouwkamp et al. | Nov 2001 | B1 |
6342984 | Hussein et al. | Jan 2002 | B1 |
6347018 | Kadlec et al. | Feb 2002 | B1 |
6369972 | Codilian et al. | Apr 2002 | B1 |
6369974 | Asgari et al. | Apr 2002 | B1 |
6414813 | Cvancara | Jul 2002 | B2 |
6429990 | Serrano et al. | Aug 2002 | B2 |
6462896 | Codilian et al. | Oct 2002 | B1 |
6476996 | Ryan | Nov 2002 | B1 |
6484577 | Bennett | Nov 2002 | B1 |
6493169 | Ferris et al. | Dec 2002 | B1 |
6496320 | Liu | Dec 2002 | B1 |
6496324 | Golowka et al. | Dec 2002 | B1 |
6498698 | Golowka et al. | Dec 2002 | B1 |
6507450 | Elliott | Jan 2003 | B1 |
6534936 | Messenger et al. | Mar 2003 | B2 |
6538839 | Ryan | Mar 2003 | B1 |
6545835 | Codilian et al. | Apr 2003 | B1 |
6549359 | Bennett et al. | Apr 2003 | B1 |
6549361 | Bennett et al. | Apr 2003 | B1 |
6560056 | Ryan | May 2003 | B1 |
6568268 | Bennett | May 2003 | B1 |
6574062 | Bennett et al. | Jun 2003 | B1 |
6577465 | Bennett et al. | Jun 2003 | B1 |
6614615 | Ju et al. | Sep 2003 | B1 |
6614618 | Sheh et al. | Sep 2003 | B1 |
6636377 | Yu et al. | Oct 2003 | B1 |
6690536 | Ryan | Feb 2004 | B1 |
6693764 | Sheh et al. | Feb 2004 | B1 |
6707635 | Codilian et al. | Mar 2004 | B1 |
6710953 | Vallis et al. | Mar 2004 | B1 |
6710966 | Codilian et al. | Mar 2004 | B1 |
6714371 | Codilian | Mar 2004 | B1 |
6714372 | Codilian et al. | Mar 2004 | B1 |
6717757 | Levy et al. | Apr 2004 | B1 |
6724564 | Codilian et al. | Apr 2004 | B1 |
6731450 | Codilian et al. | May 2004 | B1 |
6735041 | Codilian et al. | May 2004 | B1 |
6738220 | Codilian | May 2004 | B1 |
6747837 | Bennett | Jun 2004 | B1 |
6760186 | Codilian et al. | Jul 2004 | B1 |
6788483 | Ferris et al. | Sep 2004 | B1 |
6791785 | Messenger et al. | Sep 2004 | B1 |
6795262 | Codilian et al. | Sep 2004 | B1 |
6795268 | Ryan | Sep 2004 | B1 |
6819518 | Melkote et al. | Nov 2004 | B1 |
6826006 | Melkote et al. | Nov 2004 | B1 |
6826007 | Patton, III | Nov 2004 | B1 |
6847502 | Codilian | Jan 2005 | B1 |
6850383 | Bennett | Feb 2005 | B1 |
6850384 | Bennett | Feb 2005 | B1 |
6867944 | Ryan | Mar 2005 | B1 |
6876508 | Patton, III et al. | Apr 2005 | B1 |
6882496 | Codilian et al. | Apr 2005 | B1 |
6885514 | Codilian et al. | Apr 2005 | B1 |
6900958 | Yi et al. | May 2005 | B1 |
6900959 | Gardner et al. | May 2005 | B1 |
6903897 | Wang et al. | Jun 2005 | B1 |
6914740 | Tu et al. | Jul 2005 | B1 |
6914743 | Narayana et al. | Jul 2005 | B1 |
6920004 | Codilian et al. | Jul 2005 | B1 |
6924959 | Melkote et al. | Aug 2005 | B1 |
6924960 | Melkote et al. | Aug 2005 | B1 |
6924961 | Melkote et al. | Aug 2005 | B1 |
6934114 | Codilian et al. | Aug 2005 | B1 |
6934135 | Ryan | Aug 2005 | B1 |
6937420 | McNab et al. | Aug 2005 | B1 |
6937423 | Ngo et al. | Aug 2005 | B1 |
6952322 | Codilian et al. | Oct 2005 | B1 |
6954324 | Tu et al. | Oct 2005 | B1 |
6958881 | Codilian et al. | Oct 2005 | B1 |
6958882 | Kisaka | Oct 2005 | B2 |
6963465 | Melkote et al. | Nov 2005 | B1 |
6965488 | Bennett | Nov 2005 | B1 |
6967458 | Bennett et al. | Nov 2005 | B1 |
6967811 | Codilian et al. | Nov 2005 | B1 |
6970319 | Bennett et al. | Nov 2005 | B1 |
6972539 | Codilian et al. | Dec 2005 | B1 |
6972540 | Wang et al. | Dec 2005 | B1 |
6972922 | Subrahmanyam et al. | Dec 2005 | B1 |
6975480 | Codilian et al. | Dec 2005 | B1 |
6977789 | Cloke | Dec 2005 | B1 |
6980389 | Kupferman | Dec 2005 | B1 |
6987636 | Chue et al. | Jan 2006 | B1 |
6987639 | Yu | Jan 2006 | B1 |
6989954 | Lee et al. | Jan 2006 | B1 |
6992848 | Agarwal et al. | Jan 2006 | B1 |
6992851 | Cloke | Jan 2006 | B1 |
6992852 | Ying et al. | Jan 2006 | B1 |
6995941 | Miyamura et al. | Feb 2006 | B1 |
6999263 | Melkote et al. | Feb 2006 | B1 |
6999267 | Melkote et al. | Feb 2006 | B1 |
7006320 | Bennett et al. | Feb 2006 | B1 |
7016134 | Agarwal et al. | Mar 2006 | B1 |
7023637 | Kupferman | Apr 2006 | B1 |
7023640 | Codilian et al. | Apr 2006 | B1 |
7027256 | Subrahmanyam et al. | Apr 2006 | B1 |
7027257 | Kupferman | Apr 2006 | B1 |
7035026 | Codilian et al. | Apr 2006 | B2 |
7046472 | Melkote et al. | May 2006 | B1 |
7050249 | Chue et al. | May 2006 | B1 |
7050254 | Yu et al. | May 2006 | B1 |
7050258 | Codilian | May 2006 | B1 |
7054098 | Yu et al. | May 2006 | B1 |
7061714 | Yu | Jun 2006 | B1 |
7064918 | Codilian et al. | Jun 2006 | B1 |
7068451 | Wang et al. | Jun 2006 | B1 |
7068459 | Cloke et al. | Jun 2006 | B1 |
7068461 | Chue et al. | Jun 2006 | B1 |
7068463 | Ji et al. | Jun 2006 | B1 |
7088547 | Wang et al. | Aug 2006 | B1 |
7095579 | Ryan et al. | Aug 2006 | B1 |
7110208 | Miyamura et al. | Sep 2006 | B1 |
7110214 | Tu et al. | Sep 2006 | B1 |
7113362 | Lee et al. | Sep 2006 | B1 |
7113365 | Ryan et al. | Sep 2006 | B1 |
7116505 | Kupferman | Oct 2006 | B1 |
7126781 | Bennett | Oct 2006 | B1 |
7154690 | Brunnett et al. | Dec 2006 | B1 |
7158329 | Ryan | Jan 2007 | B1 |
7177106 | Inaji et al. | Feb 2007 | B2 |
7180703 | Subrahmanyam et al. | Feb 2007 | B1 |
7184230 | Chue et al. | Feb 2007 | B1 |
7196864 | Yi et al. | Mar 2007 | B1 |
7199966 | Tu et al. | Apr 2007 | B1 |
7203021 | Ryan et al. | Apr 2007 | B1 |
7209321 | Bennett | Apr 2007 | B1 |
7212364 | Lee | May 2007 | B1 |
7212374 | Wang et al. | May 2007 | B1 |
7215504 | Bennett | May 2007 | B1 |
7224546 | Orakcilar et al. | May 2007 | B1 |
7248426 | Weerasooriya et al. | Jul 2007 | B1 |
7251098 | Wang et al. | Jul 2007 | B1 |
7253582 | Ding et al. | Aug 2007 | B1 |
7253982 | Brunnett et al. | Aug 2007 | B1 |
7253989 | Lau et al. | Aug 2007 | B1 |
7265933 | Phan et al. | Sep 2007 | B1 |
7289288 | Tu | Oct 2007 | B1 |
7298574 | Melkote et al. | Nov 2007 | B1 |
7301717 | Lee et al. | Nov 2007 | B1 |
7304819 | Melkote et al. | Dec 2007 | B1 |
7330019 | Bennett | Feb 2008 | B1 |
7330327 | Chue et al. | Feb 2008 | B1 |
7333280 | Lifchits et al. | Feb 2008 | B1 |
7333282 | Iseri et al. | Feb 2008 | B2 |
7333290 | Kupferman | Feb 2008 | B1 |
7339761 | Tu et al. | Mar 2008 | B1 |
7345841 | Baugh et al. | Mar 2008 | B2 |
7365932 | Bennett | Apr 2008 | B1 |
7388728 | Chen et al. | Jun 2008 | B1 |
7391583 | Sheh et al. | Jun 2008 | B1 |
7391584 | Sheh et al. | Jun 2008 | B1 |
7433143 | Ying et al. | Oct 2008 | B1 |
7440210 | Lee | Oct 2008 | B1 |
7440225 | Chen et al. | Oct 2008 | B1 |
7450334 | Wang et al. | Nov 2008 | B1 |
7450336 | Wang et al. | Nov 2008 | B1 |
7453661 | Jang et al. | Nov 2008 | B1 |
7457071 | Sheh | Nov 2008 | B1 |
7466509 | Chen et al. | Dec 2008 | B1 |
7468855 | Weerasooriya et al. | Dec 2008 | B1 |
7471483 | Ferris et al. | Dec 2008 | B1 |
7474491 | Liikanen et al. | Jan 2009 | B2 |
7477471 | Nemshick et al. | Jan 2009 | B1 |
7480116 | Bennett | Jan 2009 | B1 |
7489464 | McNab et al. | Feb 2009 | B1 |
7492546 | Miyamura | Feb 2009 | B1 |
7495857 | Bennett | Feb 2009 | B1 |
7499236 | Lee et al. | Mar 2009 | B1 |
7502192 | Wang et al. | Mar 2009 | B1 |
7502195 | Wu et al. | Mar 2009 | B1 |
7502197 | Chue | Mar 2009 | B1 |
7505223 | McCornack | Mar 2009 | B1 |
7542225 | Ding et al. | Jun 2009 | B1 |
7545593 | Sun et al. | Jun 2009 | B1 |
7548392 | Desai et al. | Jun 2009 | B1 |
7551390 | Wang et al. | Jun 2009 | B1 |
7558016 | Le et al. | Jul 2009 | B1 |
7573670 | Ryan et al. | Aug 2009 | B1 |
7576941 | Chen et al. | Aug 2009 | B1 |
7580212 | Li et al. | Aug 2009 | B1 |
7583470 | Chen et al. | Sep 2009 | B1 |
7595954 | Chen et al. | Sep 2009 | B1 |
7602575 | Lifchits et al. | Oct 2009 | B1 |
7616399 | Chen et al. | Nov 2009 | B1 |
7619844 | Bennett | Nov 2009 | B1 |
7626782 | Yu et al. | Dec 2009 | B1 |
7630162 | Zhao et al. | Dec 2009 | B2 |
7633698 | Finamore et al. | Dec 2009 | B2 |
7639447 | Yu et al. | Dec 2009 | B1 |
7656604 | Liang et al. | Feb 2010 | B1 |
7656607 | Bennett | Feb 2010 | B1 |
7660067 | Ji et al. | Feb 2010 | B1 |
7663835 | Yu et al. | Feb 2010 | B1 |
7675707 | Liu et al. | Mar 2010 | B1 |
7679854 | Narayana et al. | Mar 2010 | B1 |
7688534 | McCornack | Mar 2010 | B1 |
7688538 | Chen et al. | Mar 2010 | B1 |
7688539 | Bryant et al. | Mar 2010 | B1 |
7697233 | Bennett et al. | Apr 2010 | B1 |
7701661 | Bennett | Apr 2010 | B1 |
7710676 | Chue | May 2010 | B1 |
7715138 | Kupferman | May 2010 | B1 |
7729079 | Huber | Jun 2010 | B1 |
7733189 | Bennett | Jun 2010 | B1 |
7746592 | Liang et al. | Jun 2010 | B1 |
7746594 | Guo et al. | Jun 2010 | B1 |
7746595 | Guo et al. | Jun 2010 | B1 |
7760461 | Bennett | Jul 2010 | B1 |
7800853 | Guo et al. | Sep 2010 | B1 |
7800856 | Bennett et al. | Sep 2010 | B1 |
7800857 | Calaway et al. | Sep 2010 | B1 |
7826163 | Harmer et al. | Nov 2010 | B2 |
7839591 | Weerasooriya et al. | Nov 2010 | B1 |
7839595 | Chue et al. | Nov 2010 | B1 |
7839600 | Babinski et al. | Nov 2010 | B1 |
7843662 | Weerasooriya et al. | Nov 2010 | B1 |
7852588 | Ferris et al. | Dec 2010 | B1 |
7852592 | Liang et al. | Dec 2010 | B1 |
7864481 | Kon et al. | Jan 2011 | B1 |
7864482 | Babinski et al. | Jan 2011 | B1 |
7869155 | Wong | Jan 2011 | B1 |
7876522 | Calaway et al. | Jan 2011 | B1 |
7876523 | Panyavoravaj et al. | Jan 2011 | B1 |
7916415 | Chue | Mar 2011 | B1 |
7916416 | Guo et al. | Mar 2011 | B1 |
7916420 | McFadyen et al. | Mar 2011 | B1 |
7916422 | Guo et al. | Mar 2011 | B1 |
7929238 | Vasquez | Apr 2011 | B1 |
7961422 | Chen et al. | Jun 2011 | B1 |
8000053 | Anderson | Aug 2011 | B1 |
8031423 | Tsai et al. | Oct 2011 | B1 |
8054022 | Ryan et al. | Nov 2011 | B1 |
8059357 | Knigge et al. | Nov 2011 | B1 |
8059360 | Melkote et al. | Nov 2011 | B1 |
8072703 | Calaway et al. | Dec 2011 | B1 |
8077428 | Chen et al. | Dec 2011 | B1 |
8078901 | Meyer et al. | Dec 2011 | B1 |
8081395 | Ferris | Dec 2011 | B1 |
8085020 | Bennett | Dec 2011 | B1 |
8116023 | Kupferman | Feb 2012 | B1 |
8145934 | Ferris et al. | Mar 2012 | B1 |
8179626 | Ryan et al. | May 2012 | B1 |
8189286 | Chen et al. | May 2012 | B1 |
8213106 | Guo et al. | Jul 2012 | B1 |
8254222 | Tang | Aug 2012 | B1 |
8300348 | Liu et al. | Oct 2012 | B1 |
8315005 | Zou et al. | Nov 2012 | B1 |
8320069 | Knigge et al. | Nov 2012 | B1 |
8351174 | Gardner et al. | Jan 2013 | B1 |
8358114 | Ferris et al. | Jan 2013 | B1 |
8358145 | Ferris et al. | Jan 2013 | B1 |
8375767 | Zadesky et al. | Feb 2013 | B2 |
8390367 | Bennett | Mar 2013 | B1 |
8432031 | Agness et al. | Apr 2013 | B1 |
8432629 | Rigney et al. | Apr 2013 | B1 |
8451697 | Rigney et al. | May 2013 | B1 |
8482873 | Chue et al. | Jul 2013 | B1 |
8498076 | Sheh et al. | Jul 2013 | B1 |
8498172 | Patton, III et al. | Jul 2013 | B1 |
8508881 | Babinski et al. | Aug 2013 | B1 |
8531798 | Xi et al. | Sep 2013 | B1 |
8537486 | Liang et al. | Sep 2013 | B2 |
8542455 | Huang et al. | Sep 2013 | B2 |
8553351 | Narayana et al. | Oct 2013 | B1 |
8564899 | Lou et al. | Oct 2013 | B2 |
8576506 | Wang et al. | Nov 2013 | B1 |
8605382 | Mallary et al. | Dec 2013 | B1 |
8605384 | Liu et al. | Dec 2013 | B1 |
8610391 | Yang et al. | Dec 2013 | B1 |
8611040 | Xi et al. | Dec 2013 | B1 |
8619385 | Guo et al. | Dec 2013 | B1 |
8630054 | Bennett et al. | Jan 2014 | B2 |
8630059 | Chen et al. | Jan 2014 | B1 |
8634154 | Rigney et al. | Jan 2014 | B1 |
8634283 | Rigney et al. | Jan 2014 | B1 |
8643976 | Wang et al. | Feb 2014 | B1 |
8649121 | Smith et al. | Feb 2014 | B1 |
8654466 | McFadyen | Feb 2014 | B1 |
8654467 | Wong et al. | Feb 2014 | B1 |
8665546 | Zhao et al. | Mar 2014 | B1 |
8665551 | Rigney et al. | Mar 2014 | B1 |
8670206 | Liang et al. | Mar 2014 | B1 |
8687312 | Liang | Apr 2014 | B1 |
8693123 | Guo et al. | Apr 2014 | B1 |
8693134 | Xi et al. | Apr 2014 | B1 |
8699173 | Kang et al. | Apr 2014 | B1 |
8711027 | Bennett | Apr 2014 | B1 |
8717696 | Ryan et al. | May 2014 | B1 |
8717699 | Ferris | May 2014 | B1 |
8717704 | Yu et al. | May 2014 | B1 |
8724245 | Smith et al. | May 2014 | B1 |
8724253 | Liang et al. | May 2014 | B1 |
8724524 | Urabe et al. | May 2014 | B2 |
8737008 | Watanabe et al. | May 2014 | B1 |
8737013 | Zhou et al. | May 2014 | B2 |
8743495 | Chen et al. | Jun 2014 | B1 |
8743503 | Tang et al. | Jun 2014 | B1 |
8743504 | Bryant et al. | Jun 2014 | B1 |
8749904 | Liang et al. | Jun 2014 | B1 |
8760796 | Lou et al. | Jun 2014 | B1 |
8767332 | Chahwan et al. | Jul 2014 | B1 |
8767343 | Helmick et al. | Jul 2014 | B1 |
8767354 | Ferris et al. | Jul 2014 | B1 |
8773787 | Beker | Jul 2014 | B1 |
8779574 | Agness et al. | Jul 2014 | B1 |
8780473 | Zhao et al. | Jul 2014 | B1 |
8780477 | Guo et al. | Jul 2014 | B1 |
8780479 | Helmick et al. | Jul 2014 | B1 |
8780489 | Gayaka et al. | Jul 2014 | B1 |
8792202 | Wan et al. | Jul 2014 | B1 |
8797664 | Guo et al. | Aug 2014 | B1 |
8804267 | Huang et al. | Aug 2014 | B2 |
20100035085 | Jung et al. | Feb 2010 | A1 |
20120284493 | Lou et al. | Nov 2012 | A1 |
20130114162 | Zhang et al. | May 2013 | A1 |
20130120870 | Zhou et al. | May 2013 | A1 |
20130148240 | Ferris et al. | Jun 2013 | A1 |
Entry |
---|
Alain Chahwa, et. al., U.S. Appl. No. 13/451,373, filed Apr. 19, 2012, 15 pages. |
Daniel J. Gunderson, et. al., U.S. Appl. No. 13/246,600, filed Sep. 27, 2011, 17 pages. |
Kuang-Yang Tu, et. al., U.S. Appl. No. 13/668,142, filed Jun. 25, 2013, 15 pages. |
Xu Chen, et. al., U.S. Appl. No. 13/668,142, filed Nov. 12, 2012, 14 pages. |
Number | Date | Country | |
---|---|---|---|
61871279 | Aug 2013 | US |